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5. THE LARGE SIEVE

Thursday Feb 20.

Sieve theory is a classical topic in number theory. With hindsight, it is closely
parallel to projection theory. In particular, the large sieve, developed by Linnik in
the 1940s, is closely parallel to the Fourier method in projection theory, developed
by Kaufman and Falconer in the 1960s and 70s.

5.1. The Large Sieve. Let [N] = {1,2,...,N} and f : [N] - C. We define a
projection of f for many different p as follows: let m,f : Z, — C be defined as

mfla)= Y f(n)

n=a mod p

It’s often helpful to separate a function into its constant part and mean zero part:

1 X
fo= {5 22 Fm)]1m
n=1
fu = f — fo and we have ZfH(n) =0

We do the same thing with the projections:

(mpf)o = ! Z mpf(a) = constant fn

p a€lyp
(Wpf>H = 7Tpf - (Wpf)o
Remark. We have

o (mpf)un = Tpfu
o (mpf)o=mpfo

so the order of those operations does not matter.

The main theme of the large sieve is that for an almost arbitrary function, if we
take many different projections 7, f, then for most p, the oscillating high-frequency
part of 7, f is smaller than the constant part. We make this precise in the following
theorem.

Let Py = {p prime, % <p< M}

Theorem 5.1 (Linnik). If f: [N] — C and M < N'/? then
N
o hallie S i > 1 fuln)?

pEPM n
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Remark. Background result from analytic number theory: |Py| ~ logLM ~ M

Corollary 5.2.
N
Avgyep, (T Hullze S e > | fun)?

Let us first see an application of this result before we move on to the proof. Last
time we gave the example of square numbers, which have the interesting property
that they leave only ’%1 different residues mod p (that is, the quadratic residues)
for any prime p. So let us think about such a set, i.e. a set where if you project it
via mod p you get significantly less than all p residue classes. We ask the question
”"What does that tell us about the set?”

Corollary 5.3. If A C [N], |m,A| < (.99)p for any p € P2 then |A| S NY/2.
Proof. Let f =14. Assume p € Py1/2, we get
AN? B
S inf@Pz (B1) o~ 1apy
a€ly p

by Cauchy-Schwarz. Now, let’s analyze the high-frequency part. Because supp(m,f) C
mp(A), [supp(m,f)| < .99p. Hence

S I u@l ~ 3 Imf @F 2 AN
a€lyp €Ly

where we are using the following lemma:
Lemma 5.4. If g : Z, — C and |supp(g)| < .99p then ||gu||2. ~ ||g||3-.

Proof. Recall that g = go + gi and we know go L gi. So [|g|22 = ||gol|32 + ||gm |22
If |go||72 < 3]|9][32 then we are done, so assume the contrary. Let S = (supp(g)),
by the given condition we have |S| > .01p. On S we have gy = —go and thus

S| 1
lonllze = 3 lon(@l = loo* = 3 laol® = g5l

acsS a€sS a€ly
This gives [|gn[72 ~ ||g][72, as desired. O
Now we go back to our proof of the Corollary 5. We know that the L? norm of

the high-frequency part of 7, f is comparable to the L? norm of 7, f itself. But we
can upper bound the former by our Theorem:

N
Avg,ep 1M )l S N2 > )P S 14

In conclusion, |A|2N~Y2 < |A] and thus |A| N2 O
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It is interesting that this result matches the example of square numbers. In that
sense, the bound proven above is sharp. However, it would be helpful to look at
more examples. For that purpose, we look at the following.

Reference point. Random set: take a subset A C [N] randomly by choosing n
in A with probability 1/2 independently. Then we see
mpla(a) = #{n € [N],n =amod p,n € A}

and thus

1 1N
Eampla(a) = 5#{71 € [N],n = amod p} ~ 25

However, we don’t expect it to always be %% So we consider the variance, which is

the square root of %% Hence

N N
with high probability |m,14(a) — on =S R
In particular, if p € Py1/2 then for all a € Z,
N
w.h.p [m,1a(a) — % SNV

Now, let us compare this with what our theorem says about an arbitrary set.

