
    

      

   
            

          
               

 
                 
                  

      

    
 

   
 

    

     
 

 

               

              
           

         

      

        

           

     

 
 

       

    

                 
 

8 PROJECTION THEORY NOTES 

2. Fundamental methods of projection theory 

Thursday Feb 6 
In this lecture, we introduce two fundamental methods for proving estimates in 

projection theory: the double counting method and the Fourier method. 
These methods are cleanest in the setting of finite fields, so we begin with that 

case. 
We write Fq for the finite field with q elements. Our projections will be a set of 

linear maps F2 
q → Fq. For each θ ∈ Fq, we define πθ : F2 

q → Fq by 

(1) πθ(x1, x2) = x1 + θx2 

Consider the following setup. 
Setup. 

X ⊂ F2 
q 

D ⊂ Fq (set of directions) 

S = S(X, D) := max |πθ(X)|. 
θ∈D 

The first example of a set which has many small directions is an integer grid. 

Example 1. (Integer grid example) For simplicity suppose that q = p is prime. 
Write [N ] for {1, ..., N}. For some N ≤ p, define 

X = {(x1, x2) : x1, x2 ∈ [N ]}
For some A ≤ p, define 

D = {a1/a2 : a1, a2 ∈ [A]}
If θ ∈ D, and (x1, x2) ∈ X, we have 

a2x1 + a1x2
πθ(x1, x2) = . 

a2 

Therefore, |πθ(X)|  AN . So we get 

S(X, D) ∼ max(AN, p). 

The configuration is interesting when S ≤ p/2. In this case, we have S ∼ AN and 
so 



    

   
 

 

                

                  
         

             

   
   

 

  

                       
                         

            
 

  

              
              

         

                   
 

  
 

 

                      
                

             
         

            
             
        

                
     

   

              
       

9 PROJECTION THEORY NOTES 

S2 

(2) |D| ∼ 
|X| 

rThis example generalizes to any finite field Fq (or any field). But when q = p 
with r > 1, there is also a more dramatic example based on the subfields of Fq. We 
illustrate this in the case q = p2 . 

Example 2. (Subfield example) Suppose that q = p2 with p prime. Define 

X = F2 
p ⊂ F2 

q 

D = Fp ⊂ Fq 

If θ ∈ D, and (x1, x2) ∈ X, then we have πθ(x1, x2) = x1 + θx2 ∈ Fp. So |πθ(X)| ≤ p. 
2 1/2 1/2So |X| = p = q, |D| = p = q , and S = S(X, D) = p = q . 

Comparing with Example 1, we see that |D| is much larger than | 
S
X 

2 

| . 

Over Fp, there is no known example more dramatic than the integer grid example. 
In fact, all known examples with many small projections are small variations of the 
integer grid example. This leads to the following conjecture. 

Conjecture 2.1. Suppose X ⊂ F2 
p, D ⊂ Fp, and S = maxθ∈D |πθ(X)|. If S ≤ p/2, 

then 

S2 

|D|  
|X| 

Here we need S ≤ p/2 because for any sets X, D, we always have S ≤ p. If S = p, 
then we cannot get any information about |D|, |X|. For fields Fq, I have not seen 
a conjecture written down anywhere, but informally it is expected that the extreme 
examples are minor variations on Examples 1 and 2. 
We will prove two fundamental estimates about projection theory in F2 

q . The 
proofs of these results introduce two main techniques that we will use repeatedly: 
double counting and the orthogonality / Fourier method. 

Theorem 2.2. (Double counting) Suppose X ⊂ F2 
q , D ⊂ Fq, and S = maxθ∈D |πθ(X)|. 

