8 PROJECTION THEORY NOTES

2. FUNDAMENTAL METHODS OF PROJECTION THEORY

Thursday Feb 6

In this lecture, we introduce two fundamental methods for proving estimates in
projection theory: the double counting method and the Fourier method.

These methods are cleanest in the setting of finite fields, so we begin with that
case.

We write I, for the finite field with ¢ elements. Our projections will be a set of
linear maps Fg — IF,. For each 0 € F,, we define 7 : Fg — F, by

(1) 7T9($1,l‘2) = x1 + Oz

Consider the following setup.
Setup.

2
X CF,
D C F, (set of directions)
S = S(X, D) :=max |m(X)].
0eD

The first example of a set which has many small directions is an integer grid.

Example 1. (Integer grid example) For simplicity suppose that ¢ = p is prime.
Write [N] for {1,..., N}. For some N < p, define

X = {(.Tl,xg) T T1,T € [N]}
For some A < p, define

D ={ai/as : ay,ay € [A]}
If 0 € D, and (x1,25) € X, we have

aoT1 + A1T2

7T0(51717-732) = a
2

Therefore, |mp(X)| S AN. So we get

S(X, D) ~ max(AN,p).

The configuration is interesting when S < p/2. In this case, we have S ~ AN and
SO
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SQ
(2) D] ~ =
| X|
This example generalizes to any finite field F, (or any field). But when ¢ = p"
with r > 1, there is also a more dramatic example based on the subfields of F,. We

illustrate this in the case ¢ = p?.

Example 2. (Subfield example) Suppose that ¢ = p? with p prime. Define
_ w2 2
X =F CPF

D=F,CF,
If 0 € D, and (z1,22) € X, then we have my(z1,x2) = 21 +6z2 € F,. So |mp(X)| < p.
So |X|=p*=¢q, |D|=p=4¢q"% and S = S(X,D) = p=q¢'/2
Comparing with Example 1, we see that |D| is much larger than %
Over F,, there is no known example more dramatic than the integer grid example.
In fact, all known examples with many small projections are small variations of the
integer grid example. This leads to the following conjecture.

Conjecture 2.1. Suppose X C IFJQD, D C F,, and S = maxgep |mo(X)|. If S < p/2,
then
2
DS >
| X|
Here we need S < p/2 because for any sets X, D, we always have S < p. If S = p,
then we cannot get any information about |D|,|X|. For fields F,, I have not seen
a conjecture written down anywhere, but informally it is expected that the extreme
examples are minor variations on Examples 1 and 2.
We will prove two fundamental estimates about projection theory in Fg. The
proofs of these results introduce two main techniques that we will use repeatedly:
double counting and the orthogonality / Fourier method.

Theorem 2.2. (Double counting) Suppose X C ]Fg, D CF,, and S = maxgep |m(X)|.
If S <|X]/2, then
DI <SS

Theorem 2.3. (Orthogonality/ Fourier) Suppose X C F., D C Fy, and S =
maxgep |7o(X)|. If S < q/2, then
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Dl s 5L
| X]

Remark. When S = ¢/2, or when S ~ ¢, Theorem 2.3 matches the grid example
and it is sharp. Theorem 2.3 is also sharp for the subfield example. If ¢ = p, then
whenever S is much less than ¢, Theorem 2.3 does not appear to be sharp. And even
if ¢ = p?, there are many values of S, | X| where Theorem 2.3 does not appear to be
sharp.

These theorems give interesting bounds but they don’t give a complete picture
of projection theory over IFZ. In part, this is because the techniques that we study
today don’t distinguish prime fields from non-prime fields, but the optimal projection
estimates do depend on whether the field is prime. It is fairly difficult to prove bounds
going beyond these two theorems, and we will return to that later in the course.

2.1. Double Counting.
Proof of Theorem 1. We will apply double counting to the set

(%) :={0 € D,z # x5 € X : mp(x1) = mp(22)}

(Note on notation: here z, s are points in X, not components of a vector.)

We call () the set of coincidences. The idea of the proof is as follows. If there are
many directions 6 where my(X) is small, then there must be a lot of coincidences.
But for any z; # x5 € X, there is only one direction 6 so that my(z1) = mg(x2), and
so there can’t be that many coincidences.

If 0 € D, then we have |mp(X)| < S < |X|/2. Therefore, using Cauchy-Schwarz,
we get

Sl £ 15 € X : mo(a1) = mo(a2)} = S (%')2 .

(Details of this argument are on the first problem set.). And so
() 2 |X[*S7HD.

On the other hand, for each z; # x5 € X, there is only one direction 6 so that
mo(21) = mp(22), and so

() < X[
All together we have

[ X[PSTHDI < (%) S X
and so |D| < S. O
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2.2. Orthogonality / Fourier method.

Proof of Theorem 2.3. The fibers of the map 7y are parallel lines in F2. So if |m(X)| <
S, then we can cover X using at most L lines coming from fibers of my.

