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Lecture 2 

Definition of Green’s function for general domains. 
Suppose u ∈ C2(Ω) ∩ C1(Ω), then for y ∈ Ω, the Green Representation formula tells 

us � � 
∂Γ ∂u 

u(y) = (u (x − y) − Γ(x − y) )dσ + Γ(x − y)Δudx. 
∂Ω ∂ν ∂ν Ω 

Definition 1 For integrable f , Ω Γ(x − y)f(x)dx is called Newtonian Potential with 
density f . 

Remark 1 If u ∈ C0
2(Rn), i.e. compact supported, then have 

u(y) = Γ(x − y)Δudx. 
Ω 

If u is harmonic, then we have 

∂Γ ∂u 
u(y) = (u (x − y) − Γ(x − y) )dσ. 

∂ν ∂ν ∂Ω 

Thus harmonic functions are analytic. 

Now let h be harmonic, by Green’s 2nd identity, we get 

∂u ∂h 
hΔu = (h

∂ν 
− u

∂ν 
)ds 

Ω ∂Ω 

i.e. � � 
∂h ∂u 

0 = (u
∂ν 

− h
∂ν 

)ds + hΔu 
∂Ω Ω 

Adding Green’s representation formula, we get 

∂ ∂h ∂u 
u(y) = 

∂Ω
{(u(x)( Γ(x−y)+ )−(Γ(x−y)+h(x)) )ds}+ (Γ(x−y)+h(x))Δudx. 

∂νx ∂νx ∂νx Ω 

Now fix x, we choose hy (x) s.t. Δhy (x) = 0 in Ω and hy (x) = −Γ(x − y) on ∂Ω. Let 
G(x, y) = Γ(x − y) + hy (x), then we have 

∂ 
u(y) = u(x) G(x, y)ds + G(x, y)Δudx. 

∂Ω ∂νx Ω 

Definition 2 Such a function G(x,y), defined for x ∈ Ω, y ∈ Ω, x = y which satisfies 
G(x, y) = 0 for x ∈ ∂Ω and h(x, y) = G(x, y) − Γ(x − y) is harmonic in x ∈ Ω, is called 
a Green function for domain Ω. 
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Remark 2 1. By Maximum Principle, G is unique if exists. 
2. If G exists for a domain Ω and u is harmonic in Ω, then we can get an explicit 
formula for u in terms of boundary values: 

∂G 
u(y) = u ds. 

∂ν ∂Ω 

Green’s function for ball B(0, R) 

Proposition 1 The Green’s function for the ball B(0, R) is 

1 R x|
R
|y|2−n) , n ≥ 3, 

G(x, y) = n
1
(2−n)ωn 

(|x − y|2−n − | |x| x − 
R x

2π (log x − y − log |
R
|y|) , n = 2.| | | |x| x − 

xRemark 3 G(x, y) = Γ(x − y) − Γ( R 
|x| x − |R

|y), thus ΔyG(x, y) = 0 and G(x, y) = 
Γ(x − y)+ a harmonic function on boundary. 

Claim 1 G(x, y) = G(y, x), G(x, y) ≤ 0. 

R y R xProof: By squaring, we can get | |y| y − |R
|x| = |

R
|y|, thus G(x, y) = G(y, x).| |x| x −

This implies ΔxG(x, y) = 0 by previous remark. 
R xFor x, y ∈ B(0, R), we have x − y| ≤ | |x| x −

� 

|
R
|y , thus G(x, y) ≤ 0 since the function | |

Γ is decreasing as a real function. 

2∂G 1Proposition 2 ∂νx 
= R2−|y|

|n , x ∈ ∂B(0, R)nωnR x−y|

1 RProof:By symmetry, G(x, y) = n(2−n)ωn 
( x − y 2−n |

R
|x|2−n). Thus | | − | |y| y − y

( 
xi − yi

n ) − 
| | − | |xi)( 

−|y| )∂G 1 ( Ryi y
y R R = . 

