
Lecture 12

March 30
th

, 2004

Remark. Since many of our results rely on the regularity of the Newtonian Potential, and hence

use Proposition 2 of Lecture 9, we will assume througout that the Hölder constant α ranges in the

open interval (0, 1).

Review from last time

Regularity Theorem. B ⊆ R
n, a ball, u ∈ C2(B) ∩ C0(B̄), f ∈ Cα(B̄), with 0 < α < 1.

Suppose u solves Laplace’s Equation: ∆u = f on B, u = 0 on ∂B. Then u ∈ C2,α(B̄).

In the interior of B, just use estimates on the Newtonian Potential (NP) and on harmonic

functions. On the boundary of B use translation & inversion maps to map ball to upper half plane

with flat boundary. Then note that the estimates on the NP work upto the boundary and an

inversion map is smooth away from the origin.

Corollary. ϕ ∈ C2,α(B̄), f ∈ Cα(B̄), with 0 < α < 1.. Then Poisson’s Equation: ∆u = f on

B, u = ϕ on ∂B, has a unique solution u ∈ C2,α(B̄).

By the above if we can solve for v such that ∆v = f − ∆ϕ on B, v = 0 on ∂B, then v ∈ C2,α(B̄).

Let u := v + ϕ ∈ C2,α(B̄). This u solves our original equation! So we just need to be able to solve

uniquely the above homogeneous equation with a C2(B) ∩ C0(B̄) solution. Then the Theorem will

guarantee it is actually C2,α(B̄).

In order to do that, set w := NP(g), where g := f − ∆ϕ ∈ Cα (as f ∈ Cα, ϕ ∈ C2,α). Indeed

w ∈ C2(B) ∩ C0(B̄) from the elementary properties of the Newtonian Potential. Furthermore

∆w = g. If we could make sure somehow the boundary values would be 0 we would be done

as all assumptions of the Theorem would hold. In order to do that, we need to find a function
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h ∈ C2(B) ∩ C0(B̄) solving
{

∆h = 0 on B,
h = −w on ∂B

. And indeed by Poisson’s Integral Formula we

can do this. Letting v := w + h ∈ C2(B) ∩ C0(B̄) we have indeed a the required solution for the

homogeneous problem.

Solving Poisson’s/Laplace’s equation with regularity upto the boundary on gen-

eral domains

Suppose we are given an (open) domain Ω ⊆ R
n, different than a ball, or equivalently some open

subset in a Riemannian manifold (M,g), and that we would like to develope a similar theory for

the Poisson and Laplace equations on these domains. In other words prove a priori estimates upto

the boundary for these domains.

Localizing to a neighborhood in R
n of a point on the boundary ∂Ω intersected with Ω̄, we could

map it to a neighborhood of H := {x = (x1, . . . , xn) ∈ R
n
∣

∣xn ≥ 0}. This localization is tantamount

to working with the manifolds local coordinates, and then we must work with ∆g, the Riemannian

Laplacian.

We see that indeed we will be able to extend our theory to these generalized domains once we

show our boundary estimates hold for general elliptic operators.

Constant coefficients operators

Let L0u(x) = AijDiju(x) = f(x) with Aij a constant matrix satisfying 0 < λ|v|2 ≤ Aijvivj ≤

Λ|v|2,∀ 0 6= v ∈ R
n. This two-sided inequality will be referred to as uniform ellipticity.

Theorem. Let u be as above and 0 < α < 1.

I. If u ∈ C2(Ω), f ∈ Cα(Ω), then ∀ Ω′ ⊂⊂ Ω (i.e ”Ω′ precompact in Ω”) there exists C =

C(λ,Λ,Ω′,Ω, n) such that

||u||C2,α(Ω′) ≤ C · (||u||C0(Ω) + ||f ||Cα(Ω)).
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II. If u ∈ C2(Ω) ∩ C0(Ω ∪ T ), f ∈ Cα(Ω ∪ T ) and u = 0 on T , then ∀ Ω′⊂⊂ Ω there exists

C = C(λ,Λ,Ω′,Ω, n) such that

||u||C2,α(Ω′∪T ′) ≤ C · (||u||C0(Ω∪T ) + ||f ||Cα(Ω∪T )),

where T ′ := Ω′ ∩ T . We assume that T is a flat boundary portion (portion of a hyperplane in R
n)

contained in ∂Ω .

