
    

    

   
              
             

             
         

                       
                    

    
 

   

 

               

  
 

 

 

 

 
 

 

        
 

 

    

        

    
 

 

 

      

           

   

    

    

         

                
            
                

 

      
     

              
 

 

   
 

  
 

 

 

 
 

33 PROJECTION THEORY NOTES 

5. The large sieve 

Thursday Feb 20. 
Sieve theory is a classical topic in number theory. With hindsight, it is closely 

parallel to projection theory. In particular, the large sieve, developed by Linnik in 
the 1940s, is closely parallel to the Fourier method in projection theory, developed 
by Kaufman and Falconer in the 1960s and 70s. 

5.1. The Large Sieve. Let [N ] = {1, 2, . . . , N} and f : [N ] → C. We define a 
projection of f for many different p as follows: let πpf : Zp → C be defined as  

πpf(a) = f(n) 
n≡a mod p 

It’s often helpful to separate a function into its constant part and mean zero part:  N 1 
f0 = f(n) 1[N ]

N 
n=1  

fH = f − f0 and we have fH (n) = 0 
n 

We do the same thing with the projections: 1 
(πpf)0 = πpf(a) = constant fn 

p 
a∈Zp 

(πpf)H = πpf − (πpf)0 

Remark. We have 

• (πpf)H = πpfH 

• (πpf)0 = πpf0 

so the order of those operations does not matter. 

The main theme of the large sieve is that for an almost arbitrary function, if we 
take many different projections πpf , then for most p, the oscillating high-frequency 
part of πpf is smaller than the constant part. We make this precise in the following 
theorem. 

Let PM = {p prime, M ≤ p ≤ M}.
2 

Theorem 5.1 (Linnik). If f : [N ] → C and M ≤ N1/2 then  N ||(πpf)H ||2 
L2  |fH (n)|2 

M 
p∈PM n 



    

             

  

 
   

 
  

 
 

 

 

 
 

                 
             
     

          
                    
                

        

                   

            
 

 

   

 
 

 

  

     

           
     

 

 

   
  

 

 

  
    

       

              
 

   
  

                 
   

   
 

  
  

   
 

              
                  

 
 

  
 

 

 
  

 

 

  
 

 

 

 

  
 
 

 
 

   
 

   
     

                  
                
        

 
  

   
 

  
 

 

 

 

 
   

            

34 PROJECTION THEORY NOTES 

Remark. Background result from analytic number theory: |PM | ∼ M ≈ M
log M 

Corollary 5.2. N 
Avg ||(πpf)H ||2 

L2  |fH (n)|2 
p∈PM M2 

n 

Let us first see an application of this result before we move on to the proof. Last 
time we gave the example of square numbers, which have the interesting property 

p+1that they leave only 
2 different residues mod p (that is, the quadratic residues) 

for any prime p. So let us think about such a set, i.e. a set where if you project it 
via mod p you get significantly less than all p residue classes. We ask the question 
”What does that tell us about the set?” 

Corollary 5.3. If A ⊂ [N ], |πpA| ≤ (.99)p for any p ∈ PN1/2 then |A|  N1/2 . 

Proof. Let f = 1A. Assume p ∈ PN1/2 , we get  2 |A||πpf(a)|2  · p ∼ |A|2N−1/2 

p
a∈Zp 

by Cauchy-Schwarz. Now, let’s analyze the high-frequency part. Because supp(πpf) ⊆ 
πp(A), |supp(πpf)| ≤ .99p. Hence   

|(πpf)H (a)|2 ∼ |πpf(a)|2  |A|2N−1/2 

a∈Zp a∈Zp 

where we are using the following lemma: 

Lemma 5.4. If g : Zp → C and |supp(g)| ≤ .99p then ||gH ||2 ∼ ||g||L 
2 
2 .L2 

Proof. Recall that g = g0 + gH and we know g0 ⊥ gH . So ||g||2 = ||g0||2 
L2 + ||gH ||L 

2 
2 .L2 

If ||g0||L 
2 
2 ≤ 1 ||g||2 

L2 then we are done, so assume the contrary. Let S = (supp(g))c ,
2 

by the given condition we have |S| ≥ .01p. On S we have gH = −g0 and thus   |S|  1 ||gH ||2 
L2 ≥ |gH (a)|2 = |g0|2 = |g0|2 ≥ ||g0||L 