∂xi nωn x − y x − y n| | | |

So 
2∂G ∂G xi 1 1 1 2 y

∂νx 
=< 

∂xi 
, 
|x| 

> = 
nωn x − y|n ( )(|x| − < x, y > + < x, y > −|

R

|
2 |x|

2) 
x| ||

1 
= 

nωnR x − y n (R
2 − |y|2)

| |

This completes the proof. � 

Corollary 1 If u ∈ C2(BR) ∩ C0(BR) and Δu = 0, then 

2 u(x) 
u(y) = 

R2 − |y|
dσx. 

nωnR ∂BR 
x − y n| |
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Remark 4 Previously, we regarded u ∈ C2(Ω) ∩ C1(Ω). Under the assumption of this 
corollary, we can get formula holds for r < R. Since u ∈ C0(Ω), just take limit as 
r R.→
Again, we see that harmonic functions are analytic. 

Poisson Integral Formula 

Theorem 1 Let ϕ : ∂B(0, R) → R be continuous, then � 
R2−|x|2 � ϕ(y) 

u(x) = nωnR ∂B(0,R) |x−y|n dσy , x ∈ B(0, R), 
ϕ(x) , x ∈ ∂B(0, R). 

satisfies Δu = 0 in B(0, R) and u ∈ C2(B) ∩ C0((B)) 

ϕ(y) ∂G Proof: For x ∈ B(0, R), the definition of u gives u(x) = (x, y)dσy,∂B(0,R) ∂νy

thus � 
∂G 

Δxu(x) = ϕ(y)Δx (x, y)dσy 
∂B(0,R) ∂νy 

∂ 
= ϕ(y) ΔxG(x, y)dσy = 0. 

∂B(0,R) ∂νy 

so Δu(x) = 0 in B and u ∈ C2(B)

We have known that for harmonic function ω ∈ C2(B) ∩ C1(BR),


2 ω(x)
ω(y) = 

R2 − |y|
dσx. 

nωnR ∂B(0,R) x − y n| |

Take ω ≡ 1, we get 1 = R2−|y|2 � 
1 

n dσx, i.e. nωnR ∂B(0,R) x−y| |

2 1
1 = 

R2 − |y|
x − y n dσx = K(x, y)dσy. 

∂B(0,R) nωnR | ∂B |
1Here K(x, y) = fracR2 − |y|2nωnR x−y n is called Poisson Kernel. | |

Now consider x0 ∈ ∂B. For any � > 0, there ∃δ > 0 s.t. ϕ(x) − ϕ(x0) < � for any | | 
δ x − x0 < δ. Choose M large enough such that ϕ(x) < M∀x ∈ ∂B. For x − x0 < 2 ,| | | |

we have 

u(x) − u(x0) = K(x, y)(ϕ(y) − ϕ(x0))dσy| | |� ∂B 

K(x, y) (ϕ(y) − ϕ(x0))|dσy + 
y−x0 >δ 

K(x, y) (ϕ(y) − ϕ(x0)) dσy≤ |
| |

| |
|y−x0|≤δ 

R2 − |x|2 1 
nωnRn−1≤ � + 2M 

nωnR (δ/2)n 

≤ � + 2C(R2 − |x|2). 

3 



� 

Thus for x close to ∂B, u(x) − u(x0) ≤ 2�, i.e. x ∈ C0(B) �| | 

Mean Value Property (MVP) 

Theorem 2 If a C0(Ω) function u satisfies 

1 
u(y) = udσ 

nωnRn−1 
∂B 

for every ball B = B(y, R) ⊂⊂ Ω (MVP), then u is harmonic. In particular, u is 
analytic. 

Proof: Take any B(y, R) ⊂⊂ Ω, u ∈ C0(∂B(y, R)). Thus by Poisson integral formula, 
there is harmonic function h on B(y, R) s.t. h = u on ∂B(y, R). 

Consider ω = h − u. Obviously ω satisfies MVP on any ball ⊂ B(y, R). Recall that 
our maximum principle and uniqueness proof only need MVP, so ω has zero boundary 
value implies ω = 0 in B(y, R). So u = h in B, i.e. u is harmonic. � 

Remark 5 The proof just need ”for each x ∈ Ω, ∃B(x, R) ⊂ Ω s.t. MVP is satisfied 
on all balls in B(x, R)”. 

counterexample (NOT C0):Take u on plane, u(x, y) = 1 for y > 0, u(x, y) = −1 
for y < 0, u(x, y) = 0 for y = 0. Obviously u is not harmonic. 

Corollary 2 The limit of a uniformly convergent sequence of harmonic functions is 
harmonic. 

Proof: The limit is continuous and still satisfies MVP. � 
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