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4. THE FOURIER METHOD IN EUCLIDEAN SPACE

Thursday February 13. Transcribed by Jacob Reznikov. Used with permission.

In this lecture, we finishing developing the Fourier method for projection estimates
in Fuclidean space.

Before we dive into the Fourier method in Euclidean space, let us overview the
result in the case of finite fields. The main lemma used in the finite case is the
following.

Lemma 4.1 (Main Lemma 2F). If L is a collection of lines in F;, and L(x) is the
characteristic function for L € 1L, then we can decompose

f(z) = L(x)

as f = fo+ fn, where fy = %', fo 1s orthogonal to fn, and
1 follze SILP,  [Ifall72 < [Lla-

Now one can use this lemma to get L? bounds on f quite easily, we immediately
get [[f1122 S | follzz + 1 fall 22, however, there are easier ways to get this same bound.

Lemma 4.2 (Elementary L? bounds on f). We have || f|7. < |L|g + |L|*.

~

Proof. We can directly compute

1 =3 [zmr -y [ S L1<x>Lz<x>]

$€Fg LelL xEFg Ly,La€ll
:Z([ Y Li@)La(@)| + | > Ll(:c)Lg(:c)])
:EEIE% Li=Lo€elL Li1#Lo€LL

Now different lines always meet at exactly one point, so » g Li(z)Ly(z) = 1 for
q
Ly # Ly. Thus we have

11172 < ) ([ZL%)

€2 Lel

>+ > 1< |Ljg+ |LP

L1#L2€ll

U

One could then ask, isn’t the Fourier method then useless if we can arrive at the
same norm bound in an easier way? And in some regimes, it is, if |L| ~ ¢ then the
Main Lemma does not give us any extra information. However, in the case where
IL| > q we not only get the L? bounds, but we also get the extra piece of information
the constant part, the zeroth frequency, of f, dominates the contributions to the
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norm. We can interpret this information as asserting that f is in some sense ’almost
constant’. The usefulness of this will become clear in the Euclidean case.
We now recall the setup for the Fourier Method in Eu-

clidean Space. 2r
Setup 7
Suppose that T is a set of 1 x R rectangles. T, To 13
Suppose that for each rectangle T" € T, v, is a smooth [
approximation for 1. )
Let f = > crtr and Np(r) = max; [{T € T: T C T} 2R

where T" ranges across all 2r x 2R rectangles, as can be seen
in the diagram on the right.
Lemma 4.3 (Main Lemma 2R). If the setup holds then we
can decompose f as

f = Z fr

1<r<R
r dyadic

with f, (nearly) orthogonal to each other, and for each r,
. R
fr € B(A/r) and ||f][z2 S |T|Ne(r)—

Now again we can use this lemma to arrive at a quick L? bound, simply adding up
over r we get || f,[|72 S Do, qyadic |T|Nr(r)£. But once again, there are easier ways to
get this bound, which we will now show.

For two tubes 17, Ty we will write r(77,T5) to be the -
minimal r such that T} and T, are both contained

in a 2r X 2R rectangle. ~1
A simple look at the geometry of the rectangles )
gives us the following lemma

Lemma 4.4. For any two tubes T1, Ty we have

R

In a similar way to the elementary bound in the finite case we can compute directly,
we will use the previous lemma, and group the terms in the sum by r

/f2= Z /Tl(x)Tg(x)dq:: Z Z §

Ty, ToeT r dyadic T1,T2€T
reor(T1,T2)
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Now fix 7, for the first tube we have |T| choices and for the second we have at most
Nr(r) choices. This gives us

DD DEESD SN NACES

r dyadic T1,T2€T r dyadic
reor(Th,T2)
Once again we get the same L? bound as from the Main Lemma.

Thus we again find that the important part of the Lemma, isn’t just the L? bound,
its the extra information we get about the frequency structure of the function. We
will want to think about this information in a particular way, which we will call the
"locally constant intuition’.