2 
2 

p 100 
a∈S a∈S a∈Zp 

This gives ||gH ||2 ∼ ||g||2 
L2 , as desired. L2 

Now we go back to our proof of the Corollary 5. We know that the L2 norm of 
the high-frequency part of πpf is comparable to the L2 norm of πpf itself. But we 
can upper bound the former by our Theorem: N 

Avgp∈P ||(πpf)H ||2 
L2  

(N1/2)2 
|fH (n)|2  |A|

N 1/2 

n 

In conclusion, |A|2N−1/2  |A| and thus |A|  N1/2 .  
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It is interesting that this result matches the example of square numbers. In that 
sense, the bound proven above is sharp. However, it would be helpful to look at 
more examples. For that purpose, we look at the following. 

Reference point. Random set: take a subset A ⊆ [N ] randomly by choosing n 
in A with probability 1/2 independently. Then we see 

πp1A(a) = #{n ∈ [N ], n ≡ a mod p, n ∈ A} 
and thus 

1 1 N
EAπp1A(a) = #{n ∈ [N ], n ≡ a mod p} ∼ 

2 2 p 

However, we don’t expect it to always be 1
2 
N
p . So we consider the variance, which is 

the square root of 1
2 
N
p . Hence   N  N 
with high probability πp1A(a) −   

2p 2p 

In particular, if p ∈ PN1/2 then for all a ∈ Zp  
N 

w.h.p  πp1A(a) −   N1/4 

2p 

Now, let us compare this with what our theorem says about an arbitrary set. 

Corollary 5.5. If A ⊆ [N ] then   |A| 
Avgp∈P Avga∈Zp πp1A(a) − 

p 
  N1/4 

N 1/2 

Proof. We plug in Corollary 4 and get   |A| 2  Avg πp1A(a) −   |A| ≤ Np∈P 
N1/2 p

a∈Zp 

Since the size of p is around N1/2 we find that   |A|2 

Avgp∈P 
N1/2 

Avga∈Zp 
πp1A(a) − 

p 
  N1/2 

Replace the average of the squares by the square of the average (by using Cauchy-
Schwartz):   |A| 

AvgpAvgaπp1A(a) −   N1/4 

p 
 
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So the large sieve tells us that if you take an arbitrary set A and look at a random 
residue class {n ∈ A : n ≡ a mod p} with a random p and a random a, the size of 
the intersection is similar to what occurs for random sets A. 

One cute application of this idea is to count the number of primes in an arithmetic 
progression. Specifically, if we take A as the set of primes up to N , then πp1A(a) is 
the number of primes ≤ N and congruent to a modulo p. So, the question is ”How 
evenly distributed are the primes among those arithmetic progressions?”. One might 
conjecture that for every p and every a = 0 the following holds:    N1/4 

|A|
πp1A(a) − 

p 

The above corollary makes some progress towards this conjecture, since it implies 
that the conjecture is true for most residue classes. However, it is somewhat silly 
to call this a progress towards counting primes in arithmetic progressions, since the 
proof uses nothing about the prime numbers and only uses the fact that the primes 
are a set of numbers. That being said, this line of reasoning is still important, and 
in the next class we will come back to this question. We will discuss the Bombieri-

 

Vinogradov theorem, which uses those ideas in a crucial way. 

Lastly, we mention the following before we move onto the proof of the large sieve 
inequality. Imagine that the set A had cardinality N/2. Then πp1A would have size 
around N/p and since p ∈ PN 1/2 we have that N/p ∼ N1/2 . Also |A|/p has size 
∼ N1/2 as well, and we know the error (on average) is around N1/4 . In particu-
lar this means (πp1A)0 is much higher than (πp1A)H at most of the points. Hence, 
when we take a set A of size N/2 look at all the projections, a typical projection 
looks almost constant - it’s a constant function plus something much smaller. So 
the projection process takes something with no structure and produces something 
that’s almost constant. People often describe this as ”the projections get smoother. 
” In the next lecture, we will work out analogous ideas for orthogonal projections 
in R2 , and we will see that the word “smoother” is just the right word in that context. 