If S ≤ |X|/2, then 

|D|  S 

Theorem 2.3. (Orthogonality/ Fourier) Suppose X ⊂ F2 
q , D ⊂ Fq, and S = 

maxθ∈D |πθ(X)|. If S ≤ q/2, then 



    

  
 
 
 

                
                  

                 
                    

 
            

               
            

                
               

   

            

              
               

                  
               

                    
       

               
  

           

 
 

 

  

 

            

    
                   
     

    
    

       
      

10 PROJECTION THEORY NOTES 

Sq |D|  . 
|X| 

Remark. When S = q/2, or when S ∼ q, Theorem 2.3 matches the grid example 
and it is sharp. Theorem 2.3 is also sharp for the subfield example. If q = p, then 
whenever S is much less than q, Theorem 2.3 does not appear to be sharp. And even 
if q = p2 , there are many values of S, |X| where Theorem 2.3 does not appear to be 
sharp. 
These theorems give interesting bounds but they don’t give a complete picture 

of projection theory over F2 
q . In part, this is because the techniques that we study 

today don’t distinguish prime fields from non-prime fields, but the optimal projection 
estimates do depend on whether the field is prime. It is fairly difficult to prove bounds 
going beyond these two theorems, and we will return to that later in the course. 

2.1. Double Counting. 

Proof of Theorem 1. We will apply double counting to the set 

(∗) := {θ ∈ D, x1 = x2 ∈ X : πθ(x1) = πθ(x2)}
(Note on notation: here x1, x2 are points in X, not components of a vector.) 
We call (∗) the set of coincidences. The idea of the proof is as follows. If there are 

many directions θ where πθ(X) is small, then there must be a lot of coincidences. 
But for any x1 = x2 ∈ X, there is only one direction θ so that πθ(x1) = πθ(x2), and 
so there can’t be that many coincidences. 
If θ ∈ D, then we have |πθ(X)| ≤ S ≤ |X|/2. Therefore, using Cauchy-Schwarz, 

we get  2|X|
#{x1 = x2 ∈ X : πθ(x1) = πθ(x2)}  S . 

S 
(Details of this argument are on the first problem set.). And so 

(∗)  |X|2S−1|D|. 
On the other hand, for each x1 = x2 ∈ X, there is only one direction θ so that 

πθ(x1) = πθ(x2), and so 

(∗) ≤ |X|2 . 
All together we have 

|X|2S−1|D|  (∗)  |X|2 , 
and so |D|  S.  



    

     

                   
                

                     
        

   

                  

  
 

 

 

       

   

               
            

   
 

 
 

   
 

   
 

                 
             

 
        

  

   
 

 

  
 

 
 

 
 

 

 

   
 

               
                    
 

        

              
              

11 PROJECTION THEORY NOTES 

2.2. Orthogonality / Fourier method. 

Proof of Theorem 2.3. The fibers of the map πθ are parallel lines in F2 . So if |πθ(X)| ≤ q 
S, then we can cover X using at most L lines coming from fibers of πθ. 
Recall that for each θ ∈ D, |πθ(X)| ≤ S. Let Lθ be a set of S fibers of πθ which 

covers X. Let L = ∪θ∈DLθ. Note that 

|L| = |D|S. 
If L is a line in F2 

q , we write L(x) for the characteristic function of L. We define  
f(x) = L(x) 

L∈L 

Notice that for each x ∈ X, 

f(x) = |D|. 
We will estimate the function f using orthogonality. To do that, we first break up 

each function L as a constant function plus a mean zero part: 

1 1 
(3) L(x) = + L(x) − 

q q    
L0(x) Lh(x) 

Here L0(x) = 1/q is the mean value of L(x), and so Lh(x) has mean zero. (The 
mean value of a function g : Fd

q → C is 
q 
1 
d x∈Fd g(x).) We can break up f in a 

q 

similar way: 

 |L|
(4) f(x) = L(x) = + Lh(x) 

q
L∈L  L∈L   

f0(x) 
fh(x) 

The constant function f0 is very simple to understand. Since |L| = SD, and since 
we assumed S ≤ q/2, we have f0(x) ≤ |D|/2. Now for every x ∈ X, f(x) = |D|, and 
so 

|fh(x)| ≥ |D|/2 for all x ∈ X 

The key point is that the functions Lh(x) are essentially orthogonal, and we can 
use this to estimate the function fh. We state the orthogonality as a lemma. 