Intuition If suppg C B/, then g ~ constant on each B,. This intuitively should
make sense, if suppg C By, then g is a combination of waves with frequency at
most 1/r, since each wave is then approximately constant on any given B, then it is
plausible that their combination is as well.

Now to use this intuition in our setup let us consider the following diagrams

S,V

N

—

PEN

The left diagram shows us what happens in a setup where our f is dominated by
some f,. with r large, our function then is dominated by the scale » and we can see as
expected by our intuition, that for most balls of radius r, our function is relatively
constant. Furthermore, the locations where f is large will all look like the blob we
have drawn in red, and they will have more geometric structure to exploit there.

On the other hand when f is dominated by fi, it is dominated by high frequencies
and it might look like the diagram on the right, here we have less points where f is
large but they are more scattered and have less structure.

Now let us formalize this intuition before using it with our main lemma. Consider
a function g with suppg C B/, what can we say about it? Well in analysis there
is often a specific way we deal with supports we know, and that is using a bump
function. That is, let n be a compactly supported smooth function with n = 1 on
B(1,7), then we have § = ¢ -7 and so applying inverse Fourier to this equation we
get g = g x 1. We will need three important properties of of 7.
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e |5(x)] < r72, which comes from simple triangle inequality applied to the
integral defining 7.

o |n(z)] S 7"_2(@)_1000, which comes from integration by parts.

e If 7 is radial, then 7 is also radial, which we will assume to be the case
henceforth.

Now we can use these two facts to get information about g. We define ¢, := || and
derive the following.

Lemma 4.5. If suppg C By, then |g(x)| < |g| * 1.

Proof. We compute

9(@)] = (g #7) ()] = ‘/g(y)ﬁ(x —y>\ < [l lite =)l = o= v:

Lemma 4.6. If suppg C By, then |g(x)|* < |g|* * .

Proof. We again compute

Schwarz to get
< [towite —"? [t -2y

- [swrate =y [aa-y)

S (gl vr)(1)

' [ stwrite— )

O

Back to our setup, we can now apply all these computations to improve our L?
bound and derive the Euclidean version of theorem 2F. We recall our setup.

Setup. X is a set of unit balls in B C R2.

D C S'is a set of directions, which is 1/ R-separated.

S = maXgpep |7T9(X)|

Nx(r) = max.eg2 |X N B(c,r)| and Np(p) = max,cq |D N o|.

lo|=p
We will use < to mean g(R,z) < Clog(R)f(R,x) for some constant C.



PROJECTION THEORY NOTES 29

Theorem 4.7. If our setup holds then
Nx(r)N R
|ID| < @max x(r)Np(r/ )
~X| r?

Proof. First for all 6 € D we define Ty to be the set of S different 1 x R tubes T at
angle 6 that cover X. We then set

T=JTs fl&)=) vr(x).

0eD TeT

Then for any € X we have |f(z)| > |D| so we get the simple lower bound

DPIX|< [ 15
X

Now the upper bound will be a bit trickier, let us think again about the picture
we had before, and notice that if our X set is quite spread apart, that is when Np(r)
is small, then estimating [ |f,|* by || f+]|7. will be quite a lossy comparison, we can

do better.
/
(@]
(@]
(@]
T

First we will use the fact that supp fr C By, to get

[0 = [rdsbis < [re- 0P soite= [ [ 1@l Pw e - o

Now let us assume that 1 and hence v, are radial, then they are also symmetric, so
this entire expression is symmetric with respect to swapping x and y. Hence we have

J 158 = (1@ [ e@ta—nduds = [ 15P@) 05 0o

Now morally 9, is approximately 215, ,, 50 we have that 1x %), < r~2Nx(r). This

then gives us
- R|T|Ny(r)Nx (r)
Jise s 108 D)

r

fr
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Now let us estimate Nrp(r), for any fixed § we know that the number of rectangles
of size 1 x R that can fit inside a rectangle of size 2r x 2R is < r since no more can
fit. The maximum angle (with respect to the large rectangle) that can fit is going to
be < /R, so as many as Np(r/R) different 6 can count, hence we have a bound of

