
    

       

   
            

   
              

                 
 

                  
          

  
 

 

 

          
        

 
     

    

                
                 

               

     

 
  

 

 
 

 
 

 

 

  

 
 

 
 

 
 

 

 

 

 
 

 
 

 
 

 

 

 

 

 
 

 

 

 

          
 

 
 

   

      

 
  

 

 
 

 
 

 

  

 

 
 

 

     

 

                
                   
              

                   
             

25 PROJECTION THEORY NOTES 

4. The Fourier method in Euclidean space

Thursday February 13. Transcribed by Jacob Reznikov. Used with permission.
In this lecture, we finishing developing the Fourier method for projection estimates 

in Euclidean space. 
Before we dive into the Fourier method in Euclidean space, let us overview the 

result in the case of finite fields. The main lemma used in the finite case is the 
following. 

Lemma 4.1 (Main Lemma 2F). If L is a collection of lines in F2 
q , and L(x) is the 

characteristic function for L ∈ L, then we can decompose  
f(x) = L(x) 

L∈L 

|L|as f = f0 + fh, where f0 = is orthogonal to fh, andq , f0 

||f0||2 
L2  |L|2 , ||fh||2 

L2  |L|q .

Now one can use this lemma to get L2 bounds on f quite easily, we immediately 
get ||f ||2  ||f0||L2 + ||fh||L2 , however, there are easier ways to get this same bound.L2 

Lemma 4.2 (Elementary L2 bounds on f). We have ||f ||2  |L|q + |L|2 .L2 

Proof. We can directly compute 2      
||f ||2 

L2 

q 

= L(x) = L1(x)L2(x) 
x∈F22F∈x q L∈L L1,L2∈L      

q 

= L1(x)L2(x) + L1(x)L2(x) 
x∈F2 L1=L2∈L L1= L2∈L  

q 
Now different lines always meet at exactly one point, so L1(x)L2(x) = 1 for x∈F2

q 

L1 = L2. Thus we have     
||f ||2 

L2 ≤ L2(x) + 1 ≤ |L|q + |L|2 

x∈F2 L∈L L1= L2∈L 



One could then ask, isn’t the Fourier method then useless if we can arrive at the 
same norm bound in an easier way? And in some regimes, it is, if |L| ∼ q then the 
Main Lemma does not give us any extra information. However, in the case where 
|L|  q we not only get the L2 bounds, but we also get the extra piece of information 
the constant part, the zeroth frequency, of f , dominates the contributions to the 



    

               
            

 

 

 
   

          
  

 
           
            

   
   

 
             

             
      

           
    

 
 

 
  

 

           

     
   

 
 

                 
     

  
 
  

 
          

        

             
          

      
         

     

          
 

  
 
  

 

 
 

 

 

   

                
              

 
   

 

 

 
  

 

  

 

 
 

 
 

26 PROJECTION THEORY NOTES 

norm. We can interpret this information as asserting that f is in some sense ’almost 
constant’. The usefulness of this will become clear in the Euclidean case. 
We now recall the setup for the Fourier Method in Eu-

clidean Space. 2r 
Setup 

T̃ 
Suppose that T is a set of 1 × R rectangles. 
Suppose that for each rectangle T ∈ T, ψt is a smooth 

approximation for 1T . ˜Let f = T ∈T ψT and NT(r) = maxT̃  |{T ∈ T : T ⊂ T }|
where T̃  ranges across all 2r × 2R rectangles, as can be seen 
in the diagram on the right. 

Lemma 4.3 (Main Lemma 2R). If the setup holds then we 
can decompose f as  

f = fr
1≤r≤R 
r dyadic 

with fr (nearly) orthogonal to each other, and for each r, 

R 
f̂  
r ⊂ B(1/r) and ||fr||2 

L2  |T|NT(r)
r

Now again we can use this lemma to arrive at a quick L2 bound, simply adding up 
over r we get ||fr||2  |T|NT(r)

R . But once again, there are easier ways toL2 r dyadic r 
get this bound, which we will now show. 

