Lecture 15

April $8^{\text {th }}, 2004$

The Continuity Method

\mathcal{L} et $T: \mathcal{B}_{1} \rightarrow \mathcal{B}_{2}$ be linear between two Banach spaces. T is bounded if

$$
\|T\|=\sup _{x \in \mathcal{B}_{1}} \frac{\|T x\|_{\mathcal{B}_{2}}}{\|x\|_{\mathcal{B}_{1}}}<\infty \Leftrightarrow\|T x\|_{\mathcal{B}_{2}} \leq c \cdot\|x\|_{\mathcal{B}_{1}} \text { for some } c>0 .
$$

Continuity Method Theorem. Let \mathcal{B} be a Banach space, V a normed space, $L_{0}, L_{1}: \mathcal{B} \rightarrow V$ bounded linear operators. Assume $\exists c$ such that $L_{t}:=(1-t) L_{0}+t L_{1}$ satisfies

$$
\begin{equation*}
\|x\|_{\mathcal{B}} \leq c \cdot\left\|L_{t} x\right\|_{V}, \quad \forall t \in[0,1] . \tag{*}
\end{equation*}
$$

Then $-L_{0}$ is onto $\Leftrightarrow \quad L_{1}$ is.

Proof. Assume L_{s} is onto for some $s \in[0,1] ;$ by $(*) L_{s}$ is also 1-to- $1 \Rightarrow L_{s}^{-1}$ exists. For $t \in[0,1], y \in$ V solving $L_{t} x=y$ is equivalent to solving $L_{s}(x)=y+\left(L_{s}-L_{t}\right) x=y+(t-s) L_{0} x+(t-s) L_{1} x$. By linearity now $x=L_{s}^{-1} y+(t-s) L_{s}{ }^{-1} \circ\left(L_{0}-L_{1}\right) x$.

Define a linear map $T: \mathcal{B} \rightarrow \mathcal{B}, T x=L_{s}^{-1} y+(t-s) L_{s}{ }^{-1} \circ\left(L_{0}-L_{1}\right) x$. One has $\| T x_{1}-$ $T x_{2}\left\|_{\mathcal{B}}=\right\|(t-s) L_{s}{ }^{-1} \circ\left(L_{0}-L_{1}\right)\left(x_{1}-x_{2}\right) \| .(*)$ now gives us a bound on $L_{s}{ }^{-1}$: since L_{s} is onto $\forall x \in \mathcal{B}, \exists y \in \mathcal{B}$ such that $L_{s} y=x$ and so

$$
\begin{gathered}
\left\|L_{s}^{-1} x\right\|_{\mathcal{B}} \leq c \cdot\left\|L_{s} \circ L_{s}^{-1} x\right\|_{V} \\
\left\|L_{s}{ }^{-1} x\right\|_{\mathcal{B}} \leq c \cdot\|x\|_{V} \quad \Rightarrow \quad\left\|L_{s}^{-1}\right\| \leq c .
\end{gathered}
$$

As an application we see that

$$
\left\|T x_{1}-T x_{2}\right\|_{\mathcal{B}} \leq(t-s) c \cdot\left(\left\|L_{0}\right\|+\left\|L_{1}\right\|\right)\left\|x_{1}-x_{2}\right\|,
$$

and for t close enough to s (precisely for $t \in\left[s-\frac{1}{c\left(\left\|L_{0}\right\|+| | L_{1} \|\right)}, s+\frac{1}{c\left(\left\|L_{0}\right\|+| | L_{1} \|\right)}\right]$) we therefore have a contraction mapping! Therefore T has a fixed point by the previous theorem which essentially means that we can solve $L_{t} x=y$ for any fixed y or that L_{t} is onto. Repeating this $c\left(\left\|L_{0}\right\|+\left\|L_{1}\right\|\right)$ many times we cover all $t \in[0,1]$.

Remark. Note as in the beginning of the proof that once such operators are onto they are in fact invertible as long as (*) holds.

Elliptic uniqueness

Let us summarize the properties we have establised for uniformly elliptic equations. Let Ω be a bounded domain in \mathbb{R}^{n}. Let $L=a^{i j}(x) \mathrm{D}_{i j}+b^{i}(x) \mathrm{D}_{i}+c(x)$ be uniformly elliptic, i.e

$$
\frac{1}{\Lambda} \cdot \delta^{i j} \leq a^{i j}(x) \leq \Lambda \cdot \delta^{i j}
$$

and assume $c(x) \leq 0$.
Let $u \in \mathcal{C}^{2}(\Omega) \cap \mathcal{C}^{0}(\bar{\Omega})$ be a solution of $L u=f \in \mathcal{C}^{\alpha}(\Omega)$ with $0<\alpha<1$. Then we have the following a priori estimates -
A. $\sup _{\Omega}|u| \leq c(\gamma, \Lambda, \Omega, n) \cdot\left(\sup _{\partial \Omega}|u|+\sup _{\Omega}|f|\right)$.
B. Under the additional assumptions

