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Lecture 1 

Mean Value Theorem 

Theorem 1 Suppose Ω ⊂ Rn , u ∈ C2(Ω), Δu = 0 in Ω, and B = B(y, R) ⊂⊂ Ω, then 

1 1 
u(y) = uds = udx 

RnnωnRn−1 
∂B ωn B 

∂u Proof:By Green’s formula, for r ∈ (0, R), ds = Δudx = 0. Thus ∂Br ∂ν Br 

∂u ∂u 
0 = ds = (y + rω)ds 

∂Br 
∂ν ∂Br 

∂r 

= r n−1 ∂u 
(y + rω)dω 

Sn−1 ∂r 

n−1 ∂ 
= r u(y + rω)dω 

∂r Sn−1 

= r n−1 ∂ 
(r 1−n uds)

∂r ∂Br 

= 1 uds = const for any r. 
rn−1 ∂Br

⇒ 

But we also have 

1

nωnumin(Br) ≤


rn−1 uds ≤ nωnumax(Br), 
∂Br 

taking limit as r → ∞, we get for any r 

1 
u(y) = uds. 

nωnrn−1 
∂Br 

Integral it, we get the solid mean value thm. � 

Remark 1 We have �u ≥ 0 = 1 uds, and we call such u sub
nωnRn−1 ∂B ⇒ u(y) ≤

harmonic, i.e. u lies below hamonic function sharing the same boundary values. 
Also we have �u ≤ 0 = 1 uds and we call u superharmonic. 

nωnRn−1 ∂B ⇒ u(y) ≥ 

Application: Maximum principle and uniqueness. 
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Theorem 2 Ω ⊂ Rn, u ∈ C2(Ω), Δu ≥ 0, If ∃p ∈ Ω s.t. 

u(p) = max u, 
Ω 

then u is constant. 

Proof: Let 
M = sup u, ΩM = {x ∈ Ω|u(x) = M }. 

Ω 

ΩM is not empty because p ∈ M , ΩM is closed by continuity, ΩM is open by mean 
value inequality. Thus ΩM = M , i.e. u is constant function. � 

Corollary 1 u ∈ C2(Ω) C0(Ω), Δu = 0, then if Ω bounded, we have 

inf u ≤ sup, x ∈ Ω. 
∂Ω ∂Ω 

Corollary 2 u, v ∈ C2(Ω) C0(Ω), Δu = Δv in Ω, u = v on ∂Ω = ⇒ u ≡ v on ∂Ω. 

Corollary 3 Δu ≥ 0, Δv = 0, u ≡ v on ∂Ω = ⇒ u ≤ v in Ω. (Hence ”subharmonic” ) 

Application: Harnack Inequality. 

Theorem 3 Suppose Ω domain, u ∈ C2(Ω), Δu = 0, Ω� ⊂⊂ Ω, u ≥ 0 in Ω, then ∃
constant C = C(n, Ω, Ω�) s.t. 

sup u ≤ C inf u. 
Ω� Ω� 

Proof: Let y ∈ Ω�, B(y, 4R) ⊂ Ω. Take x1, x2 ∈ B(y, R), we have 

1 1 
u(x1) = udx ≤ udx, 

ωnRn
B(x1,R) ωnRn

B(y,2R) 

1 1 
udx, u(x2) = 

ωn(3R)n
B(x2,3R) 

udx ≥ 
ωn(3R)n 

B(y,2R) 

= ⇒ u(x1) ≤ 3n u(x2), 

= ⇒ sup ≤ 3n inf . 
B(y,R) B(y,R) 

Choose R little enough s.t. B(y, 4R) ⊂ Ω for ∀y ∈ Ω�. Let x1, x2 ∈ Ω� s.t. to be 
maximal and minimal point of u in Ω� respectively. We can cover Ω� by N balls of 
radius R since Ω� is compact, so we have 

sup u ≤ u(x1) ≤ 3n u(x� u.1) ≤ · · · ≤ 3nN inf 
Ω� Ω� 

This completes our proof. � 
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Remark 2 1. A Harnack inequality implies Cα regularity for 0 < α < 1. 
2. A positive (or more generally bounded above or below) harmonic function on Rn is 
constant. 

A Priori Estimate for harmonic function. 

Theorem 4 u ∈ C∞, Δu = 0, Ω� ⊂ Ω. Then for multiindex α, there exists constant 
C = C(n, α, Ω, Ω�) s.t. 

sup Dα u ≤ C sup u .| | 
Ω 
| |

Ω� 

Proof: Since ∂ Δ = Δ ∂ , Du is also harmonic. So by mean value theorem and ∂xi ∂xi 

divergence theorems, we have for B(y, R) ⊂ Ω, 

1 1 
Du(y) = Dudx = u−ν ds →

RnωnRn
B(y,R) ωn ∂B 

n 
= ⇒ |Du(y) sup |u|| ≤ 

R ∂B 

n 
= ⇒ |Du(y) u .| ≤ 

d(y, ∂Ω) 
sup | |
Ω 

By induction, we get the stated estimate for higher order derivatives. � 

Remark 3 We can weaken the assumptions to u ∈ C2(Ω): u ∈ C2(Ω) and Δu = 0 = ⇒ 
u analytic. We will do this next time. 

Green’s Representation Formula. 
Suppose Ω is C1 domain, u, v ∈ C2(Ω). 

Green’s 1st identity: 

∂u 
vΔudx + Du · Dvdx = v ds. 

∂ν Ω Ω ∂Ω 

Green’s 2nd identity: 

∂u ∂v 
(vΔu − uΔv)dx = )ds. (v

∂ν 
− u

∂ν Ω ∂Ω 

Find solution for Laplacian: 

, n > 2,
Γ(x) = 

� 
n(2−

1 
n)ωn 

|x|2−n 

1 
2π log |x| , n = 2. 

Note that away from origin, ΔΓ(x) = 0. 
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Theorem 5 Suppose u ∈ C2(Ω), then for y ∈ Ω, we have 

∂Γ ∂u 
u(y) = (u (x − y) − Γ(x − y) )dσ + Γ(x − y)Δudx. 

∂Ω ∂ν ∂ν Ω 

Proof: Take ρ small enough s.t. Bρ = Bρ(y) ⊂ Ω. Apply Green’s 2nd formula to u 
and v(x) = Γ(x − y), which is harmonic in Ω \ {y}, on the domain Ω \Bρ, we get 

∂u ∂Γ ∂u ∂Γ
Γ(x−y)Δudx = (Γ(x−y) u (x−y))dσ+ (Γ(x−y u (x−y)))dσ. 

∂ν 
−

∂ν ∂Br ho ∂ν 
−

∂ν ∂ΩΩ\Bρ 

Let ρ → 0, notice that as ρ 0→

∂u | Γ(x − y) dσ ≤ Γ(ρ) sup Du nωnρn−1 0,
∂ν 

| | | →
∂Bρ Bρ 

∂Γ 

∂Br ho ∂ν ∂Bρ 
nωnρn−1 

∂Bρ 

udσ → −u(y),u (x − y)dσ = −Γ�(ρ) udσ = 
−1 

thus we get the Green’s Representation Formula. � 

Application of Green’s Formula: 

Theorem 6 Let B = BR(0) and ϕ is continuous function on ∂B. Then � 
R2 2 � ϕ(y)−|x | 

∂B x−y n ds , x ∈ B, 
u(x) = nωnR 

ϕ(x) 
| |

, x ∈ ∂B. 

belongs to C2(B) ∩ C0(B) and satisfies Δu = 0 in B. 
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