Lecture 1

Mean Value Theorem

Theorem 1 Suppose $\Omega \subset \mathbb{R}^{n}, u \in C^{2}(\Omega), \Delta u=0$ in Ω, and $B=B(y, R) \subset \subset \Omega$, then

$$
u(y)=\frac{1}{n \omega_{n} R^{n-1}} \int_{\partial B} u d s=\frac{1}{\omega_{n} R^{n}} \int_{B} u d x
$$

Proof:By Green's formula, for $r \in(0, R), \int_{\partial B_{r}} \frac{\partial u}{\partial \nu} d s=\int_{B_{r}} \Delta u d x=0$. Thus

$$
\begin{aligned}
0=\int_{\partial B_{r}} \frac{\partial u}{\partial \nu} d s & =\int_{\partial B_{r}} \frac{\partial u}{\partial r}(y+r \omega) d s \\
& =r^{n-1} \int_{S^{n-1}} \frac{\partial u}{\partial r}(y+r \omega) d \omega \\
& =r^{n-1} \frac{\partial}{\partial r} \int_{S^{n-1}} u(y+r \omega) d \omega \\
& =r^{n-1} \frac{\partial}{\partial r}\left(r^{1-n} \int_{\partial B_{r}} u d s\right)
\end{aligned}
$$

$\Longrightarrow \frac{1}{r^{n-1}} \int_{\partial B_{r}} u d s=$ const for any r.
But we also have

$$
n \omega_{n} u_{\min }\left(B_{r}\right) \leq \frac{1}{r^{n-1}} \int_{\partial B_{r}} u d s \leq n \omega_{n} u_{\max }\left(B_{r}\right)
$$

taking limit as $r \rightarrow \infty$, we get for any r

$$
u(y)=\frac{1}{n \omega_{n} r^{n-1}} \int_{\partial B_{r}} u d s
$$

Integral it, we get the solid mean value thm.

Remark 1 We have $\triangle u \geq 0 \Longrightarrow u(y) \leq \frac{1}{n \omega_{n} R^{n-1}} \int_{\partial B} u d s$, and we call such u subharmonic, i.e. u lies below hamonic function sharing the same boundary values.

Also we have $\triangle u \leq 0 \Longrightarrow u(y) \geq \frac{1}{n \omega_{n} R^{n-1}} \int_{\partial B} u d s$ and we call u super-harmonic.

Application: Maximum principle and uniqueness.

Theorem $2 \Omega \subset \mathbb{R}^{n}, u \in C^{2}(\Omega), \Delta u \geq 0$, If $\exists p \in \Omega$ s.t.

$$
u(p)=\max _{\Omega} u
$$

then u is constant.
Proof: Let

$$
M=\sup _{\Omega} u, \quad \Omega_{M}=\{x \in \Omega \mid u(x)=M\} .
$$

Ω_{M} is not empty because $p \in M, \Omega_{M}$ is closed by continuity, Ω_{M} is open by mean value inequality. Thus $\Omega_{M}=M$, i.e. u is constant function.

Corollary $1 u \in C^{2}(\Omega) \bigcap C^{0}(\bar{\Omega}), \Delta u=0$, then if Ω bounded, we have

$$
\inf _{\partial \Omega} u \leq \sup _{\partial \Omega}, \quad x \in \Omega
$$

Corollary $2 u, v \in C^{2}(\Omega) \bigcap C^{0}(\Omega), \Delta u=\Delta v$ in $\Omega, u=v$ on $\partial \Omega \Longrightarrow u \equiv v$ on $\partial \Omega$.
Corollary $3 \Delta u \geq 0, \Delta v=0, u \equiv v$ on $\partial \Omega \Longrightarrow u \leq v$ in Ω. (Hence "subharmonic")

Application: Harnack Inequality.

Theorem 3 Suppose Ω domain, $u \in C^{2}(\Omega), \Delta u=0, \Omega^{\prime} \subset \subset \Omega, u \geq 0$ in Ω, then \exists constant $C=C\left(n, \Omega, \Omega^{\prime}\right)$ s.t.

$$
\sup _{\Omega^{\prime}} u \leq C \inf _{\Omega^{\prime}} u
$$

Proof: Let $y \in \Omega^{\prime}, B(y, 4 R) \subset \Omega$. Take $x_{1}, x_{2} \in B(y, R)$, we have

$$
\begin{gathered}
u\left(x_{1}\right)=\frac{1}{\omega_{n} R^{n}} \int_{B\left(x_{1}, R\right)} u d x \leq \frac{1}{\omega_{n} R^{n}} \int_{B(y, 2 R)} u d x \\
u\left(x_{2}\right)=\frac{1}{\omega_{n}(3 R)^{n}} \\
\int_{B\left(x_{2}, 3 R\right)} u d x \geq \frac{1}{\omega_{n}(3 R)^{n}} \int_{B(y, 2 R)} u d x \\
\Longrightarrow u\left(x_{1}\right) \leq 3^{n} u\left(x_{2}\right) \\
\Longrightarrow \sup _{B(y, R)} \leq 3^{n} \inf _{B(y, R)}
\end{gathered}
$$

Choose R little enough s.t. $B(y, 4 R) \subset \Omega$ for $\forall y \in \Omega^{\prime}$. Let $x_{1}, x_{2} \in \overline{\Omega^{\prime}}$ s.t. to be maximal and minimal point of u in $\overline{\Omega^{\prime}}$ respectively. We can cover Ω^{\prime} by N balls of radius R since Ω^{\prime} is compact, so we have

$$
\sup _{\Omega^{\prime}} u \leq u\left(x_{1}\right) \leq 3^{n} u\left(x_{1}^{\prime}\right) \leq \cdots \leq 3^{n N} \inf _{\Omega^{\prime}} u
$$

This completes our proof.