- in the case L has α - Hölder continuous coefficients with Hölder constant Λ,
- Ω has $\mathcal{C}^{2, \alpha}$ boundary
- $u \in \mathcal{C}^{2, \alpha}(\bar{\Omega}), f \in \mathcal{C}^{\alpha}(\bar{\Omega})$,
we had the global Schauder estimate

$$
\|u\|_{C^{2}, \alpha}(\bar{\Omega}) \leq c(\gamma, \Lambda, \Omega, n)\left(\|u\|_{C^{0}(\Omega)}+\|f\|_{C^{\alpha}(\Omega)}\right)
$$

C. Under the assumptions of B, when $c(x) \leq 0$

$$
\|u\|_{C^{2, \alpha}(\bar{\Omega})} \leq c\left(\sup _{\partial \Omega}|u|+\sup _{\Omega}|f|\right) .
$$

D. The above applies to the Dirichlet problem

$$
L u=f \text { on } \bar{\Omega}, \quad u=\varphi \text { on } \partial \Omega
$$

and in particular when $\varphi=0$ we get very simply

$$
\|u\|_{C^{2, \alpha}(\bar{\Omega})} \leq c \cdot\|L u\|_{C^{\alpha}(\bar{\Omega})}
$$

Theorem. Let Ω be a $\mathcal{C}^{2, \alpha}$ domain, L uniformly elliptic with $\mathcal{C}^{\alpha}(\bar{\Omega})$ coefficients and $(x) \leq 0$. Look at all $u \in \mathcal{C}^{2, \alpha}(\bar{\Omega})$ and assume $f \in \mathcal{C}^{\alpha}(\bar{\Omega})$. Then the Dirichlet problem $L u=f$ on $\bar{\Omega}, u=$ φ on $\partial \Omega$ has a unique solution $u \in \mathcal{C}^{2, \alpha}(\bar{\Omega})$ provided that the Dirichlet problem for Δ is solvable $\forall f \in \mathcal{C}^{\alpha}(\bar{\Omega}), \forall \varphi \in \mathcal{C}^{2, \alpha}(\bar{\Omega})!$

Proof. Connect L and Δ via a segment: $[0,1] \rightarrow L_{t}:=(1-t) L+t \Delta$. Since those operators are all linear it is enough to prove for $\varphi=0$ as we have seen previously. $\mathcal{C}^{2, \alpha}(\bar{\Omega})$ is a Banach space (Lecture 14), and so is its subspace $\mathcal{B}(\Omega):=\left\{u \in \mathcal{C}^{2, \alpha}(\bar{\Omega}), u=0\right.$ on $\left.\partial \Omega\right\}$. As a matter of fact L_{t} is a bounded operator $\mathcal{B}(\Omega) \rightarrow \mathcal{C}^{\alpha}(\bar{\Omega})$ by the assumptions on the coefficients of L. And, by uniformly elliptic we see from D above

$$
\|u\|_{C^{2, \alpha}(\bar{\Omega})}=\|u\|_{C^{2, \alpha}(\mathcal{B}(\Omega))} \leq c \cdot\left\|L_{t} u\right\|_{C^{\alpha}(\bar{\Omega})},
$$

with c independent of t (depends just on L). Note $\mathcal{C}^{\alpha}(\bar{\Omega})$ is a Banach space and in particular a vector space. The Continuity Method thus applies.

Strangely enough, we are now back to solving Dirichlet's problem for Δ in domains.
Our methods so far were good for providing solution in balls, spherically symmetric domains. In other words we were able to solve (in $\mathcal{C}^{2, \alpha}(\overline{B(0, R)})!$) $\Delta u=f \in \mathcal{C}^{\alpha}(\bar{\Omega}) \quad$ on $B(0, R), \quad u=$ φ on $\partial B(0, R)$ using the Poisson Integral Formula and estimates for the Newtonian Potential. We used conformal mappings (inversion) to get indeed $\mathcal{C}^{2, \alpha}$ upto the boundary. We conclude therefore that

Corollary. We can solve the Dirichlet Problem for any L satisfying the assumptions of the Theorem in balls.

Perron's Method gives a solution in quite general domains but we will not go into its details as later on our regularity theory (weak solutions, Sobolev spaces etc.) will give us those answers.