Recall that for each 0 € D, |mp(X)| < S. Let Ly be a set of S fibers of my which
covers X. Let L. = Ugeplly. Note that

IL| = |D|S.
If L is a line in 2, we write L(z) for the characteristic function of L. We define

(@)= L)

LeL
Notice that for each z € X,

f(z) =1|DI.
We will estimate the function f using orthogonality. To do that, we first break up
each function L as a constant function plus a mean zero part:

1 1
(3) Lx) = — +L(x) - -
\q/" AJ

Lo(x) Lp(z)

Here Lo(xz) = 1/q is the mean value of L(x), and so L;(z) has mean zero. (The
mean value of a function g : F¢ — C is qid erwg g(x).) We can break up f in a

similar way:

(4) fm:Zum=%+zum
LelL ~— Lell

A

The constant function fy is very simple to understand. Since |L| = SD, and since
we assumed S < ¢/2, we have fy(z) < |D|/2. Now for every x € X, f(z) = |D|, and
SO

|fu(z)| > |D|/2 for all z € X

The key point is that the functions Lj(z) are essentially orthogonal, and we can
use this to estimate the function f;. We state the orthogonality as a lemma.
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Lemma 2.4. If L, Ly are two different lines in FQ then

ZLlh )L p(x) < 0.

z€lF2

Using Lemma 2.4, we can bound the L? norm of fj,:

Do@P= Y Y Lua(@)lon(z) <D Y [La(@)]?

z€lF2 Ly,La€L xclF?2 LeL zeF2
For each line L, we can compute Y. _p |Lp(2)]? by hand. It is slightly smaller
q
than ) L(x) = ¢. So all together we get the L? bound
q

(5) > Ifl@)]” < |Lg

z€lF2

Combining everything we have done so far, we see that

IXIIDP <Y Iful@)* < [Llg = |D|Sq

z€lF2

Rearranging gives |D| < 7‘1‘

O

Before we prove Lemma 2.4, we make some comments about the proof. Our
bounds here are interesting when |L| is much larger than ¢q. The key input is the L?
estimate for f; in (5. When |L| is much bigger than ¢, then this estimate shows that
erng | fo(x)]? is much bigger than erng |fn(x)2. So f(x) is equal to a constant
function fy plus a perturbation fj,, and for most x, |f,(z)| is much smaller than
| fo(z)]. Informally, we could say that the function f(z) is almost constant.

Looking back at the proof of our L? estimate (5), the argument applies to any
set of lines L. The crux of the matter is that if |L| is much bigger than ¢, and if
f(x) = >, L(z), then f = fo + fn where fj is a constant function, and f, has
small L? norm.

The key to the L? estimate is the orthogonality in Lemma 2.4. Now we discuss
the proof of Lemma 2.4. One simple proof is just to compute erFg Ly p(z) Lo ().
Recall that

)1-1/q ze L,
Ll’h(gj)_{—l/q ¢ Ly

We can now compute ) g L1x(2) Lo (7). With a little algebra, we find
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=0 if L, Ly are not parallel
Y Lun(@)Lap(x) .
2EF2 <0 if Ly, Ly are parallel

The main case is when L;, Ly are not parallel. In this case something interesting
is happening that causes the sum to be zero, and we should look for a conceptual
explanation. One explanation comes from independence. After a change of coordi-
nates, we can assume that L; is the vertical axis and L is the horizontal axis. In
these coordinates, L; j, only depends on z; and Ly} only depends on x5, and so L;y,
and Ly, are independent. Therefore,

2
> Lin()Lop(x ZLM) > Lou(x) | =0-0=0.

z€lf2 z€Fq z€Fy

Another conceptual explanation comes from Fourier analysis. We now pause to
review the Fourier transform over finite fields, and then we use Fourier analysis to
explain why L, ; and Ly are orthogonal when L, Ly are not parallel.

Suppose that e : F, — C* is a non-trivial homomorphism from the group ]F;; to
2mi 2

the group C*. If ¢ = p is prime, then we can take e(x) =™ '».
Ifx €e ]Fg, we define the dot product z - £ by

Z - g = 35151 + ...+ xdfd.
If f: Fg — C, then we define its Fourier transform f : Fg — C by

(6) F©) =" flx)e(—

z€Fd

With this setup, we can write down the two fundamental theorems in Fourier
analysis: Fourier inversion and Plancherel.