5.2. Proof of Linnik’s Large Sieve inequality. The main idea of the proof is to 
study f and πpf by taking their Fourier transforms. So, let us first state how the 
Fourier transform of the functions f : Z → C and πpf : Zp → C are defined. 

f(ξ) = 
 

First, for the function f : Z → C with suppf ⊆ [N ] we define f : R/Z → C as 

−2πiξ·nf(n)e 
n 



    

               
                
 

   

  
  

 
   

  
 

 

  
  

 
   

                    

  
 

 

   
 

                 
                  

              
  

   

  
 

 

 

   
 

  
 

 

  
 

 

 

 

              
             

       

           

    
 

     
 

 
 

 

  

   

 

 

   
 

         
 
     

     

    
 

 

   
  

  
 

 

37 PROJECTION THEORY NOTES 

and we can check that f(ξ) is 1-periodic, showing that it is well-defined. Also the 
two main theorems of Fourier analysis of functions over the reals hold in our case as 
well: 

(i) Fourier Inversion:  1  2πin·ξdξf(n) = f(ξ)e 
0 

(ii) Plancherel:  1 
|f(n)|2 = |f(ξ)|2dξ 

0n 

Secondly, for a function g : Zp → C we define the Fourier transform g : Zp → C as  
−2πi aα 

pg(α) = g(a)e 
a∈Zp 

Similarly, if we plug in α+p·t for integer t into the definition we get that g(α+p·t) =  g is a well defined function on the cosets α + pZg(α). Hence the Fourier transform  
and thus is well defined on Zp. Simiarly, the Fourier Inversion and Plancharel hold 
as well: 

(i) Fourier Inversion: 1 2πi aα 
pg(a) = g(α)e 

p 
α∈Zp 

(ii) Plancherel:  1 |g(a)|2 = |g(α)|2 

p
a α 

Now we introduce a lemma that connects the Fourier transforms of f and πpf . 
We call this the Dictionary between the integer world and the modp world.  Lemma 5.6 (Dictionary). πpf(α) = f(α

p ) 

Proof. The proof is clear if we unwind all the definitions:  
−2πi aα pπpf(α) = πpf(a)e 

a∈Zp    
−2πia α 

= f(n) e p 

a∈Zp n≡a mod p 

−2πia α −2πin α 
p pNotice that n ≡ a mod p implies e = e . Thus we get  α−2πin α pπpf(α) = f(n)e = f 

p
n 



    

 

      
 

  
 

 
 

 
    

 
 

 

              

  
               
 

    
 

 

   
 

 

 
 

 

 
 

 

 
 

 
     

 
 

 

 
 
 

 

 

 

 
 

 

  
 

 
 

 
 

                       
      

    

 
  

 
       

 
  

 
   

  

 
 
 
 

 

 
  

 

 
 

 
 
 

   

 

 
  

 

 
 

 
 

 

   

 
  

 
           

                    
                 
  

 
         

 
         

          
 

         
            

 
  

                 
 
 

                  
     

 
 

 
        

            

38 PROJECTION THEORY NOTES 

   2 
Lemma 5.7 (previous). ||(πpf)H ||2 = f(α)L2 α∈Zp πp  

α=0 

Remark. Since Lemma 5.2 applies to any function, we also have πpfH (α) = fH (α/p). 
Now let us write the left hand side of the Linnik’s inequality using the Dictionary 

lemma:  
LHS of Thm. = ||(πpf)H ||2 

L2 

p∈PM    21  = πpfH (α) 
p

p∈PM α=0 
α∈Zp     21 α 

(17) ∼ 
M 

f 
H 

p 
 

p∈PM α=0 
α∈Zp 

Let’s now visualize this set of points QM = {α : p ∈ PM and 0 < α ≤ p − 1}. Note 
p 

that |QM | ≈ M2 . 

