
    

         

             
         

            
       

              
                    

                       
                  

                   
   

    
 

     
 
 

 

      

      

 
 

  
 

  

            

      

                
      

      

                  

     
 

 

  
 

               
           

            
 

 

       

                    

             

46 PROJECTION THEORY NOTES 

7. Applications of the Large Sieve to Number Theory 

Linnik initially used the large sieve to study the distribution of quadratic residues. 
We will see that work on Problem set 4. 
Perhaps the most important application of the large sieve in number theory con-

cerns the distribution of primes mod q. 

7.1. Distribution of primes mod q. Let π(N) denote the number of primes less 
than or equal to N . Let π(N, q, a) be the number of primes p satisfying p ≤ N and 
p = a mod q. We want to focus on a ∈ Z∗ 

q , since if a and q are not relatively prime, 
π(N, q, a) is at most one. So let φ(q) = |Z∗|. If the primes were evenly distributed q 

π(N)mod q, then π(N, q, a) would be close to . To quantify how badly this fails, we 
φ(q) 

introduce the function   π(N)  Δq(N) := max π(N, q, a) −  . a∈Z∗ φ(q)q 

Here are some results on Δq(N): 

Theorem 7.1 (Dirichlet). For all q, 

Δq(N)
lim = 0. 

N→∞ N/q 

Theorem 7.2 (Siegel-Walfisz). For any A, there is some cA such that 

Δq(N) ≤ cAN(log N)
−A . 

This is the best result that applies to all q. If one assumes the generalized Riemann 
hypothesis, then it is true that 

Δq(N) ≤ (CN
)N1/2 

for any  > 0. Montgomery conjectured that for any  > 0, there is a constant C 1/2 
such that Δq(N) ≤ (CN

) N
q . 

Instead of trying to understand what happens for all q, we will be concerned with 
the typical behavior of Δq(N). The theorem we will discuss is 

Theorem 7.3 (Renyi, Bombiere–Vinogradov). For all  > 0 and all A,  
Δq(N) ≤ C(, A)N(log N)−A . 

q≤N1/2− 

This says that for most q ≤ N1/2− , Δq(N) ≤ N
q (log N)

−A  N
q . So the primes 

are close to equidistributed mod q for most q up to N1/2− . 



    

               
               

     

            
         

 

               
 

    
 

 

 

               
               

                    
            

   
     

    

     

    

          

                  
       

  

 
        

  

                 

            

              

          
       

               
 

                        

47 PROJECTION THEORY NOTES 

We will not give the complete proof, which is somewhat messy, but we will discuss 
most of the main ideas. In particular, we will explain how the large sieve and 
projection theory enter the story. 

7.2. Multiplicative Convolution and Primes. To prove this, we will use the 
multiplicative convolution, which interacts nicely with prime numbers and pro-
jections. 

Definition 7.4. If f, g : N → C, then their multiplicative convolution is the 
function  

f ∗ M g(n) = f(n1)g(n2). 
n1,n2,n1n2=n 

This is related to the prime numbers through the sieve. Sieving is the process of 
obtaining prime numbers by crossing off all the multiples of 2, then all the multiples 
of 3, and so on, until only the primes are left. If you try to write this down with a 
formula, the multiplicative convolution will appear. Let 1 = 1N and define ⎧ ⎪1 n = 1,⎨ 

Dp(n) = −1 n = p,⎪⎩0 n = 1, p. 

Then we can calculate 

1N ∗ M D2 = 1N − 12N = 1odd. 

Similarly, 1N ∗ M D2 ∗ M D3 is the indicator function for n relatively prime to 2 and 3. 
For a set of primes S, define  

1 (p, n) = 1 ∀p ∈ S, 
RPS (n) = 

0 else. 

Note that if S = PN1/2 and N1/2 < n ≤ N , then RPS (n) = P (n). 

Lemma 7.5. If S = {p1, . . . , pr}, then 

RPS (n) = 1 ∗ M Dp1 ∗ M . . . ∗ M Dpr . 

7.3. Multiplicative Convolution and Projections. Now we will examine the 
relationship between multiplicative convolution and projection. Multiplicative con-
volution interacts nicely with the projection Z → Zq because this projection is a ring 
homomorphism. 

Lemma 7.6 (Lemma 1). If f, g : N → C, then πq(f ∗ M g) = πqf ∗ M πqg. 