Remark 2 1. A Harnack inequality implies C^{α} regularity for $0<\alpha<1$.
2. A positive (or more generally bounded above or below) harmonic function on \mathbb{R}^{n} is constant.

A Priori Estimate for harmonic function.

Theorem $4 u \in C^{\infty}, \Delta u=0, \Omega^{\prime} \subset \Omega$. Then for multi-index α, there exists constant $C=C\left(n, \alpha, \Omega, \Omega^{\prime}\right)$ s.t.

$$
\sup _{\Omega^{\prime}}\left|D^{\alpha} u\right| \leq C \sup _{\Omega}|u| .
$$

Proof: Since $\frac{\partial}{\partial x_{i}} \Delta=\Delta \frac{\partial}{\partial x_{i}}, D u$ is also harmonic. So by mean value theorem and divergence theorems, we have for $B(y, R) \subset \Omega$,

$$
\begin{aligned}
D u(y)= & \frac{1}{\omega_{n} R^{n}} \int_{B(y, R)} D u d x=\frac{1}{\omega_{n} R^{n}} \int_{\partial B} u \vec{\nu} d s \\
& \Longrightarrow|D u(y)| \leq \frac{n}{R} \sup _{\partial B}|u| \\
& \left.\Longrightarrow D u(y)\left|\leq \frac{n}{d(y, \partial \Omega)} \sup _{\Omega}\right| u \right\rvert\, .
\end{aligned}
$$

By induction, we get the stated estimate for higher order derivatives.
Remark 3 We can weaken the assumptions to $u \in C^{2}(\Omega): u \in C^{2}(\Omega)$ and $\Delta u=0 \Longrightarrow$ u analytic. We will do this next time.

Green's Representation Formula.

Suppose Ω is C^{1} domain, $u, v \in C^{2}(\bar{\Omega})$.
Green's $1^{\text {st }}$ identity:

$$
\int_{\Omega} v \Delta u d x+\int_{\Omega} D u \cdot D v d x=\int_{\partial \Omega} v \frac{\partial u}{\partial \nu} d s
$$

Green's $2^{\text {nd }}$ identity:

$$
\int_{\Omega}(v \Delta u-u \Delta v) d x=\int_{\partial \Omega}\left(v \frac{\partial u}{\partial \nu}-u \frac{\partial v}{\partial \nu}\right) d s
$$

Find solution for Laplacian:

$$
\Gamma(x)=\left\{\begin{array}{lll}
\frac{1}{n(2-n) \omega_{n}}|x|^{2-n} & , \quad n>2 \\
\frac{1}{2 \pi} \log |x| & , \quad n=2
\end{array}\right.
$$

Note that away from origin, $\Delta \Gamma(x)=0$.

Theorem 5 Suppose $u \in C^{2}(\bar{\Omega})$, then for $y \in \Omega$, we have

$$
u(y)=\int_{\partial \Omega}\left(u \frac{\partial \Gamma}{\partial \nu}(x-y)-\Gamma(x-y) \frac{\partial u}{\partial \nu}\right) d \sigma+\int_{\Omega} \Gamma(x-y) \Delta u d x
$$

Proof: Take ρ small enough s.t. $B_{\rho}=B_{\rho}(y) \subset \Omega$. Apply Green's $2^{\text {nd }}$ formula to u and $v(x)=\Gamma(x-y)$, which is harmonic in $\Omega \backslash\{y\}$, on the domain $\Omega \backslash B_{\rho}$, we get
$\int_{\Omega \backslash B_{\rho}} \Gamma(x-y) \Delta u d x=\int_{\partial \Omega}\left(\Gamma(x-y) \frac{\partial u}{\partial \nu}-u \frac{\partial \Gamma}{\partial \nu}(x-y)\right) d \sigma+\int_{\partial B_{r} h o}\left(\Gamma\left(x-y \frac{\partial u}{\partial \nu}-u \frac{\partial \Gamma}{\partial \nu}(x-y)\right)\right) d \sigma$.
Let $\rho \rightarrow 0$, notice that as $\rho \rightarrow 0$

$$
\begin{gathered}
\left|\int_{\partial B_{\rho}} \Gamma(x-y) \frac{\partial u}{\partial \nu} d \sigma\right| \leq \Gamma(\rho) \sup _{B_{\rho}}|D u| n \omega_{n} \rho^{n-1} \rightarrow 0 \\
\int_{\partial B_{r} h o} u \frac{\partial \Gamma}{\partial \nu}(x-y) d \sigma=-\Gamma^{\prime}(\rho) \int_{\partial B_{\rho}} u d \sigma=\frac{-1}{n \omega_{n} \rho^{n-1}} \int_{\partial B_{\rho}} u d \sigma \rightarrow-u(y)
\end{gathered}
$$

thus we get the Green's Representation Formula.
Application of Green's Formula:
Theorem 6 Let $B=B_{R}(0)$ and φ is continuous function on ∂B. Then

$$
u(x)= \begin{cases}\frac{R^{2}-\left|x^{2}\right|}{n \omega_{n} R} \int_{\partial B} \frac{\varphi(y)}{|x-y|^{n}} d s & , \quad x \in B \\ \varphi(x) & , \quad x \in \partial B\end{cases}
$$

belongs to $C^{2}(B) \cap C^{0}(\bar{B})$ and satisfies $\Delta u=0$ in B.

