
    

        

   
               

    
               
             

              
             
              
                

            
 

                       
  

      
 

 

    
 

    

   
  

 

   

  

      
   

  
 
 

 

 

  

 
                 

      
 

 
          

    
                  

   

 
   
   

                  
     

       

18 PROJECTION THEORY NOTES 

3. Projection theory for balls in Euclidean space 

Tuesday February 11 
In this lecture, we develop the tools from the last lecture in the more geometric 

setting of Euclidean space. 
We first introduced our main tools in the setting of finite fields, where the technical 

details are simple. Now we adapt these tools to Euclidean space. Euclidean space 
has many different scales. We have to take into account many different scales in 
order to even ask good questions in Euclidean space. Paying attention to multiple 
scales will go on to be one of the key ideas in the subject. 
We suppose that X is a set of disjoint balls in Euclidean space, and study the 

orthogonal projections of X in different directions. Here is the precise setup. 
SETUP 

Let X be a set of disjoint unit balls in BR ⊆ R2 . Let D ⊂ S1 be a set of 1/R 
separated directions. 

S = S(X, D) = max |πθ(X)|. 
θ∈D 

NX (r) = max |X ∩ B(c, r)|. 
c∈R2 

ND(ρ) = max |D ∩ σ|. 
σ∈Sarc 
|σ|=ρ 

Double Counting 

Theorem 3.1. (Double Counting Real Version) 
If SETUP, then S |D|  NX (r)ND(1/r). |X| 

1≤r≤R 

Proof. 
∗ = #{B1, B2 unit balls ∈ X, θ ∈ D : πθ(B1) ∩ πθ(B2) = ∅}. 2 

Lower bound: ∗  |D| |X| S. It basically follows from the same argument as in
S 

the finite field setting. 
Upper bound: Fix B1, B2 with dist(B1, B2) ∼ r, let c(B1), c(B2) be the center of B1 

and B2. Write 
c(B2) − c(B1) 

v = 
|c(B2) − c(B1)|

to be the angle from B1 to B2. (see Figure 1) If πθ(B1) ∩ πθ(B2) = ∅, then 
angle(θ, γ)  1/r. Thus, 

#{θ : πθ(B1) ∩ πθ(B2)}  ND(1/r). 



    

 

 

 

      

            

 

 
 

  
 

  

 
   

 

  
 

  

 

     

         

    

         

   

 
    

   

    

          

   

 
   

  

          

     

19 PROJECTION THEORY NOTES 

B1 

v 

B2 

Figure 1. Angle between two balls 

#{B1, B2 ∈ X : dist(B1, B2)  r}  |X|NX (r). 

Thus,  
∗  |X|NX (r)ND(1/r) 

r dyadic 
1≤r≤R 

so  
|X|2S−1D  ∗  |X|NX (r)ND(1/r). 

r dyadic 
1≤r≤R 

 

Example 3.2. For NX (r), 

(1) X neighborhood of a curve. (see Figure 2a) 

NX (r) ∼ r 

(2) Well-spaced N × B grid. (see Figure 2b) 
1 r ≤ R/N 

NX (r) = 
2 N2 
r 

R2 r > R/N 

(3) A cluster of N2 unit balls (see Figure 2c) 
r2 r ≤ N 

NX (r) ∼ 
N2 r > N 

Pictures of How Nr(X) depends on r (see Figure 3) 

= R1/2Normalize N . 
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X 

BR 

R 
N 

N R 

(a) A neighborhood of a (b) A well-spaced grid. (c) A cluster of balls. 

curve. 

Figure 2. Examples for NX (r). 

Figure 5 
1 

0.8 

0.6 
logR NX (r) 

0.4 

0.2 

0 

logR r 

Figure 3. Plots of Nr(X) vs r. 

Straight Line Case 

|X| = Rα, NX (r) ∼ r α 

We call this regular α dim spacing. 
Below Straight Line Case 

|X| = Rα, NX (r)  r α 

We call this α dim spacing. 

Definition 3.3. We say that X has Hausdorff spacing if it has α dimension spacing 
for some α. Another way to say this is that 

NRβ (X)  |X|β 

for any 0 ≤ β ≤ 1. 

A 

B 

C 

0 0.2 0.4 0.6 0.8 1 

    

 

 

     
 

 
 

    

  

     

      

      
 

 

 

 

 

 

 

 

 

  

   

  

       

   

          

       
    

          

      

               
          

    

       

https://00.20.40.60.81


    

      
        

     
 

         

            
 

    

    

    
 
 

 
 

      
 

 

 

        

                      

               
           

                
 

             

  
 
 
 

              
 

              

  
 

 

            

    

 

  
 

 
 

             

21 PROJECTION THEORY NOTES 

Corollary 3.4. (Double Counting Real Version) 
If SETUP X, D has Hausdorff spacing then 

|S||D|  log R(|S| + |D|) ⇒ (S ∼ X or |D|  S). 
|X| 

Proof. Let’s calculate NX (r)ND(1/r). Suppose r = Rβ , the Hausdorff condition 
implies 

NX (R
β )ND(R

−β)  |X|β|D|1−β 

Thus, by theorem 3.1, 

|S| |S||D|  log R max |X|β |D|1−β  log R(|S| + )|D|. 
|X| 0≤β≤1 |X| 

 

Recall the theorem in the finite field case. 

Theorem 3.5. If X ⊆ F2 
q , D ⊆ Fq, S = maxθ∈D |πθ(X)| then S ∼ |X| or |D|  S. 