Setup: Let H be an invertible linear transformation represented by multiplication by a constant

matrix Hkl, and let H−1 denote its inverse. Being linear, by rotating if necessary, we may assume

it maps the upper half space to itself, and that the flat boundary portion remains flat. Put

ũ := u ◦ H−1 and y = Hx. Then ũ : Ω −→ R,

Diũ(y) = Dlu(H−1y) · H−1
li (summation)

from D applied to u

(







y1
...

yn






· [H−1]

)

= u
(

[ ylH
−1
l1 , . . . ,H−1

ln yn ]
)

. Then

DiDj ũ(y) = DkDlu(H−1y)H−1
kj H−1

li = (H−1)T · D2u(H−1y) · H−1,

⇒ HT · D2ũ(y) · H = D2u(x).

Plugging this into our elliptic equation we get AlkHilDiDj ũHjk = AlkDlku(x) = f(x), or

HilA
lkHjkD2ũ = (HAHT )D2ũ(y) = f(x) = f(H−1y) =: f̃(y).

Choosing appropriate H can diagonalize A: HAHT = diag(λ1, . . . , λn). Set

P := Hdiag(λ
− 1

2
1 , . . . , λ

− 1
2

n ). Then PAPT = I, and in the domain H(Ω), which has flat boundary,

we get the simple Poisson equation ∆ũ = f̃ ∈ Cα. By the theory we developed earlier in the course

for this equation on such domains, ∀ Ω̃′ ⊂⊂ H(Ω) we have the interior estimates

||ũ||C2,α(Ω̃′) ≤ C · (||ũ||C0(H(Ω)) + ||f̃ ||Cα(H(Ω))).

Now ||u||C2,α(Ω′) ≤ C · ||ũ||C2,α(H(Ω′)), ||u||Cα(Ω′) ≤ C · ||ũ||Cα(H(Ω′)), where we have used for the

last two the identities ||g̃||C0(H(Ω)) = supy∈H(Ω) |g̃(y)| = supx∈Ω |g(x)| = ||g||C0(Ω) and
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||g̃||Cα(H(Ω)) = sup
y1 6=y2∈H(Ω)

|g̃(y1) − g̃(y2)|

|y1 − y2|α
= sup

x1 6=x2∈Ω

|g(x1) − g(x2)|

|Hx1 − Hx2|α

= sup
x1 6=x2∈Ω

|g(x1) − g(x2)|

|x1 − x2|α

( |x1 − x2|

|Hx1 − Hx2|

)α

≤ ||g||Cα(Ω) · (smallest eigenvalue of H)−1.

Here we use H is a diffeomorphism. The C2,α inequality follows similarly using HT D2ũ(y)H =

D2u(x). Note that since H,H−1 are both strictly positive, the above inequalities can be shown

to hold in both directions (with different constants). That is to say all norms of ũ are equivalent

to those of u. This observation combined with the above interior estimates for ũ gives us interior

estimates for u in Ω′.

As for boundary estimates (part II of the Theorem): we have seen that we can assume wlog that

H maps the upper half plane to itself. Then our above inequalities for equivalence of the norms

extend to the boundary of course, and since our theory (Lecture 11) gives boundary estimates for

ũ we are done.

Interpolation

Theorem. Let Ω′ ⊂⊂ Ω, u ∈ C2,α(Ω), with 0 < α < 1. For any ǫ > 0, ∃ C(ǫ) such that

|u|Ck,β(Ω′) ≤ C(ǫ) · |u|Co(Ω) + ǫ · |u|C2,α(Ω′).

Note these are the semi-norms not the full norms! Also, as ǫ → 0, C(ǫ) → ∞.