2r 

2R 

T1 T2 T3 

For two tubes T1, T2 we will write r(T1, T2) to be the 
minimal r such that T1 and T2 are both contained T̃ 

in a 2r × 2R rectangle. 
A simple look at the geometry of the rectangles 
gives us the following lemma 

Lemma 4.4. For any two tubes T1, T2 we have 
R 

T1(x)T2(x)dx ∼ 
r(T1, T2) 

T1 T2 

∼ 1 

∼ R 
r 

2R 

 
f 2 = 

  
T1(x)T2(x)dx = 

  R

r 
T1,T2∈T r dyadic T1,T2∈T 

r∼r(T1,T2) 

In a similar way to the elementary bound in the finite case we can compute directly, 
we will use the previous lemma, and group the terms in the sum by r 



    

                   
     

 

  

 

 
 

 
 

 
 

  

 
 
 

 

             
                

              
                

   
               

                
                

       
              

 
 

 

                
                   

               
               

              
                

                  
          

              
                 
                 

                
                   

               

27 PROJECTION THEORY NOTES 

Now fix r, for the first tube we have |T| choices and for the second we have at most 
NT(r) choices. This gives us   R R

= |T|NT(r) . 
r r 

r dyadic T1,T2∈T r dyadic 
r∼r(T1,T2) 

Once again we get the same L2 bound as from the Main Lemma. 
Thus we again find that the important part of the Lemma, isn’t just the L2 bound, 

its the extra information we get about the frequency structure of the function. We 
will want to think about this information in a particular way, which we will call the 
’locally constant intuition’. 

Intuition If suppĝ ⊂ B1/r then g ≈ constant on each Br. This intuitively should 
make sense, if suppĝ ⊂ B1/r then g is a combination of waves with frequency at 
most 1/r, since each wave is then approximately constant on any given Br then it is 
plausible that their combination is as well. 
Now to use this intuition in our setup let us consider the following diagrams 

fr f1 

r 

The left diagram shows us what happens in a setup where our f is dominated by 
some fr with r large, our function then is dominated by the scale r and we can see as 
expected by our intuition, that for most balls of radius r, our function is relatively 
constant. Furthermore, the locations where f is large will all look like the blob we 
have drawn in red, and they will have more geometric structure to exploit there. 
On the other hand when f is dominated by f1, it is dominated by high frequencies 

and it might look like the diagram on the right, here we have less points where f is 
large but they are more scattered and have less structure. 
Now let us formalize this intuition before using it with our main lemma. Consider 

a function g with suppĝ ⊂ B1/r, what can we say about it? Well in analysis there 
is often a specific way we deal with supports we know, and that is using a bump 
function. That is, let η be a compactly supported smooth function with η = 1 on 
B(1, r), then we have ĝ = ĝ · η and so applying inverse Fourier to this equation we 
get g = g ∗ η.ˇ We will need three important properties of of η̌. 



    

              
   

     
 

        
                  

 

                  
   

            

   

      
 
 
 

 
  

 
 
 
  

 
       

 

            

    

      
 
 

 
  

 
 
 

 

                 
   

 
 
 

 
  

 
 
 

 

 
 

   

 
   

 
 

    
 

   

    

 

               

             
             

           
    

            

 
   

                

28 PROJECTION THEORY NOTES 

• |η̌(x)|  r−2 , which comes from simple triangle inequality applied to the
integral defining η̌.

• |η̌(x)|  r−2( |x| )−1000 , which comes from integration by parts.
r 

• If η is radial, then η̌  is also radial, which we will assume to be the case
henceforth.

Now we can use these two facts to get information about g. We define ψr := |η̌| and 
derive the following. 

Lemma 4.5. If suppĝ ⊂ B1/r, then |g(x)| ≤ |g| ∗ ψr. 

Proof. We compute     
|g(x)| = |(g ∗ η̌)(x)| =  g(y)η̌(x − y) ≤ |g(y)||η̌(x − y)| = |g| ∗ ψr



Lemma 4.6. If suppĝ ⊂ B1/r, then |g(x)|2  |g|2 ∗ ψr.