Corollary 5.5. If A C [N] then

~
~

Al
Avgpele/QAvgaezp mpla(a) — ? < N1/4

Proof. We plug in Corollary 4 and get
2

A
AVngPN1/2 Z mpla(a) ——| SIAISN
a€ly
Since the size of p is around N'/? we find that
|A| ? < arl/2
AVngPN1/2 AVganp mpla(a) — — <N

Replace the average of the squares by the square of the average (by using Cauchy-
Schwartz):

Avg,Avg,

A
mpla(a) — %‘ S NVA
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So the large sieve tells us that if you take an arbitrary set A and look at a random
residue class {n € A : n = a mod p} with a random p and a random a, the size of
the intersection is similar to what occurs for random sets A.

One cute application of this idea is to count the number of primes in an arithmetic
progression. Specifically, if we take A as the set of primes up to N, then m,14(a) is
the number of primes < N and congruent to a modulo p. So, the question is ”How
evenly distributed are the primes among those arithmetic progressions?”. One might
conjecture that for every p and every a # 0 the following holds:

_ A

7Tp1A(CL) g N1/4

The above corollary makes some progress towards this conjecture, since it implies
that the conjecture is true for most residue classes. However, it is somewhat silly
to call this a progress towards counting primes in arithmetic progressions, since the
proof uses nothing about the prime numbers and only uses the fact that the primes
are a set of numbers. That being said, this line of reasoning is still important, and
in the next class we will come back to this question. We will discuss the Bombieri-
Vinogradov theorem, which uses those ideas in a crucial way.

Lastly, we mention the following before we move onto the proof of the large sieve
inequality. Imagine that the set A had cardinality N/2. Then 7,14 would have size
around N/p and since p € Pyi2 we have that N/p ~ N2 Also |A|/p has size
~ N2 as well, and we know the error (on average) is around N'/%. In particu-
lar this means (m,14)o is much higher than (m,14)y at most of the points. Hence,
when we take a set A of size N/2 look at all the projections, a typical projection
looks almost constant - it’s a constant function plus something much smaller. So
the projection process takes something with no structure and produces something
that’s almost constant. People often describe this as “the projections get smoother.
” In the next lecture, we will work out analogous ideas for orthogonal projections
in R?, and we will see that the word “smoother” is just the right word in that context.

5.2. Proof of Linnik’s Large Sieve inequality. The main idea of the proof is to
study f and m,f by taking their Fourier transforms. So, let us first state how the
Fourier transform of the functions f : Z — C and 7, f : Z, — C are defined.

First, for the function f : Z — C with suppf C [N] we define f : R/Z — C as
&) =2 flme*men



PROJECTION THEORY NOTES 37

~

and we can check that f(§) is 1-periodic, showing that it is well-defined. Also the
two main theorems of Fourier analysis of functions over the reals hold in our case as
well:

(i) Fourier Inversion:

1 -~ .
o) = [ Feremnas
(ii) Plancherel:

S )l = / o)

Secondly, for a function ¢ : Z, — C we define the Fourier transform g : Z, — C as
gla) =Y gla)e™™
a€lyp

Similarly, if we plug in av+p-t for integer ¢ into the definition we get that g(a+p-t) =
g(cr). Hence the Fourier transform g is a well defined function on the cosets a + pZ
and thus is well defined on Z,. Simiarly, the Fourier Inversion and Plancharel hold
as well:

(i) Fourier Inversion:

(ii) Plancherel:
Sl = > 3 [t

Now we introduce a lemma that connects the Fourier transforms of f and m,f.
We call this the Dictionary between the integer world and the modp world.

