18 PROJECTION THEORY NOTES

3. PROJECTION THEORY FOR BALLS IN EUCLIDEAN SPACE

Tuesday February 11

In this lecture, we develop the tools from the last lecture in the more geometric
setting of Euclidean space.

We first introduced our main tools in the setting of finite fields, where the technical
details are simple. Now we adapt these tools to Euclidean space. Euclidean space
has many different scales. We have to take into account many different scales in
order to even ask good questions in Euclidean space. Paying attention to multiple
scales will go on to be one of the key ideas in the subject.

We suppose that X is a set of disjoint balls in Euclidean space, and study the
orthogonal projections of X in different directions. Here is the precise setup.

SETUP
Let X be a set of disjoint unit balls in By C R% Let D C S! be a set of 1/R
separated directions.

§ = S(X, D) = max|m(X)|.

Nx(r) = max|X N B(e, ).
ND(p): max |DNoal.

oeS’arc
lo|=p

Double Counting

Theorem 3.1. (Double Counting Real Version)
If SETUP, then

\N’ > Nx(r)Np(1/r).

1<7"<R

Proof.
x = #{B1, By unit balls € X, 0 € D : 7y(By) Nme(Bs) # 0}

Lower bound: * 2 |D| <|X|> S. It basically follows from the same argument as in

the finite field setting.
Upper bound: Fix By, By with dist(By, By) ~ 1, let ¢(By), ¢(B2) be the center of By
and By. Write

c(Bz) — c(B1)

(B
|¢(B2) — ¢(B1)]
to be the angle from B; to By. (see Figure 1) If my(By) N me(By) # 0, then
angle(0,~) < 1/r. Thus,

#{0 : mp(B1) Nme(B2)} < Np(1/r).

v =
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By

FIGURE 1. Angle between two balls

#{Bl,BQ c X : diSt(Bl,BQ> 5 7“} S |X‘Nx(7")

Thus,
*S ) |X[Nx(r)Np(1/r)
r dyadic
1<r<R
SO

IXPSTD <« S > |X[INx(r)Np(1/r).

r dyadic
1<r<R

Example 3.2. For Nx(r),
(1) X neighborhood of a curve. (see Figure 2a)
Nx(r) ~r
(2) Well-spaced N x B grid. (see Figure 2b)

NX(T):{1 r < R/N

7“2%—3 r > R/N

(3) A cluster of N* unit balls (see Figure 2c)
r? r<N

N ~ -
x(r) {N2 r>N

Pictures of How N,.(X) depends on r (see Figure 3)
Normalize N = R'/2.
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FIGURE 2. Examples for Nx(r).
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FIGURE 3. Plots of N,(X) vs r.

Straight Line Case

| X| =R Nx(r) ~r®
We call this regular o dim spacing.
Below Straight Line Case

| X] = R% Nx(r) S r°
We call this a dim spacing.

Definition 3.3. We say that X has Hausdorff spacing if it has o dimension spacing
for some o.. Another way to say this is that

Nps(X) S |X|°
forany 0 < g < 1.
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Corollary 3.4. (Double Counting Real Version)
If SETUP X, D has Hausdorff spacing then

D S log R(|S|+ 57 |DP]) = (S ~ X or [D] S 5).

5]
[X]
Proof. Let’s calculate Ny (r)Np(1/r). Suppose r = R’ the Hausdorff condition
implies

Nx(R*)Np(R™") < |X|°|D|'™"
Thus, by theorem 3.1,

S S
|D| < NlogRu max | X|?|D|"? < log R(|S| + 151

X025 x)1P!

Recall the theorem in the finite field case.
Theorem 3.5. If X CF2, D CF,, S = maxgep |m9(X)| then S ~ |X| or |D| < S.

Note that in the R setting if we impose the Hausdorff spacing condition, then we
get basically the same result as in the finite field case.
Now let’s compare result in projection theory in IFZ vs unit balls in B% with Hausdorff
spacing.