α1 α2 − α2 1Lemma 5.8. If , ∈ QM are not equal, then |α1 | ≥ 
M2 . p1 p2 p1 p2 

Proof.    α1 α2  α1p2 − α2p1  1 1 −  =   ≥ ≥ 
M2p1 p2 p1p2 p1p2 

 

Remark. If α1 = α2 in QM , then p1 = p2 and α1 = α2. p1 p2 

In Figure 7 below, we have the interval [0, 1] with the points of QM on it. QM is not 
perfectly evenly spaced out but is very close to perfect. In orange is the graph of the 
function |f 

H |2 and we have highlighted the value of |f 
H |2 on the set QM . What we are 

interested in is taking the sum of this function |f 
H |2 on the set QM . This reminds us  

of Riemann integration. Indeed, we will compare this to the integral |f 
H (ω)|2dω.[0,1] 

Notice that there is a way for this sum to be way bigger than the integral: if 
|f 

H |2 has narrow peaks on QM . This way, the sum will be big while the peaks don’t 
contribute much to the integral |f 

H (ω)|2dω. So it is important to understand[0,1] 

how wide the peaks are. The following heuristics helps for this task: 
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Figure 7. Picture. 

1Heuristic: |f 
H |2 is roughly constant on intervals of size .

N 

This can be seen from the fact that f is supported on [0, N ]. We will make this 
notion precise in a moment, but it means that each peak should be 

N 
1 wide. Since we 

are given M ≤ N 2
1 
, this guarantees that the spacing between two consecutive points 

of QM is bigger than the width 
N 
1 . 

We will now follow this heuristic and obtain our desired inequality (we shall come 
back and prove more rigorously later). Heuristic implies 

 1 
|f 

H (ξ)|2  N |f 
H (ω)|2dω 

0ξ∈QM 

This is because for each ξ ∈ QM : 

 
|f 

H (ξ)|2  N |f 
H (ω)|2dω 

Iξ 

where Iξ is a length 
N 
1 interval around ξ. Then we can see that the intervals Iξ for 

ξ ∈ QM doesn’t overlap, so we can bound the sum over ξ ∈ QM by the integral over 
the domain [0, 1]. 



    

          

    
 
 

 

 

 
 

 
 
 

  

 
     

 

 

 

 
 

  

               
               

                    
                

                
                 

                    
          

                 
  

             

        

    

 
     

 

      
 

          
  

           
                  

     

       

                

     
 

 

 
   

 

 

    

40 PROJECTION THEORY NOTES 

The rest is just algebra: recall (17) and we get 1 
LHS of Thm. ∼ |f 

H (ξ)|2 

M 
ξ∈QM 1N

 
M 0 

N |fH (ω)|2dω = |fH (n)|2 

M 
n 

as desired. 

Remark. We have this theme that if you take one function and project it modp 
for many different primes, most of them look nearly constant. So why is the zero 
frequency special in this story? It’s because for primes p the sets {α : 0 ≤ α ≤ p − 1}

p 
all intersect at 0 but all the other points appear only once. Hence the zero frequency 
is being counted very differently than all the other frequencies. If f̂  is large on a 
small interval I that does not contain zero, then this part of f̂  will contribute to πpf 
for only a few primes p. But if f̂  is large on a small interval I around zero, then this 
part of f̂  will contribute to πpf for every p. 

Lastly, we will rigorously prove our heuristic. We will take a function ψN : Z → C 
such that 

ψN (n) = 1 for n ∈ [N ] and ψN smooth, rapidly decaying 

The Fourier Transform of ψN behaves like this:  
∼ N if |ξ| ≤ 1  N(18) ψN (ξ) = 
 N(N |ξ|)−1000 if |ξ| > 1 

N 

Refer to the figure below for a visualization of |ψ 
N |. 

Audience Question: What does smoothness mean for a function on Z? An-
swer: You can think of ψN as a smooth function on the real line being restricted to Z. 

This function is helpful because 

f = fψN if suppf ⊆ [N ] 

By taking the Fourier Transform, we get f = f∗ ψ 
N . By the triangle inequality we   

obtain |f| ≤ |f| ∗ ψ 
N . Noting that  1 

2 

|ψ 
N (ξ)|dξ  1 

− 1 
2 
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ψN | 

ψN 

Figure 8. 

we can show by Cauchy-Schwartz that 

Graph of | 

 |f|2  |f|2 ∗ 

 
Audience Question: The Fourier Transform of functions on Z and R are not 

ψNthe same. Which one do you mean when you say ? 