Lemma 5.6 (Dictionary). 7?137(04) = f(%)
Proof. The proof is clear if we unwind all the definitions:

mpf(a) =3 mfla)e ™%

a€Zy

:Z( > f(n)>62m:f

a€Zp ~n=a mod p

2mia s —2min<

Notice that n = a mod p implies e “"“» = ¢ ». Thus we get

ml(0) =3 Fme 5 = F(7)
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m )|

Lemma 5.7 (previous). |[(m,f)ul|2: = D acz,
a#0

Remark. Since Lemma 5.2 applies to any function, we also have 7r/pf\H(oz) =

fu(a/p).
Now let us write the left hand side of the Linnik’s inequality using the Dictionary
lemma:

LHS of Thm. = Y [[(m,f)rl[32

PEPNM
1 — 2
=2 -2 |mlul@)
pEPMp a#0
€Ly
(17) > S [E(E)]
M a P
pEP) 047520
aElip

Let’s now visualize this set of points Qy; = {% :p € Pyand 0 < o < p—1}. Note
that |Qn| =~ M2

Lemma 5.8. If 21,92 € Qy are not equal, then |% — %] > 15
Proof.
— 1 1
ﬂ_%:’aﬂb QioP1 > 2_2
P11 D2 D1D2 pipa ~ M
O
Remark. If % = Z—; in @y, then p; = py and oy = as.

In Figure 7 below, we have the interval [0, 1] with the points of Qs on it. @, is not
perfectly evenly spaced out but is very close to perfect. In orange is the graph of the

function | fx|? and we have highlighted the value of | fz|? on the set Q,;. What we are
interested in is taking the sum of this function |fz|* on the set Q. This reminds us
of Riemann integration. Indeed, we will compare this to the integral f[o 1 | frr(w)]?dw.

Notice that there is a way for this sum to be way bigger than the integral: if
|fl\{\2 has narrow peaks on Qj;. This way, the sum will be big while the peaks don’t
contribute much to the integral [, | (w)|2dw. So it is important to understand
how wide the peaks are. The following heuristics helps for this task:
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FI1GURE 7. Picture.

Heuristic: |fz|? is roughly constant on intervals of size %

This can be seen from the fact that f is supported on [0, N]. We will make this
notion precise in a moment, but it means that each peak should be % wide. Since we

are given M < N %, this guarantees that the spacing between two consecutive points
of Qs is bigger than the width %

We will now follow this heuristic and obtain our desired inequality (we shall come
back and prove more rigorously later). Heuristic implies

S TR S N / For () Pl

£eQ

This is because for each £ € Qy:

FaOP SN [ |Fa(w)dw

Ie

where I¢ is a length % interval around £. Then we can see that the intervals I, for
& € @)y doesn’t overlap, so we can bound the sum over £ € @), by the integral over
the domain [0, 1].
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The rest is just algebra: recall (17) and we get

1 T2
LHS of Thm. ~ Mg@: | fu (&)

N [t ) N )
<3 ), P = 3 S 1snto)
as desired.

Remark. We have this theme that if you take one function and project it modp
for many different primes, most of them look nearly constant. So why is the zero
frequency special in this story? It’s because for primes p the sets {% 0<a<p-1}
all intersect at 0 but all the other points appear only once. Hence the zero frequency
is being counted very differently than all the other frequencies. If f is large on a
small interval I that does not contain zero, then this part of f will contribute to m, f
for only a few primes p. But if f is large on a small interval I around zero, then this
part of f will contribute to 7, f for every p.

Lastly, we will rigorously prove our heuristic. We will take a function ¥ : Z — C
such that
Yn(n) =1 for n € [N] and ¢ smooth, rapidly decaying
The Fourier Transform of 95 behaves like this:

- ~ N if |€] < L
(18) 7”@:{5Nwmwm s

Refer to the figure below for a visualization of |1Z]\V|

Audience Question: What does smoothness mean for a function on Z? An-
swer: You can think of 1)y as a smooth function on the real line being restricted to Z.