    

            

 

 
 

   

           

 

 
 

  
 

 

 

 
 

  
 

 

 
 

  

      
 

  

       

 
 

 
 

          

 
 

 
 

   

          

 
 

 
 

     

     
  

 

             
                 

                 
  

     
 

  

         
               

            
               

                   
  

 
                 

   
              

             
 

 
  

  

 
      

   

    
 

 
 

       

12 PROJECTION THEORY NOTES 

Lemma 2.4. If L1, L2 are two different lines in F2 
q , then 

L1,h(x)L2,h(x) ≤ 0. 
x∈F2 

 

q 

Using Lemma 2.4, we can bound the L2 norm of fh:      
|fh(x)|2 = L1,h(x)L2,h(x) ≤ 

x∈F2  
x∈F2 

q 

q 

2| |L ( )xh 

qx∈F2 

by hand. It is slightly smaller 

. 
x∈F2 

For each line L, we can compute 

q L1,L2∈L L∈L 

|Lh(x)|2 

So all together we get the L2than L(x) = q. x∈F2 
q 

bound 

(5) |fh(x)|2 ≤ |L|q 
x∈F2 

 

q 

Combining everything we have done so far, we see that  
2 L| | ≤ | | | |f ( ) D Sq x q = h 

q 

q 

x∈F2 

Rearranging gives |D|  Sq .|X| 
 

Before we prove Lemma 2.4, we make some comments about the proof. Our 
bounds here are interesting when |L| is much larger than q. The key input is the L2 

estimate for fh in (5. When |L| is much bigger than q, then this estimate shows that  
|f0(x)|2 is much bigger than |fh(x)|2 . So f(x) is equal to a constant x∈F2 x∈F2 

q 

|X||D|2  

q 

function f0 plus a perturbation fh, and for most x, |fh(x)| is much smaller than 
|f0(x)|. Informally, we could say that the function f(x) is almost constant. 
Looking back at the proof of our L2 estimate (5), the argument applies to any 

set of lines L. The crux of the matter is that if |L| is much bigger than q, and if 
f(x) = L∈L L(x), then f = f0 + fh where f0 is a constant function, and fh has 
small L2 norm. 
The key to the L2 estimate is the orthogonality in Lemma 2.4. Now we discuss 

the proof of Lemma 2.4. One simple proof is just to compute L1,h(x)L2,h(x).x∈F2 

q 

Recall that  
1 − 1/q x ∈ L1

L1,h(x) = 
−1/q x ∈/ L1 

We can now compute L1,h(x)L2,h(x). With a little algebra, we find x∈F2 



    

 

 
 

 

 
       

      

               
                

          
                 

                

     

 

 
 

  

 

 
 

  

 

 

 
 

  

 

       

           
              
             

               
  

                 
 

 
               

         

                  

   
 

 

   

             
     

         

  
 

 

 

    
 
 

 
   

 

 
 

 

 

   

   
 

          

 

 

  
 

 

 

 

13 PROJECTION THEORY NOTES 

 
= 0 if L1, L2 are not parallel

L1,h(x)L2,h(x) 
< 0 if L1, L2 are parallel 

x∈F2 

 

q 

The main case is when L1, L2 are not parallel. In this case something interesting 
is happening that causes the sum to be zero, and we should look for a conceptual 
explanation. One explanation comes from independence. After a change of coordi-
nates, we can assume that L1 is the vertical axis and L2 is the horizontal axis. In 
these coordinates, L1,h only depends on x1 and L2,h only depends on x2, and so L1,h 

and L2,h are independent. Therefore, ⎛ ⎞⎛ ⎞  2 2 ⎝ ⎠⎝ ⎠ = 0 · 0 = 0.L1,h(x)L2,h(x) = L1,h(x) L2,h(x) 
x∈F2 

q x∈Fq x∈Fq 

Another conceptual explanation comes from Fourier analysis. We now pause to 
review the Fourier transform over finite fields, and then we use Fourier analysis to 
explain why L1,h and L2,h are orthogonal when L1, L2 are not parallel. 
Suppose that e : Fq → C∗ is a non-trivial homomorphism from the group F+ 

q to 
2πi x 

the group C∗ . If q = p is prime, then we can take e(x) = e p . 
If x, ξ ∈ Fd

q , we define the dot product x · ξ by 

x · ξ = x1ξ1 + ... + xdξd. 