Elliptic $\mathcal{C}^{2, \alpha}$ regularity

Let $B:=$ ball, $T:=$ some connected boundary portion.

Theorem. Let L be uniformly elliptic with \mathcal{C}^{α} coefficients and assume $c(x) \leq 0$. Let $u \in$ $\mathcal{C}^{2}(\Omega) \cap \mathcal{C}^{0}(\bar{\Omega})$ be a solution of the Dirichlet problem $L u=f \in \mathcal{C}^{\alpha}(\bar{B}) \quad$ in $B, \quad u=\varphi \in \mathcal{C}^{0}(\partial B) \cap$ $\mathcal{C}^{2, \alpha}(T)$ on ∂B has a unique solution $u \in \mathcal{C}^{2, \alpha}(B \cup T) \cap \mathcal{C}^{0}(\bar{B})$.

We know by the previous theorem that if $\varphi \in \mathcal{C}^{2, \alpha}(\partial B)$ (and not just on T) then unique solvability would be equivalent to the unique solvability of Δ on B which we have! Therefore this Theorem is a slight generalization.

Proof. As was just outlined the crucial problem lies in the (possible) absence of regularity of φ on part of the boundary. So we approximate φ by a sequence $\left\{\varphi_{k}\right\} \subset \mathcal{C}^{3}(\bar{B})$ such that both $\left\|\varphi_{k}-\varphi\right\|_{C^{0}(\bar{B})} \longrightarrow 0$ and $\left\|\varphi_{k}-\varphi\right\|_{C^{2, \alpha}(\bar{B})} \longrightarrow 0$. Solve $L u_{k}=f$, in $B, \quad u_{k}=\varphi_{k}$ on ∂B.

Now $L\left(u_{i}-u_{j}\right)=0, \quad$ in $B, \quad u_{i}-u_{j}=\varphi_{i}-\varphi_{j}$ on ∂B. And by A above (as $\left.c(x) \leq 0\right)$ $\left\|u_{i}-u_{j}\right\|_{C^{0}(B)} \leq C \sup _{\partial B}\left|\varphi_{i}-\varphi_{j}\right|$. So we conclude our solutions $\left\{u_{k}\right\}$ form a Cauchy sequence WRT the \mathcal{C}^{0} norm, i.e in the Banach space $\mathcal{C}^{0}(B)$. Therefore we know $\exists u \in \mathcal{C}^{0}(B)$ with $u_{i} \xrightarrow{\mathcal{C}^{0}(B)} u$ (not just subconvergence!) and furthermore this u satisfies $u=\varphi$ on $p B$.

Now we shift our look to the $\mathcal{C}^{2, \alpha}$ situation; by our interior estimates we have for any $B^{\prime} \Subset B$ $\left\|u_{i}-u_{j}\right\|_{C^{2, \alpha}\left(B^{\prime}\right)} \leq c\left(\left\|u_{i}-u_{j}\right\|_{C^{0}(B)}+\|0\|_{C^{\alpha}(B)}\right)$.. That is our sequence is also a Cauchy sequence in the Banach space $\mathcal{C}^{2, \alpha}\left(B^{\prime}\right) \Rightarrow$ converges in $\mathcal{C}^{2, \alpha}\left(B^{\prime}\right)$ (in particular limit is $\mathcal{C}^{2, \alpha}$ regular). This limit must equal the limit $\left.u\right|_{B} ^{\prime}$ we obtained through the \mathcal{C}^{0} norm. We do this for any $B^{\prime} \Subset B \Rightarrow$ get convergence in $\mathcal{C}^{2, \alpha}(B) \Rightarrow u$ satisfies $L u=f$ on B and has the desired $\mathcal{C}^{2, \alpha}$ regularity on B.

We now turn to the boundary portion: $\forall x_{0} \in T$ and $\rho>0$ such that $B\left(x_{0}, \rho\right) \cap \partial B \subseteq T$ we have the usual boundary Schauder estimates (for smooth enough functions) which give us $\left\|u_{i}-u_{j}\right\|_{C^{2, \alpha}\left(B\left(x_{0}, \rho\right) \cap \bar{B}\right)} \leq c \cdot\left(\left\|u_{i}-u_{j}\right\|_{C^{0}(B)}+\left\|\varphi_{i}-\varphi_{j}\right\|_{C^{2, \alpha}\left(B\left(x_{0}, \rho\right) \cap \bar{B}\right)}\right)$. This means that in fact $u_{i} \xrightarrow{\mathcal{C}^{2, \alpha}\left(B\left(x_{0}, \rho\right) \cap \bar{B}\right)} u$ and in particular $u \in \mathcal{C}^{2, \alpha}$ at $x_{0} . \forall x_{0} \in T$.