This function is helpful because
f = fyn if suppf C [N]

By taking the Fourier Transform, we get f: f* QZ]\V By the triangle inequality we
obtain |f| < |f] * ¢N‘. Noting that

[W@@msl

(NI
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FIGURE 8. Graph of |22;\

we can show by Cauchy-Schwartz that
T2 S 171 o

Audience Question: The Fourier Transform of functions on Z and R are not
the same. Which one do you mean when you say ¢y 7

Answer: So we mean that we first take a function ¥)yr : R — C smooth with
nr = 1 on [N, N] and rapidly decaying outside. Then we define ¥y zz as the
restriction of ¥y to Z. To analyze the Fourier transform of these functions, we
start with ¢y r. By standard integration by parts, we get: for £ € R

~N if €] <
S NVEN% i [¢] >

2= zl=

(19) [ong(E)] = {

Now @b/NTZ is related to % by the equation below, which boils down to Poisson
summation:

Inz(€) = g€ +2)

2€EZ

for £ € R/Z. Now the bounds for |@EV\R| in (19) combined with this equation give
the desired bounds for |1y 7| in (18).

Now let’s do a slightly more rigorous proof of the Linnik’s large sieve inequality.
Recall the statement:
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Theorem 5.9 (Linnik). If f : [N] — C and M < NY/? then

S liwh) H||L2NMZ\fH

PEPN
Proof. Remember that
1 T 2
LHS ~ i Z | fu ()
§€QM

To relate this sum to an integral, we use the fact that |ﬁ;|2 S |]/”I;|2 * 7@\\7’ This fact

encodes the locally constant property of |ﬂ2 We get

DTG Z/leH ) [d(€ - w)| dw

£€Q §€QM

1
:MR/ZUH (ZWJNf W)

§€Qum
We claim that this sum is bounded by < N:

ST lw(E-w)| SN

§EQ M

This is because the function g(§) = \1@\\;(5 — w)| has a peak around w with height
N and width 1/N and is extremely small away from this peak. The distance between
any two distinct points in @y is 2 M > L > and so at most O(1) points of Qy lie
under the peak of g(§). Hence, we - find that

3 2 @ S 3 [Vt = 53 Lol

5€QM
finishing the proof of Linnik’s large sieve. U

In the last five minutes of the class, we want to give a quick teaser on how these
ideas come up in the setting of projection theory over R. We have this theme
that functions on [1,2,..., N] look almost constant after projecting modp for most
primes p. And there is a totally analogous phenomenon for functions on R?. Specif-
ically, if you project those functions onto lower subspaces, almost all of them look
smoother than the original function. We have mentioned on the first day that if you
are in a high enough dimension, even L? functions that are nowhere continuous has
the property that its projection on a typical line are C* are even C?.
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So here is a setup that is analogous to the large sieve. Let f : R — C and V C R¢
be a subspace. Then we have the projection my f : V — C.

Remark. For any function g : V' — C on a vector space V', the Fourier Transform
g :V — C is also defined on V.

We also have the Dictionary lemma:

Lemma 5.10 (Dictionary). We have 7;\/7 = ﬂv" Notice that 7T/V\f is a function on
V' while f is a function on RY.

Pouyter
Space

FiGure 9. Picture.

In the figure, we see two subspaces Vi and V, (among others) of R%. Notice that
the origin lies in every subspace V. On the other hand, a non-zero frequency w € R?
only lies in a small fraction of subspaces V. Therefore, if f is large on a small ball B
far away from zero, then this contributes to my f for only a small fraction of subspaces
V. On the other hand, if f is large on a small B around zero, then this contributes to
my f for every subspace V. If we compare f with a typical 7y f, the high-frequency
parts of the Fourier transform are “damped” in myf compared to f. This causes
my f to be smoother than f. We will explore these ideas more fully next class.



MIT OpenCourseWare
https://ocw.mit.edu

18.156 Projection Theory
Spring 2025

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.



https://ocw.mit.edu/terms
https://ocw.mit.edu

	Blank Page