Proof. We again compute  2  |g(x)| = |(g ∗ η̌)(x)|2 = g(y)η̌(x − y) 
Now we write g(y)η̌(x − y) = (g(y)η̌(x − y)1/2) · (η̌(x − y)1/2) and apply Cauchy 
Schwarz to get  2    g(y)η̌(x − y) ≤ (g(y)η̌(x − y)1/2)2 (η̌(x − y)1/2)2    

= g(y)2η̌(x − y) η̌(x − y) 

 (|g|2 ∗ ψr)(1)



Back to our setup, we can now apply all these computations to improve our L2 

bound and derive the Euclidean version of theorem 2F. We recall our setup. 
Setup. X is a set of unit balls in BR ⊂ R2 . 
D ⊂ S1 is a set of directions, which is 1/R-separated. 
S = maxθ∈D |πθ(X)|. 
NX (r) = maxc∈R2 |X ∩ B(c, r)| and ND(ρ) = maxσ⊂S1 |D ∩ σ|. 

|σ|=ρ 

We will use  to mean g(R, x) ≤ C log(R)f(R, x) for some constant C.



    

       

  
 
 

 
 

  
 

 

                       
        

 
 

 

   
 

  

  

                  

  
 

 

 

                
                 

     
           

  

 

 

 

            
 

 

  
 

     
 

      
 

    

                 
               

 

 

  
 

 
 

     
 

    

     
 

          
   

 

 

 
  

 
   

 
 

29 PROJECTION THEORY NOTES 

Theorem 4.7. If our setup holds then 

SR NX (r)ND(r/R)|D|  max . 
|X| r r2 

Proof. First for all θ ∈ D we define Tθ to be the set of S different 1 × R tubes T at 
angle θ that cover X. We then set   

T = Tθ f(x) = ψT (x). 
θ∈D T ∈T 

Then for any x ∈ X we have |f(x)| ≥ |D| so we get the simple lower bound  
|D|2|X| ≤ |f |2 

X 

Now the upper bound will be a bit trickier, let us think again about the picture 
we had before, and notice that if our X set is quite spread apart, that is when NT(r) 
is small, then estimating |fr|2 by ||fr||2 

L2 will be quite a lossy comparison, we can
X 

do better. 

fr X 

r 

First we will use the fact that suppf̂  
r ⊂ B1/r to get     

|fr|2 = 1X |fr|2dx ≤ 1X · (|fr|2 ∗ ψr)dx = 1X (x)|fr|2(y)ψr(x − y)dydx 
X 

Now let us assume that η and hence ψr are radial, then they are also symmetric, so 
this entire expression is symmetric with respect to swapping x and y. Hence we have     

|fr|2 = |fr|2(x) 1X (y)ψr(x − y)dydx = |fr|2(x)(1X ∗ ψr)dx 
X 

Now morally ψr is approximately r so we have that 1X ∗ ψr  r−2NX (r). This−21B1/r 

then gives us   
R|T|NT(r)NX (r)|fr|2  r −2NX (r) |fr|2  .

3rX 



    

                
                       
                
                  

      
 

 
 

 
 

 

             

  
 

 
  

 

 

   
 

 
  

 
 

     
 

  

 
 

     

  
 
 

 
 

  

 
 

 

                  
              

                   
   

 
 

  

 
 

  
 

 

              

  
 
 

 
 

 
 

          
  

                 
  

   
            
            
             

  

30 PROJECTION THEORY NOTES 

Now let us estimate NT(r), for any fixed θ we know that the number of rectangles 
of size 1 × R that can fit inside a rectangle of size 2r × 2R is  r since no more can
fit. The maximum angle (with respect to the large rectangle) that can fit is going to 
be  r/R, so as many as ND(r/R) different θ can count, hence we have a bound of
NT(r)  rND(r/R). We thus have 

