
    

    

   
            
             

             
           

            
           

               
              

   
      

            
 

       
     
                 

     

                 
                

              
            
                

  
               

                    
                

                 
                 

                   
       

                
                

               
         

                  
 

3 PROJECTION THEORY NOTES 

1. Introduction and overview 

Tuesday Feb 4 
In 18.156 this spring, we will study projection theory. Projection theory studies 

how a set X behaves under different orthogonal projections. Questions of this type 
aren’t usually emphaisized in the graduate analysis curriculum, but they come up in 
many areas of math, including harmonic analysis, analytic number theory, additive 
combinatorics, and homogeneous dynamics. It is an especially good time to study 
projection theory, because there have been some striking recent applications, and 
because one of the central problems of the field was very recently solved. At the 
same time, there are many interesting open problems which I am excited to discuss 
and reflect on. 
The goals of the course are: 

• Learn the classical techniques and results of projection theory (with full de-
tails). 

• Learn about applications in several areas. 
• Learn about open questions. 
• Learn some of the main ideas in the recent work in the field. Level of detail 
will depend on everyone’s interest. 

1.1. What is projection theory? Suppose that we have a set X ⊂ Rn . For any 
subspace V ⊂ Rn , let πV : Rn → V denote the orthogonal projection. Projection 
theory studies the relationship between the properties of the set X and the properties 
of the projections πV (X) as V varies among k-dimensional subspaces. Informally, 
we are looking at X from many different points of view and trying to coordinate the 
different information. 
The most basic question concerns the cardinality of X and the cardinality of πV (X) 

for different sets V . Suppose that X is a finite subset of R2 , and write |X| for the 
cardinality of a finite set. For almost every line L, |πL(X)| = |X|, but there could 
be some special lines L where |πL(X)| < |X|. For any number S < |X|, let ES (X) 
be the set of lines L with |πL(X)| ≤ S. The first question of projection theory is: 

Question 1. Suppose X ⊂ R2 is a finite set and S < |X|. Given |X| and S, what 
is the maximum possible size of ES (X)? 

A key example, suggested by Erdős, is when X is an integer grid. In this case, 
when the slope of L is a rational number of small height, |πL(X)| is small. Erdos 
conjectured that this example is the worst possible up to a constant factor, and in 
the early 1980s, Szemeredi and Trotter proved this conjecture. 

Theorem 1.1. (Szemeredi-Trotter 1982) If X is a finite subset of R2 , and S < 1 |X|,
2 

then 



    

      

            
        
              

                  
           
              

              
             

          

                
  

   

           
               

             

                 
      

            
             

            
            

            
           

             
               

        
           

           
             

            
             
               

              
                

4 PROJECTION THEORY NOTES 

|ES(X)| ≤ CS2|X|−1 + 1. 

The proof of the Szemeredi-Trotter theorem uses topology, and it started an in-
teresting interaction between combinatorial geometry questions and topology. 
There are many variations of this question. For finite sets X, we can consider 

higher dimensions Rn . Or we can consider other fields, like X ⊂ Fn
q where Fq is a 

finite field with q elements. Many of these questions are open. 
We can also consider infinite sets X. This angle was taken in geometric measure 

theory, where the size of an infinite set is measured using Hausdorff dimension. We 
write HD(X) for the Hausdorff dimension of X. The question was first considered 
by Marstrand in the 1950s. He proved the following theorem. 

Theorem 1.2. (Marstrand, 1954) Is X ⊂ R2 is a compact set, then for almost every 
line L, 

HD(πL(X)) = min(HD(X), 1). 

The lines L where HD(πL(X)) < min(HD(X), 1) are called exceptional directions. 
Our second main question is to estimate the size of the set of exceptional directions. 
We let Es(X) be the set of lines L where HD(πL(X)) < s. 

Question 2. Suppose X ⊂ R2 and s < HD(X). Given HD(X) and s, what is the 
maximum possible Hausdorff dimension of Es(X)? 