Nr(r) S rNp(r/R). We thus have
/ |fr|2 < R|T|ND(T/R)NX( )

We also have |T| = S|D] so putting it all together we have

xipP s 3 [ inpssipir Y ARCEA

7«2
1<r<R 1<r<R
r dyadic r dyadic
Np(r/R)Nx(r
< S|D|Rlog R max n(r/ 2) x(r)
1<r<R r
r dyadic
which we can rewrite into
SR N R)N
|D| < 22 max D(T/ ) X(T)
~ | X| 1<r<R r?
r dyadic

O

Now this result looks a little ugly, so let us see what it looks like with the Hausdorff
assumption we discussed last class. Recall that we say X has Hausdorff spacing if
Nx(RP) < |X|P for all 0 < B < 1. If then X and D both have Hausdorff spacing
then we have

o Nol/RIN() XD
1<r<R 72 R?
r dyadic
Corollary 4.8. If the setup holds and X, D both have Hausdorff spacing then
| < 2k SR S|D|
|X X

In particular either R S S or |D| S 2 ‘X|

We will end off this section with a little bit of history about the Fourier and double
counting method.
Fourier Method History

e 1940s - First use of Fourier method by Linnik in Sieve Theory.

e 1970s - Fourier method use by Rot for the Heilbronn triangle problem.

e 1980s - Falconer uses the method for geometric measure theory (what we are
currently doing).
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e Recently - Vinh used the Fourier method in the finite field setting.
Double Counting Method History

e 60s - Kaufmann uses double counting method for geometric measure theory.
e 60s - Gallagher uses double counting method for Sieve theory.

4.1. Sieve Theory. We will now move on to the study of Sieve theory, which as we
will see is very similar to what we have done so far.

We will be interested in studying the maps n, : Z — Z, := Z/qZ given by
mg(x) =2 mod ¢q. These will play the role of our projections, in the sense that they
are also group homomorphisms of Abelian groups.

We will use [N] to denote the set {1,..., N} and we will study the projections of
subsets of [N].

Example Consider the set X = {n?:1 < n < NY2} C [N], we know from basic
algebra that |m,(X)| = 22+ for all primes p. This should seem unusual since we could
have an extremely large set and yet all of its projections miss half of their co-domain.
The natural next question is, how large can a set S be and still have this property?

Theorem 4.9 (Linnik). If X C [N], m,(X) < 2L for all prime p then | X| < NV/2.

The only known sharp families for this theorem are square numbers and their close
relatives, namely images of specific quadratic polynomials.
Let us now begin analyzing this problem using the double counting method.

Theorem 4.10 (1S). If X C [N], D a set of primes less than N and for all p € D
we have that |m,(X)| < S, then either | X| < 2S or |D| 5 S.

Proof. We start as usual by considering the set of coincidences
(%) ={x1,20 € X,pe€ D :my(x) = mp(z2)}

by the same argument as usual we have the lower bound

1 = 101 (1) = xpiois

For the upper bound fix x; and x5 and count the number of p’s for which the
condition can hold, if m,(x1) = my(x2) then we have p|rs — x;. We now have two
cases

If 2y = x5 then any p works, this gives us a |X||D] term.

If 21 # x5 then only the prime divisors of x1 — x5 work of which there are at most
log N, so this gives us an |X|*log N term.

Together we get

[ XPIDIS™! < ()] < |X[ID| + | X [*log N
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which we can rewrite as

S|D|
|D| < — + Slog N
| X]
so either the first term dominates and we have S < 2| X| or the second term dominates
and we get |D| < S. O

As an example if |m,(X)| < N%3 for any p € D with |D| = O(log N)N%3 then
X| < N2/,
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