If f : Fd
q → C, then we define its Fourier transform f̂ : Fd

q → C by  
(6) f̂(ξ) := f(x)e(−x · ξ) 

x∈Fd
q 

With this setup, we can write down the two fundamental theorems in Fourier 
analysis: Fourier inversion and Plancherel. 

Theorem 2.5. If f : Fd
q → C, then  1 1 1 

f(x) = f̂(ξ)e(x · ξ) = f̂(0) + f̂(ξ)e(x · ξ)
d d dq q   

q
ξ∈Fd

q ξ =0   
f0(x) 

fh(x) 

Theorem 2.6. If f, g : Fd
q → C, then   

f(x)g(x) = 
1 

f̂(ξ)ĝ(ξ) 
qd 

x∈Fd
q ξ∈Fd

q 



    

                  
      

  
 

 

 

    
 
 

 
   

 

 
 

 

 

   

   
 

   
 

  
              

               
                  

              
                 
      

  

 
    

  

              
                 

          

      
                

                   
                     
     

                 

   

 
     

   

                 
        

 
            

               
               
           

 

 
 

  
 

 

 
 

  
 

 

 

 

14 PROJECTION THEORY NOTES 

Let us now revisit how we broke up a function f as f0 + fh. Starting with Fourier 
inversion, we can write f as  1 1 1 

f(x) = f̂(ξ)e(x · ξ) = f̂(0) + f̂(ξ)e(x · ξ)
d d dq q   

q
ξ∈Fd

q ξ =0  
f0(x) 

fh(x)  
Since f̂(0) = q∈F f(x), we see that f0 is just the mean value of f(x). So thisd

q 

decomposition is the same one we used above in the proof of Theorem 2.3. We 
can think of f0 as the contribution of the zero frequency, and we think of fh as the 
contribution of the non-zero frequencies. The letter h stands for ‘high’, and we think 
of fh as the ‘high-frequency’ part of f . In general, for any function f , we can define 
fh as above, and we have  

f̂(ξ) ξ = 0 
0 ξ = 0 

The Fourier transform interacts in a nice way with lines, and more generally with 
affine subspaces. Suppose that P ⊂ Fd

q is an affine k-plane. We write P (x) for the 
characteristic function of P . We define P ⊥ as 

f̂ (ξ) = h 

q 

P ⊥ = {ξ ∈ Fd : (x1 − x2) · ξ = 0 for all x1, x2 ∈ P }.q 

(Here the vector x1 − x2 is tangent to P , and so P ⊥ is the set of vectors perpendic-

q 

ular to P . Note that P is affine, so it may not contain 0, whereas P ⊥ is a subspace, 
and it does contain 0.) 

Lemma 2.7. If P (x) is the characteristic function of an affine k-plane in Fd
q , then  

qk ξ ∈ P ⊥ 

|P̂ (ξ)| = 
0 ξ ∈/ P ⊥ 

The proof of Lemma 2.7 is on the first problem set. The main point is that when 
P is an affine plane, then P̂ (ξ) = x∈P e(−x · ξ) is a geometric series, and so we can 
sum it exactly. For most ξ, the geometric series sums to zero because of symmetry. 
Using Fourier analysis, we can now give another proof that when L1, L2 are not 

parallel, then L1,h and L2,h are orthogonal. By Plancherel, we have    
ˆ ˆL1,h(x)L2,h(x) = 

q 
1 
d 

L1,h(ξ)L̂ 
2,h(ξ) = 

q 
1 
d 

L1(ξ)L̂ 
2(ξ) 

x∈F2 ξ∈F2 ξ =0 



    

        
   

      
     

              
   

   
          

 
             

             
             
           

             
              

               
               

                  
               

   

                  
 

 
               
             

            

             
     

              
         

       
                     

         
    

  
                  

         
             

     

                
  

15 PROJECTION THEORY NOTES 

But by Lemma 2.7, the support of L̂ 
1 is L1 

⊥ and the support of L̂ 
2 is L2 

⊥ . Since 
the two supports intersect only at ξ = 0, our last sum is zero. 