Theorem 2.5. If f: Fg — C, then

= Y Qe = S0+ 3 Fe)e

¢eFd \W_/ o &

fol=) In@)

Theorem 2.6. If f,g:F} — C, then

> f@)gle) = —

zeFd
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Let us now revisit how we broke up a function f as fy + f,. Starting with Fourier
inversion, we can write f as

i oY e = 7 > fe
§GIFd R/—/ £#0
Jot@) fu(a)

Since f(0) = quFg f(z), we see that fy is just the mean value of f(x). So this
decomposition is the same one we used above in the proof of Theorem 2.3. We
can think of fy as the contribution of the zero frequency, and we think of f, as the
contribution of the non-zero frequencies. The letter h stands for ‘high’, and we think
of f5, as the ‘high-frequency’ part of f. In general, for any function f, we can define
frn as above, and we have

GRS A

The Fourier transform interacts in a nice way with lines, and more generally with
affine subspaces. Suppose that P C Fg is an affine k-plane. We write P(x) for the

. {f(s) £40

characteristic function of P. We define Pt as

T ={¢€F: (11 —x2)- £ =0 for all 21,25 € P}

(Here the vector x; — x5 is tangent to P, and so P~ is the set of vectors perpendic-
ular to P. Note that P is affine, so it may not contain 0, whereas P* is a subspace,
and it does contain 0.)

Lemma 2.7. If P(x) is the characteristic function of an affine k-plane in Fd then

s Jd" cePt

The proof of Lemma 2.7 is on the first problem set. The main point is that when
P is an affine plane, then P(£) = Y wepe(—x-&) is a geometric series, and so we can
sum it exactly. For most £, the geometric series sums to zero because of symmetry.

Using Fourier analysis, we can now give another proof that when L, Ly are not
parallel, then L, and Ly, are orthogonal. By Plancherel, we have

Y Lup(@) Lon(x ZLM Zm

z€F? £€F2 §#0
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But by Lemma 2.7, the support of L; is L{ and the support of Lo is Ly . Since
the two supports intersect only at & = 0, our last sum is zero.

To summarize, ﬁlyh and I:Q’h have disjoint supports, and so L;; and Lyj are
orthogonal.

Remark. We don’t necessarily need Fourier analysis to prove Theorem 2.3, but in
some further developments the Fourier analysis is helpful. For instance, if we want
to generalize Theorem 2.3 to higher dimensions, the Fourier analysis point of view
is important. You will explore this on the first problem set.

2.3. Projection theory for balls in Euclidean space. Next we will start to
study projection theory in Euclidean space. We will consider the projections of a set
of unit balls in Euclidean space, and we will adapt our two fundamental methods to
that setting. There is a new issue that appears for balls in Euclidean space, which
has to do with how the balls are clustered. In this lecture, we start to set up our
problems in the context of balls in Euclidean space, and we see how the clustering
comes into play.

In this section, for a set X C R%, we write | X| for the d-dimensional measure of
X.

Setup

Suppose that X is a set of disjoint unit balls in Br C R

Suppose that D is a finite set in S', which is 1/R-separated.

Define S(X, D) = maxgep |m(X)|, the maximal 1-dimensional measure of my(X).

Here we suppose that the directions in D are 1/R-separated because otherwise the
projections would be essentially equivalent.

Next we can consider some examples. There is an integer grid example which is
analogous to the one we mentioned in finite fields.

Example 1. (Widely spaced integer grid example)

We let X be an N x N grid of unit balls in BE, spaced as widely as possible. The
centers of the balls lie on the lattice %Z X %.

We choose a parameter A < R, and we let D be the set of directions with slope
in the set {a1/ay : a1, as € [A]}.

By a similar analysis to the one in finite fields, we see that

S(X,D) ~ max(AN, R).

The configuration is interesting when S < R/2. In this case, we have S ~ AN
and so
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(7) 1Dl ~ =7

Notice that the numerology of Example 1 in the setting of balls exactly matches
the numerology for the integer grid in F?2.

We recall that for projection theory in Fg, there were interesting examples related
to subfields of F,. The field R does have subfields, such as the field of rational
numbers. However, these subfields do not lead to interesting sets of unit balls in Bg.
I think that the issue is that Q is not closed. To get a set of unit balls, we might
take the 1-neighborhood of Q x Q, but that is all of R2.

But there is a new phenomenon for projection theory of balls in Euclidean space
which has to do with clustering. As a second example, we consider a tightly clustered
set of balls.

Example 2. (Clustered example)

For some N < R, we let X be a set of ~ N? disjoint unit balls in By C Br. We
have |X| ~ N?

Now for every direction 6, we have |mp(X)| < N.

So we can let D be a maximal set of 1/R separated directions, so |D| ~ R, and
we can take S = 2N.

Plugging in, we find that |D| is much larger than |572 ~ 1. And so this example is
more extreme than Example 1.

The new theme in this setting is that projection estimates depend on how much X
is clustered. It turns out that it is important to consider both how X is clustered and
how D is clustered. We can quantify the clustering of X and D with the following
definitions.

We write B(c,r) for the ball with center ¢ and radius r. For any 1 <r < R, we
define

(8) Nx(r) = max |X N B(c,r)|

CEBR

We write 7 for an arc of S', and || for its length. For any p € [1/R, 1], we define

(9) NMMIQg#@ﬂW

Our goal will be to prove projection estimates that depend on the functions Nx(r)

and Np(p).
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In the next lecture we will work out analogues of Theorem 2.2 and Theorem 2.3
for balls in R2. The main idea will be to adapt the methods we used today in order
to take account of clustering information from Nx (r) and Np(p).
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