This second main question is called the exceptional set problem (for Hausdorff 
dimension). It is a geometric measure theory analogue of the first main question 
above, where size is measured by Hausdorff dimension instead of cardinality. In 
the 60s and 70s Kaufman and Falconer studied this question. Kaufman proved 
some results using a double counting argument, greatly simplifying the proof of 
Marstrand’s theorem. And Kaufman and Falconer proved other results using Fourier 
analysis. These are the first fundamental results in the field. They are interesting 
and useful, but they don’t give the full answer to Question 2. Nevertheless, no one 
improved on these results for about twenty years. 
Furstenberg introduced a generalization of the exceptional set problem, which is 

called the Furstenberg set conjecture. Furstenberg was motivated by a question 
related to ergodic theory. Later Tom Wolff studied the exceptoinal set problem and 
the Furstenberg set conjecture. Wolff was motivated by the Kakeya conjecture and 
by other problems in geometric measure theory. Wolff studied the proof of Theorem 
1.1 and tried to adapt the topological methods there to Question 2. He was able 
to prove some interesting estimates and he even applied them to prove some new 
estimates for the wave equation. But he was not able to prove any new estimates for 



    

             
                

            
         
           

            
                

             
            

    

             

      

             
             

          

           
              

             
      

             
                    

               
              

              
                 

 
               

     
                  
              

             
            

                
                    

             
                
                   
                

5 PROJECTION THEORY NOTES 

Question 2 itself. Wolff identified a key obstacle to addressing the exceptional set 
problem: the answer is different over C2 compared to R2 , but most methods do not 
distinguish these two problems. Similarly, the projection problem in F2 

q is different 
depending on whether q is prime or not prime. 
Around 2000, Bourgain proved the first estimates in projection theory that dis-

tinguish between R2 and C2 . However, Bourgain’s proof improves the previous ex-
ponents only by a tiny number . For the next twenty years, the bounds in the 
exceptional set problem were only tiny improvments of the old bounds of Kaufman 
and Falconer. But very recently, Question 2 was answered completely by Orponen, 
Shmerkin, Ren, and Wang. 

Theorem 1.3. (Orponen-Shmerkin-Ren-Wang) If X ⊂ R2 , and s < HD(X), then 

HD(Es(X)) ≤ max(2s − HD(X), 0). 

The bound here is the natural analogue of the Szemeredi-Trotter theorem in the 
setting of Hausdorff dimension. There are many variations on this question too, and 
many of them are open. The field is developing rapidly. 

1.2. Applications of projection theory. We will survey several applications of 
projection theory. For each topic, we will introduce and motivate the topic and see 
how it connects with projection theory. We will prove something about each topic 
but not necessarily the strongest results. 

Sieve theory. Projection theory is closely parallel to some topics in sieve theory. 
Suppose now that X ⊂ Z. For any integer q, let πq : Z → Z/qZ be the quotient map, 
which takes an integer n and outputs n mod q. Sieve theory studies the relationship 
between the properties of the set X and properties of πq(X) for different q. 
Here is a sample result in sieve theory. One interesting example in sieve theory 

is the set of square numbers, which we denote as S. For every prime p, |πp(S)| = 
≈ pp+1 . Linnik proved that if X ⊂ {1, ..., N} and |πp(X)| ≤ p+1 for every prime p,

2 2 2 

then |X|  N1/2 . The set of square numbers up to N shows that Linnik’s theorem is 
tight. The only known tight examples are close cousins of the square numbers, and 
it is an important open problem to understand whether there are other examples. 
Another important direction in sieve theory is to understand how prime numbers 

are distributed modulo q for different q. Let Px denote the set of prime numbers up 
to x. Dirichlet proved in the early 1800s that if q is fixed and x → ∞, then Px is 
evenly distributed modulo q among the residue classes that are relatively prime to 
q. Dirichlet’s method only works when q is far smaller than x – the exact statement 
is messy but q needs to be smaller than x for any  > 0. On the other hand, 
it is conjectured that for every q ≤ x1− , the prime numbers are evenly distributed 



    

            
           

             
              

               
             
               

                   
              

        
            

              
               

            
             

             
          

             
      

               
                        
                   

                 
                   

                     
             

               
             

             
              

            
              

       
              

            
                  

               
            

      

6 PROJECTION THEORY NOTES 

modulo q. The generalized Riemann hypothesis would imply that the prime numbers 
1/2−are evenly distributed modulo q for every q ≤ x . 