ˆ ˆTo summarize, L1,h and L2,h have disjoint supports, and so L1,h and L2,h are 
orthogonal. 
Remark. We don’t necessarily need Fourier analysis to prove Theorem 2.3, but in 

some further developments the Fourier analysis is helpful. For instance, if we want 
to generalize Theorem 2.3 to higher dimensions, the Fourier analysis point of view 
is important. You will explore this on the first problem set. 

2.3. Projection theory for balls in Euclidean space. Next we will start to 
study projection theory in Euclidean space. We will consider the projections of a set 
of unit balls in Euclidean space, and we will adapt our two fundamental methods to 
that setting. There is a new issue that appears for balls in Euclidean space, which 
has to do with how the balls are clustered. In this lecture, we start to set up our 
problems in the context of balls in Euclidean space, and we see how the clustering 
comes into play. 

In this section, for a set X ⊂ Rd , we write |X| for the d-dimensional measure of 
X. 

Setup 
Suppose that X is a set of disjoint unit balls in BR ⊂ R2 . 
Suppose that D is a finite set in S1 , which is 1/R-separated. 
Define S(X, D) = maxθ∈D |πθ(X)|, the maximal 1-dimensional measure of πθ(X). 

Here we suppose that the directions in D are 1/R-separated because otherwise the 
projections would be essentially equivalent. 

Next we can consider some examples. There is an integer grid example which is 
analogous to the one we mentioned in finite fields. 

Example 1. (Widely spaced integer grid example) 
We let X be an N × N grid of unit balls in B2 

R , spaced as widely as possible. The 
centers of the balls lie on the lattice 

N
R Z × 

N
R . 

We choose a parameter A ≤ R, and we let D be the set of directions with slope 
in the set {a1/a2 : a1, a2 ∈ [A]}. 
By a similar analysis to the one in finite fields, we see that 

S(X, D) ∼ max(AN, R). 

The configuration is interesting when S ≤ R/2. In this case, we have S ∼ AN 
and so 



    

   
 

 

              
        

             
                

               
                    

              
              
               

   

    
                      

    

          
                  

      
                  

     

               
                 

                
 

                     
 

     
 

    

                      

    
 

   

               
  

16 PROJECTION THEORY NOTES 

S2 

(7) |D| ∼ 
|X| 

Notice that the numerology of Example 1 in the setting of balls exactly matches 
the numerology for the integer grid in F2 

p. 
We recall that for projection theory in F2 

q , there were interesting examples related 
to subfields of Fq. The field R does have subfields, such as the field of rational 
numbers. However, these subfields do not lead to interesting sets of unit balls in BR. 
I think that the issue is that Q is not closed. To get a set of unit balls, we might 
take the 1-neighborhood of Q × Q, but that is all of R2 . 
But there is a new phenomenon for projection theory of balls in Euclidean space 

which has to do with clustering. As a second example, we consider a tightly clustered 
set of balls. 

Example 2. (Clustered example) 
For some N ≤ R, we let X be a set of ∼ N2 disjoint unit balls in BN ⊂ BR. We 

have |X| ∼ N2 

Now for every direction θ, we have |πθ(X)|  N . 
So we can let D be a maximal set of 1/R separated directions, so |D| ∼ R, and 

we can take S = 2N . 
Plugging in, we find that |D| is much larger than | 

S
X 

2 

| ∼ 1. And so this example is 
more extreme than Example 1. 

The new theme in this setting is that projection estimates depend on how much X 
is clustered. It turns out that it is important to consider both how X is clustered and 
how D is clustered. We can quantify the clustering of X and D with the following 
definitions. 
We write B(c, r) for the ball with center c and radius r. For any 1 ≤ r ≤ R, we 

define 

(8) NX (r) = max |X ∩ B(c, r)|
c∈BR 

We write γ for an arc of S1 , and |γ| for its length. For any ρ ∈ [1/R, 1], we define 

(9) ND(ρ) = max #(D ∩ γ) 
|γ|=ρ 

Our goal will be to prove projection estimates that depend on the functions NX (r) 
and ND(ρ). 



    

               
                   

           

17 PROJECTION THEORY NOTES 

In the next lecture we will work out analogues of Theorem 2.2 and Theorem 2.3 
for balls in R2 . The main idea will be to adapt the methods we used today in order 
to take account of clustering information from NX (r) and ND(ρ). 
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