Lecture 1

Mean Value Theorem

Theorem 1 Suppose $\Omega \subset \mathbb{R}^n$, $u \in C^2(\Omega)$, $\Delta u = 0$ in Ω , and $B = B(y, R) \subset \subset \Omega$, then

$$u(y) = \frac{1}{n\omega_n R^{n-1}} \int_{\partial B} u ds = \frac{1}{\omega_n R^n} \int_B u dx$$

Proof:By Green's formula, for $r \in (0, R)$, $\int_{\partial B_r} \frac{\partial u}{\partial \nu} ds = \int_{B_r} \Delta u dx = 0$. Thus

$$\begin{split} 0 &= \int_{\partial B_r} \frac{\partial u}{\partial \nu} ds = \int_{\partial B_r} \frac{\partial u}{\partial r} (y + r\omega) ds \\ &= r^{n-1} \int_{S^{n-1}} \frac{\partial u}{\partial r} (y + r\omega) d\omega \\ &= r^{n-1} \frac{\partial}{\partial r} \int_{S^{n-1}} u (y + r\omega) d\omega \\ &= r^{n-1} \frac{\partial}{\partial r} (r^{1-n} \int_{\partial B_r} u ds) \end{split}$$

 $\implies \frac{1}{r^{n-1}} \int_{\partial B_r} u ds = const$ for any r. But we also have

$$n\omega_n u_{min}(B_r) \le \frac{1}{r^{n-1}} \int_{\partial B_r} u ds \le n\omega_n u_{max}(B_r),$$

taking limit as $r \to \infty$, we get for any r

$$u(y) = \frac{1}{n\omega_n r^{n-1}} \int_{\partial B_r} u ds.$$

Integral it, we get the solid mean value thm.

Remark 1 We have $\Delta u \ge 0 \Longrightarrow u(y) \le \frac{1}{n\omega_n R^{n-1}} \int_{\partial B} u ds$, and we call such u subharmonic, i.e. u lies below hamonic function sharing the same boundary values.

Also we have $\triangle u \leq 0 \Longrightarrow u(y) \geq \frac{1}{n\omega_n R^{n-1}} \int_{\partial B} u ds$ and we call u super-harmonic.

Application: Maximum principle and uniqueness.

Theorem 2 $\Omega \subset \mathbb{R}^n, u \in C^2(\Omega), \Delta u \ge 0$, If $\exists p \in \Omega \ s.t.$

$$u(p) = \max_{\Omega} u,$$

then u is constant.

Proof: Let

$$M = \sup_{\Omega} u, \qquad \Omega_M = \{ x \in \Omega | u(x) = M \}.$$

 Ω_M is not empty because $p \in M$, Ω_M is closed by continuity, Ω_M is open by mean value inequality. Thus $\Omega_M = M$, i.e. u is constant function.

Corollary 1 $u \in C^2(\Omega) \bigcap C^0(\overline{\Omega}), \Delta u = 0$, then if Ω bounded, we have

$$\inf_{\partial\Omega} u \le \sup_{\partial\Omega}, \qquad x \in \Omega$$

Corollary 2 $u, v \in C^2(\Omega) \cap C^0(\Omega), \Delta u = \Delta v \text{ in } \Omega, u = v \text{ on } \partial\Omega \Longrightarrow u \equiv v \text{ on } \partial\Omega.$

Corollary 3 $\Delta u \ge 0, \Delta v = 0, u \equiv v \text{ on } \partial \Omega \Longrightarrow u \le v \text{ in } \Omega.$ (Hence "subharmonic")

Application: Harnack Inequality.

Theorem 3 Suppose Ω domain, $u \in C^2(\Omega), \Delta u = 0, \Omega' \subset \Omega, u \geq 0$ in Ω , then \exists constant $C = C(n, \Omega, \Omega')$ s.t.

$$\sup_{\Omega'} u \le C \inf_{\Omega'} u.$$

Proof: Let $y \in \Omega', B(y, 4R) \subset \Omega$. Take $x_1, x_2 \in B(y, R)$, we have

$$u(x_1) = \frac{1}{\omega_n R^n} \int_{B(x_1,R)} u dx \le \frac{1}{\omega_n R^n} \int_{B(y,2R)} u dx,$$
$$u(x_2) = \frac{1}{\omega_n (3R)^n} \int_{B(x_2,3R)} u dx \ge \frac{1}{\omega_n (3R)^n} \int_{B(y,2R)} u dx,$$
$$\implies u(x_1) \le 3^n u(x_2),$$
$$\implies \sup_{B(y,R)} \le 3^n \inf_{B(y,R)}.$$

Choose R little enough s.t. $B(y, 4R) \subset \Omega$ for $\forall y \in \Omega'$. Let $x_1, x_2 \in \overline{\Omega'}$ s.t. to be maximal and minimal point of u in $\overline{\Omega'}$ respectively. We can cover Ω' by N balls of radius R since Ω' is compact, so we have

$$\sup_{\Omega'} u \le u(x_1) \le 3^n u(x_1') \le \dots \le 3^{nN} \inf_{\Omega'} u.$$

This completes our proof.