Theorem 3.6. (Fourier Method Finite Field) If F,-SETUP and S < q/2, then
Sq
[x]
Corollary 3.7. If R-SETUP and X, D has Hausdorff spacing. Then, |D| < |X|

IDI'S 571

Conjecture 3.8. If p primes, F, SETUP and S < 1 min(q, |X|) then

|2
X
Conjecture 3.9. (Furstenberg) If SETUP, X and D has Hausdorff spacing and

S < R “min(R, |z|),

IDI'S

then
2
< IS

1Dl 5
R

The above conjecture is proven in 2024 by (Orponen, Shmerkin, Ren and Wang)
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3.1. Fourier Method.
Lemma 3.10. (Main lemma in finite field)

IfLis a Sfit of lines in Fy. Write f =3, 1(x). Then, f = fo+ f1 s0 suppfo =
{0}, suppfn, = {0}°. Then, fy is a constant function. Then, ||fol|3 = [LI?, ||fnl3 =

IL|g.

Now, let’s look at the R setting. Let T be a set of 1 x R in R2. Let ¢ be a smooth

approximation of 1.

Lemma 3.11. (Main lemma in real)
Let T be a set of 1 x R rectangles in R?. Let f =Y . p ér(z). Then,

1<r<R
dyadic

such that suppf, € B(1/r) and || f,]|2 < Np(r)|T|r 'R where
Np(r):= max #{T e€T:TcT}
T:2rx2Rrect

Proof. (proof sketch of main lemma)

suppgr C T* where T* := {€ € R? : |(x1 — a2) - &| < 1, any @y, 25 € T}

Figure 4)

T T*

R W '\%
X %/ §

F1GURE 4. The dual of a rectangle.

Littlewood-Paley decomposition
Write 1 = ) 1<r<rn,-(§) with 7, > 0 such that

dyadic
1 1
suppn, C Ann(—— < [¢| < -),1<r <R
10r r

(see
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A

and suppng C B(1/R) and suppm C {£ : || > 1/10}. Define f,. = (n,.f)" so
suppf, C B(1/r). In particular, we can write Oy = (méT)v.

Visual of 7, and ¢r,

We have 7,(§) ~ 1 on Ann(1/r) and

()] ~ {1/r2 on |z| Sr

" rapidly decay if |x| > r.

(see Figure 5) where 7j.(z) = [e™n.(&)dé. Note that [1.(x)dz = n.(0). As

()

FI1GURE 5. Visual of radial component of 1,.

[ 1n-(z)|dz = n.(0), we have that f  |rj,(z)| ~ Average of f on B(x,r). As
¢T,7" - QbT * ﬁly we have |¢T,r (X)| ~ rillr neighborhood of T'- (See Figure 6)

r neighborhood of T’

FIGURE 6. A tube T and its r neighborhood.
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Lemma 3.12. (Orthogonality) i
If Ty, Ty are 1 x R tubes then |(or, r, o1, r)| S R0 unless there exists T, a Rr x
R'Y™¢ rectangle such that Ty, T, € T.

Proof. (proof sketch) If angle(11,Ts) 2 R°%, then supquT;R N Suppng;,R = 0. If
N,(T}) and N, (T3) are disjoint, then

/(le T¢T2 T /¢T1 * 77V¢T1 * 777" 5 R_IOOO

as ¢p, * 1, and ¢, * 1, have essentially disjoint support. 0

L2 estimates

(10) 105 = 11 drall3
TET
(11> - Z <¢T1,'m ¢T2,r>
Ty, T
(12) = Y (61 b1s) + neglible
T~ T
(13) < > ldraell3 + o3
Ty~rTy
(14) < NA(T) Y llrrll3
TET
(15) = N’JI‘(T)ZHCbTmHg
TET
(16) = N¢(r)|T]r R

where 72 is the amplitude and rR is the area.
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