Note that in the R setting if we impose the Hausdorff spacing condition, then we 
get basically the same result as in the finite field case. 
Now let’s compare result in projection theory in F2 

q vs unit balls in BR 
2 with Hausdorff 

spacing. 

Theorem 3.6. (Fourier Method Finite Field) If Fq-SETUP and S ≤ q/2, then 

Sq |D|  . 
|X| 

Corollary 3.7. If R-SETUP and X, D has Hausdorff spacing. Then, |D|  SR 
|X| 

Conjecture 3.8. If p primes, Fp SETUP and S ≤ 1 min(q, |X|) then
2 

|S|2 

|D|  
X 

Conjecture 3.9. (Furstenberg) If SETUP, X and D has Hausdorff spacing and 

S ≤ R− min(R, |x|), 

then 
|S|2 

|D|  . 
|R| 

The above conjecture is proven in 2024 by (Orponen, Shmerkin, Ren and Wang) 



    

   

       
             

 
           

             
     

  
 

                      
    

      
                

 
     

 
 

 
 

 

          

   
  

        

      

                         
   

 

 

 

 
 

 
 

  

 

       

  
   

 
 
 

       

   
 
 

   
 
 

      

22 PROJECTION THEORY NOTES 

3.1. Fourier Method. 

Lemma 3.10. (Main lemma in finite field) 
If L is a set of lines in F2 

q . Write f = L∈L 1L(x). Then, f = f0 + f1 so suppf̂  
0 = 

{0}, suppf̂  
h = {0}c . Then, f0 is a constant function. Then, f02 = |L|2 , fh2 = 2 2 

|L|q. 
Now, let’s look at the R setting. Let T be a set of 1 × R in R2 . Let φT be a smooth 

approximation of 1T . 

Lemma 3.11. (Main lemma in real)  
Let T be a set of 1 × R rectangles in R2 . Let f = T ∈T φT (x). Then, 

f = fr(x) 
1≤r≤R 
dyadic 

such that suppf̂  
r ⊆ B(1/r) and fr2  NT(r)|T|r−1R where 2 

NT(r) := max #{T ∈ T : T ⊂ T̃}. 
T̃ :2r×2Rrect 

Proof. (proof sketch of main lemma) 
suppφ̂ 

T ⊂ T ∗ where T ∗ := {ξ ∈ R2 : |(x1 − x2) · ξ| ≤ 1, any x1, x2 ∈ T }. (see 
Figure 4)  

1 

T ∗T 
1 
R 

R 
1 

ξX 

Figure 4. The dual of a rectangle. 

Littlewood-Paley decomposition 
Write 1 = 1≤r≤R ηr(ξ) with ηr ≥ 0 such that 

dyadic 

1 1 
suppηr ⊆ Ann( ≤ |ξ| ≤ ), 1 < r < R 

10r r 



    

                 

            
 
 

     

        

   

 
     

      

      
 

   
 

    

 

 
 

        

 
                 

                 

 

    

         

23 PROJECTION THEORY NOTES 

and suppηR ⊆ B(1/R) and suppη1 ⊆ {ξ : |ξ| > 1/10}. Define fr = (ηrf̂)
∨ so 

suppf̂  
r ⊆ B(1/r). In particular, we can write φT,r = (ηrφ̂ 

T ) 
∨ 
. 

Visual of η̂r and φT,r 

We have ηr(ξ) ∼ 1 on Ann(1/r) and  
1/r2 on |x|  r |η̌r(x)| ∼ 
rapidly decay if |x| > r.   
ix·ξηr(see Figure 5) where η̌r(x) = e (ξ)dξ. Note that η̌r(x)dx = ηr(0). As 

|X| 

r 
η̌r(x) 

Figure 5. Visual of radial component of η̂r.  
|η̌r(x)|dx = ηr(0), we have that f ∗ |η̌r(x)| ∼ Average of f on B(x, r). As 

φT,r = φT ∗ η̌1, we have |φT,r(X)| ∼ r−11r neighborhood of T . (see Figure 6) 

T 

r neighborhood of T 

Figure 6. A tube T and its r neighborhood. 



    

   
                     

        

                   
      

 

   
 

     
 

             
  

   
 

  

 
  

 
 

 

    

 
 

 

      

 
 

 

   
     

  

  
 

  

   
  

  
 

  

   
  

    

          

24 PROJECTION THEORY NOTES 

Lemma 3.12. (Orthogonality) 
˜If T1, T2 are 1 × R tubes then |φT1,r, φT2,r|  R−1000 unless there exists T , a Rr × 

R1+ rectangle such that T1, T2 ∈ T̃ . 

Proof. (proof sketch) If angle(T1, T2)  R 
R
r , then suppφT ̂

 
1,R ∩ suppφT ̂

 
2,R = ∅. If 

Nr(T1) and Nr(T2) are disjoint, then  
 R−1000φT1,rφT2,r = φT1 ∗ η̂rφT1 ∗ η̂r 

as φT1 ∗ η̂r and φT1 ∗ η̂r have essentially disjoint support.  

L2 estimates  
(10) fr22 =  φT,r2 

L2 

T ∈T 
(11) = φT1,r, φT2,r 

T1,T2 
(12) = φT1,r, φT2,r + neglible 

T1∼rT2 
(13) ≤ φT,r22 + φT2,r2 

2 
T1∼rT2  

(14) ≤ Nr(T) φT,r22 

T ∈T 
(15) = NT(r) φT,r22 

T ∈T 

(16) = NT(r)|T|r −2rR 

where r−2 is the amplitude and rR is the area. 
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