Sieve theory leads to equidistribution results that hold for most q. In particular, 
1/2−Bombieri-Vinogradov proved that for almost all q ≤ x , the primes are evenly 

distributed modulo q. The point of sieve theory here is that we consider πq(Px) for 
many different q and how these different “projections” are related to each other. 
One important problem in this area is to try to understand the distribution of Px 

1/2mod q for most q when q > x . Yitang Zhang proved the first results of this kind 
in his proof of bounded gaps between primes. We will introduce this problem and 
some of the issues that make it difficult. 
There is a close analogy between classical methods in projection theory and clas-

sical methods in sieve theory. Orthogonal projections πV : Rn → V and reduction 
modulo q, πq : Z → Z/qZ are both homomorphisms of Abelian groups. Much of 
projection theory only really depends on this homomorphism structure and so there 
are closely parallel results in the two settings. In particular, Falconer’s work in pro-
jection theory (based on Fourier analysis) is closely analagous to the ‘large sieve’ 
method developed by Linnik and used by Bombieri-Vinogradov. And Kaufman’s 
work in projection theory (based on double counting) is closely analogous to the 
‘larger sieve’ method developed by Gallagher. 

Sum-product problems. Suppose that A is a finite set of a field F, such as 
R or Fp. We write A + A for the set of sums {a1 + a2 : a1, a2 ∈ A} and we write 
A · A for the set of products {a1a2 : a1, a2 ∈ A}. Erdos raised the question whether 
max(|A + A|, |A · A|) must be much bigger than |A|. He conjectured that for any 
set A ⊂ R, max(|A + A|, |A · A|)  |A|2− , and Erdos and Szemeredi proved that 
there is some c > 0 so that max(|A + A|, |A · A|)  |A|1+c . Elekes connected the sum 
product problem to the Szemeredi-Trotter theorem and used the latter to prove a 
bound with a much better exponent: max(|A + A|, |A · A|)  |A|5/4 . 
Ever since Elekes’s work, there has been a close connection between sum product 

problems and projection theory. This connection has been a two way street. Initially, 
Elekes used ideas from projection theory to prove new bounds in sum product theory. 
But the work of Bourgain and the recent work of Orponen-Shmerkin-Ren-Wang goes 
in the other direction, proving results in sum product theory first and then applying 
the results to projection theory in general. 
Bourgain and Gamburd went on to apply these ideas in sum product theory to 

questions about random walks on finite groups such as SL2(Fp). Suppose that 
g1, ..., gk are a set of generators of SL2(Fp) where we imagine that k = O(1) and 
p is large. This set of generators determines a random walk on the group SL2(Fp). 
Bourgain and Gamburd showed that, under fairly mild conditions on the generators, 
this random walk mixes very fast. 



    

         
            

                 
                

                 
             

             
                

      
           

              
                 

     
             
   

                 
        

           
            

               
              

           
    

           
           

                  
              
              

           
      

            
           

7 PROJECTION THEORY NOTES 

Homogeneous dynamics. The setting of homogeneous dynamics is a homoge-
nous space such as SLn(R)/SLn(Z). This homogeneous space can be viewed as 
the space of lattices in Rn . It comes up in many problems in number theory. If 
H ⊂ SLn(R) is a Lie subgroup, and x ∈ SLn(R)/SLn(Z), then we can consider the 
orbit Hx ⊂ SLn(R)/SLn(Z), and we can ask how this orbit is distributed. If H is a 
unipotent subgroup, then there is a very rigid classification theorem due to Ratner, 
building on special cases proven by Dani and Margulis. Ratner’s theorem says that 
either the orbit Hx is dense and evenly distributed, or else there is a very specific 
algebraic structure that describes the orbit. 
Recently, Lindenstrauss and Mohammadi returned to this question and worked on 

proving good quantitative bounds in Ratner’s theorem. So far, they were able to do 
so in some special cases. One of their key new ideas is to connect these problems in 
homogeneous dynamics with projection theory. 
We will introduce this area, motivate the question, and learn how projection theory 

enters the story. 

Those are all the applications that we had time to discuss in the class, but in this 
introduction, we briefly mention a couple of others. 

Imaging. Projection theory also comes up in different imaging technologies, from 
CAT scans to Cryo-electron-microscopy. In these settings, one tries to reconstruct a 
set X or function f from some information about its projections. Some of the math 
involved involved in imaging technology is related to the math in this course. In 
particular, imaging technology makes use of the close connection between projection 
theory and Fourier analysis. 

Fourier analysis. Projection theory has a close connection with Fourier analysis. 
Philosophically, projection theory is closely related to additive structure: the key 
feature of a projection πV : Rn → V is that it is a group homomorphism of abelian 
groups. Fourier analysis is also closely related to the additive structure of Rn: in 
Fourier analysis we study the characters of an abelian group. This leads to nice 
formulas relating projections and Fourier transforms. We will use Fourier analysis 
in our study of projection theory. 
Recent work in Fourier analysis, especially related to decoupling theory, is closely 

related to projection theory, and ideas have gone in both directions. 
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