Remark 2 1. A Harnack inequality implies C^{α} regularity for $0 < \alpha < 1$. 2. A positive (or more generally bounded above or below) harmonic function on \mathbb{R}^n is constant.

A Priori Estimate for harmonic function.

Theorem 4 $u \in C^{\infty}, \Delta u = 0, \Omega' \subset \Omega$. Then for multi-index α , there exists constant $C = C(n, \alpha, \Omega, \Omega')$ s.t.

$$\sup_{\Omega'} |D^{\alpha}u| \le C \sup_{\Omega} |u|.$$

Proof: Since $\frac{\partial}{\partial x_i} \Delta = \Delta \frac{\partial}{\partial x_i}$, Du is also harmonic. So by mean value theorem and divergence theorems, we have for $B(y, R) \subset \Omega$,

$$Du(y) = \frac{1}{\omega_n R^n} \int_{B(y,R)} Du dx = \frac{1}{\omega_n R^n} \int_{\partial B} u \overrightarrow{\nu} ds$$
$$\implies |Du(y)| \le \frac{n}{R} \sup_{\partial B} |u|$$
$$\implies |Du(y)| \le \frac{n}{d(y,\partial\Omega)} \sup_{\Omega} |u|.$$

By induction, we get the stated estimate for higher order derivatives.

Remark 3 We can weaken the assumptions to $u \in C^2(\Omega)$: $u \in C^2(\Omega)$ and $\Delta u = 0 \Longrightarrow u$ analytic. We will do this next time.

Green's Representation Formula.

Suppose Ω is C^1 domain, $u, v \in C^2(\overline{\Omega})$. Green's 1^{st} identity:

$$\int_{\Omega} v \Delta u dx + \int_{\Omega} Du \cdot Dv dx = \int_{\partial \Omega} v \frac{\partial u}{\partial \nu} ds$$

Green's 2^{nd} identity:

$$\int_{\Omega} (v\Delta u - u\Delta v) dx = \int_{\partial\Omega} (v\frac{\partial u}{\partial\nu} - u\frac{\partial v}{\partial\nu}) ds.$$

Find solution for Laplacian:

$$\Gamma(x) = \begin{cases} \frac{1}{n(2-n)\omega_n} |x|^{2-n} &, n > 2, \\ \frac{1}{2\pi} \log |x| &, n = 2. \end{cases}$$

Note that away from origin, $\Delta\Gamma(x) = 0$.

Theorem 5 Suppose $u \in C^2(\overline{\Omega})$, then for $y \in \Omega$, we have

$$u(y) = \int_{\partial\Omega} (u \frac{\partial \Gamma}{\partial \nu} (x - y) - \Gamma(x - y) \frac{\partial u}{\partial \nu}) d\sigma + \int_{\Omega} \Gamma(x - y) \Delta u dx.$$

Proof: Take ρ small enough s.t. $B_{\rho} = B_{\rho}(y) \subset \Omega$. Apply Green's 2^{nd} formula to u and $v(x) = \Gamma(x - y)$, which is harmonic in $\Omega \setminus \{y\}$, on the domain $\Omega \setminus B_{\rho}$, we get

$$\int_{\Omega \setminus B_{\rho}} \Gamma(x-y) \Delta u dx = \int_{\partial \Omega} (\Gamma(x-y) \frac{\partial u}{\partial \nu} - u \frac{\partial \Gamma}{\partial \nu} (x-y)) d\sigma + \int_{\partial B_{r}ho} (\Gamma(x-y \frac{\partial u}{\partial \nu} - u \frac{\partial \Gamma}{\partial \nu} (x-y))) d\sigma.$$

Let $\rho \to 0$, notice that as $\rho \to 0$

$$\begin{split} |\int_{\partial B_{\rho}} \Gamma(x-y) \frac{\partial u}{\partial \nu} d\sigma| &\leq \Gamma(\rho) \sup_{B_{\rho}} |Du| n\omega_n \rho^{n-1} \to 0, \\ \int_{\partial B_{r}ho} u \frac{\partial \Gamma}{\partial \nu} (x-y) d\sigma &= -\Gamma'(\rho) \int_{\partial B_{\rho}} u d\sigma = \frac{-1}{n\omega_n \rho^{n-1}} \int_{\partial B_{\rho}} u d\sigma \to -u(y), \end{split}$$

thus we get the Green's Representation Formula.

Application of Green's Formula:

Theorem 6 Let $B = B_R(0)$ and φ is continuous function on ∂B . Then

$$u(x) = \begin{cases} \frac{R^2 - |x^2|}{n\omega_n R} \int_{\partial B} \frac{\varphi(y)}{|x-y|^n} ds & , \quad x \in B, \\ \varphi(x) & , \quad x \in \partial B. \end{cases}$$

belongs to $C^2(B) \cap C^0(\overline{B})$ and satisfies $\Delta u = 0$ in B.