R|T|ND(r/R)NX (r)|fr|2  .
2rX 

We also have |T| = S|D| so putting it all together we have   ND(r/R)NX (r)|X||D|2 ≤ |fr|2  S|D|R
2rX1≤r≤R 1≤r≤R 

r dyadic r dyadic 

ND(r/R)NX (r)≤ S|D|R log R max 
1≤r≤R r2 
r dyadic 

which we can rewrite into 
SR ND(r/R)NX (r)|D|  max
|X| 1≤r≤R r2 

r dyadic 



Now this result looks a little ugly, so let us see what it looks like with the Hausdorff 
assumption we discussed last class. Recall that we say X has Hausdorff spacing if 
NX (R

β )  |X|β for all 0 ≤ β ≤ 1. If then X and D both have Hausdorff spacing
then we have 

ND(r/R)NX (r) |X||D|
max ∼ 1 + 

2 R21≤r≤R r
r dyadic 

Corollary 4.8. If the setup holds and X, D both have Hausdorff spacing then 

SR S|D||D|  + .
|X| |X| 

In particular either R  S or |D|  SR .|X| 

We will end off this section with a little bit of history about the Fourier and double 
counting method. 

Fourier Method History 
• 1940s - First use of Fourier method by Linnik in Sieve Theory.
• 1970s - Fourier method use by Rot for the Heilbronn triangle problem.
• 1980s - Falconer uses the method for geometric measure theory (what we are
currently doing).



    

            

    

           
          

                 
            

                 
                  

       
                  

   
                   

     
            

                
                 

           
          

              
       

            

                     
               

           

               

           

   

 
 

 

  

   

                 
                 

 
              
                    

           
   

          

31 PROJECTION THEORY NOTES 

• Recently - Vinh used the Fourier method in the finite field setting.

Double Counting Method History 

• 60s - Kaufmann uses double counting method for geometric measure theory.
• 60s - Gallagher uses double counting method for Sieve theory.

4.1. Sieve Theory. We will now move on to the study of Sieve theory, which as we 
will see is very similar to what we have done so far. 
We will be interested in studying the maps πq : Z → Zq := Z/qZ given by 

πq(x) = x mod q. These will play the role of our projections, in the sense that they 
are also group homomorphisms of Abelian groups. 
We will use [N ] to denote the set {1, ..., N} and we will study the projections of 

subsets of [N ]. 
Example Consider the set X = {n2 : 1 ≤ n ≤ N1/2} ⊂ [N ], we know from basic 

algebra that |πp(X)| = p+1 for all primes p. This should seem unusual since we could
2 

have an extremely large set and yet all of its projections miss half of their co-domain. 
The natural next question is, how large can a set S be and still have this property? 

(X) ≤ p+1Theorem 4.9 (Linnik). If X ⊂ [N ], πp for all prime p then |X|  N1/2 .
2 

The only known sharp families for this theorem are square numbers and their close 
relatives, namely images of specific quadratic polynomials. 
Let us now begin analyzing this problem using the double counting method. 

Theorem 4.10 (1S). If X ⊂ [N ], D a set of primes less than N and for all p ∈ D 
we have that |πp(X)| ≤ S, then either |X| ≤ 2S or |D|  S.

Proof. We start as usual by considering the set of coincidences 

(∗) = {x1, x2 ∈ X, p ∈ D : πp(x) = πp(x2)} 

by the same argument as usual we have the lower bound  2|X||(∗)| ≥ |D| = |X|2|D|S−1 . 
S 

For the upper bound fix x1 and x2 and count the number of p’s for which the 
condition can hold, if πp(x1) = πp(x2) then we have p|x2 − x1. We now have two 
cases 
If x1 = x2 then any p works, this gives us a |X||D| term. 
If x1 = x2 then only the prime divisors of x1 − x2 work of which there are at most 

log N , so this gives us an |X|2 log N term. 
Together we get 

|X|2|D|S−1 ≤ |(∗)| ≤ |X||D| + |X|2 log N 



    

     

  
 

 
    

                 
       

                   
    

32 PROJECTION THEORY NOTES 

which we can rewrite as 
S|D||D| ≤ + S log N 
|X|

so either the first term dominates and we have S ≤ 2|X| or the second term dominates 
and we get |D|  S. 

As an example if |πp(X)| ≤ N2/3 for any p ∈ D with |D| = O(log N)N2/3 then 
|X|  N2/3 .
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