Answer: So we mean that we first take a function ψN,R : R → C smooth with 
ψN,R = 1 on [−N, N ] and rapidly decaying outside. Then we define ψN,ZZ as the 
restriction of ψN,R to Z. To analyze the Fourier transform of these functions, we 
start with ψN,R. By standard integration by parts, we get: for ξ ∈ R  

 

 

∼ N if |ξ| ≤ 1 

|  
if |ξ| > 

(19) ψN,R(ξ)| = 
 N(N |ξ|)−1000 

N 
1 
N ψN,Z is related to ψN,R by the equation below, which boils down to Poisson 

ψN,Z(ξ) = ψN,R(ξ + z) 

Now 
summation:  

for ξ ∈ R/Z.  
Now the bounds for |

the desired bounds for |ψN,Z| in (18). 

 

z∈Z 

ψN,R| in (19) combined with this equation give 

Now let’s do a slightly more rigorous proof of the Linnik’s large sieve inequality. 
Recall the statement: 



    

              
 

 

   
 

  
 

 

 

 
 

   

  
 
 

 

 

 
 

             
   

       

          

 
 

 

 

  
 
 

 

 

 
 

 
 
    

 
 
  

 
 
 

 

 
 

 

 
 

 

    

 

 

          
 

 

      

        
           

               
         

             
         

 
 

 

 

  
 
 

 

 
     

 

 

 

 
 

        

                  
                

                 
              

              
               

              
               

42 PROJECTION THEORY NOTES 

Theorem 5.9 (Linnik). If f : [N ] → C and M ≤ N1/2 then  N ||(πpf)H ||2 
L2  |fH (n)|2 

M 
p∈PM n 

Proof. Remember that 1 
LHS ∼ |f 

H (ξ)|2 

M 
ξ∈QM   

To relate this sum to an integral, we use the fact that |f 
H |2  |f 

H |2 ∗ ψ 
N . This fact 

encodes the locally constant property of |f|2 . We get   1 1  |f 
H (ξ)|2  |f 

H (ω)|2 ψ 
N (ξ − ω) dω 

M M R/Zξ∈QM ξ∈QM   1 
= |f 

H (ω)|2 |ψ 
N (ξ − ω)| dω 

M R/Z ξ∈QM 

We claim that this sum is bounded by  N :  
|ψ 

N (ξ − ω)|  N 
ξ∈QM 

This is because the function g(ξ) = |ψ 
N (ξ − ω)| has a peak around ω with height 

N and width 1/N and is extremely small away from this peak. The distance between 
any two distinct points in QM is  

M 
1 
2 ≥ 

N 
1 , and so at most O(1) points of QM lie 

under the peak of g(ξ). Hence, we find that  1 N N |f 
H (ξ)|2  |f 

H (ω)|2dω = |fH (n)|2 

M M MR/Zξ∈QM n 

finishing the proof of Linnik’s large sieve.  

In the last five minutes of the class, we want to give a quick teaser on how these 
ideas come up in the setting of projection theory over Rd . We have this theme 
that functions on [1, 2, . . . , N ] look almost constant after projecting modp for most 
primes p. And there is a totally analogous phenomenon for functions on Rd . Specif-
ically, if you project those functions onto lower subspaces, almost all of them look 
smoother than the original function. We have mentioned on the first day that if you 
are in a high enough dimension, even L2 functions that are nowhere continuous has 
the property that its projection on a typical line are C1 are even C2 . 
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So here is a setup that is analogous to the large sieve. Let f : Rd → C and V ⊂ Rd 

be a subspace. Then we have the projection πV f : V → C. 

Remark. For any function g : V → C on a vector space V , the Fourier Transform g : V → C is also defined on V . 

We also have the Dictionary lemma: 

Lemma 5.10 (Dictionary). We have  = f 
V 
. πV f is a function onπV f Notice that  

V while f is a function on Rd . 

Figure 9. Picture. 

In the figure, we see two subspaces V1 and V2 (among others) of Rd . Notice that 
the origin lies in every subspace V . On the other hand, a non-zero frequency ω ∈ Rd 

only lies in a small fraction of subspaces V . Therefore, if f̂  is large on a small ball B 
far away from zero, then this contributes to πV f for only a small fraction of subspaces 
V . On the other hand, if f̂  is large on a small B around zero, then this contributes to 
πV f for every subspace V . If we compare f with a typical πV f , the high-frequency 
parts of the Fourier transform are “damped” in πV f compared to f . This causes 
πV f to be smoother than f . We will explore these ideas more fully next class. 
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