The case k = 1, β = 0. Let x̄, x′ ∈ Ω′, x′′ ∈ Ω \Ω′, such that all three points lie on a single line

segment parallel to the xi axis and such that Diu(x̄) = u(x′′)−u(x′)
2ǫ

≤
2|u|

C0(Ω)

2ǫ
. From the fact that

x′′ is not in Ω′ we will get a global C0 norm involved (i.e norm over all Ω instead of just over Ω′).

Now let x ∈ Ω′,
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∫ x̄

x

Diiu = Di(x̄) − Di(x),

from which follows

|Di(x)| ≤ |Di(x̄)| + |

∫ x̄

x

Diiu| ≤
1

ǫ
|u|C0(Ω) + max

x∈segment xx̄

in xi direction

Diiu · |x − x̄| ≤
1

ǫ
|u|C0(Ω) + ǫ · |u|C2(Ω′).

The case k = 2, β = 0. Fix i and look at Diu. Again choose points on a segment in the xl

direction such that Dliu(x̄) =
Diu(x′′) − Diu(x′)

2ǫ
≤

2|Du|C0(segment)

2ǫ
. Now

|Dliu(x)| ≤ |Dliu(x̄)| + |Dliu(x) − Dliu(x̄)| ≤
1

ǫ
|Du|C0(segment) + |D2u|C2(Ω) · |x − x̄|α,

which by the first case is

≤
1

ǫ
·
( 1

ǫ′
|u|C0(Ω) + ǫ′ · |u|C2(Ω)

)

+ ǫa · |u|C2,α(Ω),

hence

|u|C2(Ω′) ≤ C · |u|C0(Ω) + C ′ · ǫa · |u|C2,α(Ω′).

For the cases to follow let x, y ∈ Ω′ and denote by x̄ a point (to be chosen later) on the line

segment xy.

The case k = 0, β ∈ (0, 1]. We note that we can bound |u|C0,β(Ω′) in a simple manner since

u(x) − u(y)

|x − y|β
≤











Du(x̄) · |x − y|

|x − y|β
≤ |u|C1 · |x − y|1−β ≤ |u|C1 · ǫ1−β , if |x − y| ≤ ǫ,

2|u|C0

ǫβ
, if |x − y| > ǫ.

or in other words

|u|C0,β(Ω′) ≤
2|u|C0

ǫβ
· |u|C0(Ω) + ǫ1−β · |u|C1(Ω′).
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The case k = 1, β ∈ (0, 1]. We again note the dichotomy (x̄ as above)

Diu(x) − Diu(y)

|x − y|β
≤











DDiu(x̄) · |x − y|

|x − y|β
≤ |u|C2 · |x − y|1−β ≤ |u|C2 · ǫ1−β , if |x − y| ≤ ǫ,

2|u|C1

ǫβ
, if |x − y| > ǫ.

or

|u|C1,β(Ω′) ≤
2|u|C1

ǫβ
· |u|C1(Ω) + ǫ1−β · |u|C2(Ω). ≤ C · |u|C0(Ω) + C ′ · |u|C2(Ω′)

where in the last inequality we used one of the previous cases.

The case k = 2, β ∈ (0, α). Once again

Diju(x) − Diju(y)

|x − y|β
=

Diju(x) − Diju(y)

|x − y|α
· |x − y|α−β ≤







|u|C2,α(Ω′)ǫ
α−β , if |x − y| ≤ ǫ,

2|u|C2(Ω)

ǫβ
, if |x − y| > ǫ.

or

|u|C2,β(Ω′) ≤
2

ǫβ
· |u|C2(Ω′) + ǫα−β · |u|C2,α(Ω′). ≤ C · |u|C0(Ω) + C ′ · |u|C2(α)Ω

′

where in the last inequality we used one of the previous cases.

Remark. The Interpolation technique works also for Ω′ ⊂⊂ Ω with flat boundary involved: we get

inequalities with the flat boundary portion included, by the theory developed in Lecture 11.
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