    

              
 

    
 

  

  

        

  
 

 

 

   
 

 

  

 
  

 

 

  

        

 
  

  
  

    
 

 

   

    
 

 

    

     

 

               

        

            

         

         
 

 
 

      
 

              
                       

                  
              
       

    
  

     

          

48 PROJECTION THEORY NOTES 

To be extra careful, we should say what we mean by multiplicative convolution in 
Zq:  

F ∗ M G(a) = F (a1)G(a2) 
a1,a2∈Zq ,a1a2=a 

for functions F, G : Zq → C. 

Proof. Write   
f = δn1 f(n1), g = δn2 g(n2). 

n1 n2 

Then  
f ∗ M g = δn1n2 f(n1)g(n2). 

n1,n2 
1 n = m 

Here δn is the delta function δn(m) = . Then 
0 else  

πqf(a) = δn1 mod q(a)f(n1), 
n1 

πqf ∗ M πqg(a) = δn1n2 mod qf(n1)g(n2) 
n1,n2 

= πq(f ∗ M g)(a). 

 

For our final result, we want L∞ bounds, but our theory is geared toward L2 

bounds. Here’s how we can get L∞ bounds: 

Lemma 7.7 (Lemma 2). If f, g : N → C, then 

f ∗ M gL∞(Z∗) ≤ fL2 gL2 .  
q 

Proof. For a ∈ Z∗ 
q , f ∗ M g(a) = b∈Z∗ f(b)g(ab−1) ≤ fL2 gL2 by Cauchy-Schwarz. 

q 

 

There is also the minor technical annoyance of switching between Zq and Z∗ 
q . If 

f : Zq → C, let f ∗ : Z∗ 
q → C be the restriction. Then we can write f = f0 + fh 

and f ∗ = f0 
∗ + fh 

∗ , where the starred functions are defined on Zq 
∗ and the unstarred 

functions are defined on Zq, the subscript zero indicates a constant function, and the 
subscript h indicates an average zero function. 

Lemma 7.8 (Lemma 3). 
f ∗L2(Z∗) ≤ fhL2(Zq).h q 

Finally, taking the high frequency part commutes with multiplicative convolution: 



    

           
    

        
   

  

           

  

    
 
         

       

   
 
       

   
 
   

  

         

    
 
     

 
    

  

       

 

            
                    

               
                   

               
            

             

                        
    

 

 

    
 
   

  

 
 

 
 

 
 

 
 

  

   

           
 

 

    
 
   

  
 

 

     

 

 
 

 

    
 

   
 

 

   
 

  

 

 
 

 
 

 
 

 
 

  

   

 

49 PROJECTION THEORY NOTES 

∗ : Z∗Lemma 7.9 (Lemma 4). If f ∗ , g q → C, then 

(f ∗ ∗ M g 
∗ )h = fh 

∗ ∗ M gh 
∗ . 

If we combine all of these, we get the following proposition: 

Proposition 7.10. 

(πq(f ∗ M g))h 
∗ L∞ ≤ (πqf)hL2 (πqg)hL2 . 

Proof. By Lemma 1 then Lemma 4, 

(πq(f ∗ M g))h 
∗ = ((πqf ∗ M πqg)) 

∗ 
h = (πqf)h 

∗ ∗ M (πqg) 
∗ 
h. 

Then using Lemma 2 and Lemma 3, we get 

(πq(f ∗ M g))h 
∗ L∞ ≤ (πqf)h 

∗ L2 (πqg)h 
∗ L2 

≤ (πqf)hL2 (πqg)hL2 . 

 

7.4. Large Sieve and Multiplicative Convolution. Our goal is to prove that 
P (n) is evenly distributed mod q for most q of a given size. We will focus on the case 
that q is prime, which avoids technical issues but still shows the main proof ideas. 
We have seen that for a large range of n, P (n) is equal to RPS (n), where S = 

PN1/2 . The key property of RPS (n) is that it is a multiplicative convolution. Our 
next theorem shows that most projections of a multiplicative convolution are nearly 
constant – it is the main analytic ingredient in the proof of Bombieri-Vinogradov. 

Theorem 7.11. If f : [N1] → C and g : [N2] → C, then f ∗ M g : [N ] → C, where 
N = N1N2, and   1/2 N1 N2(πq(f ∗ M g)) 

∗ 
hL 
2 
∞  + M + M fL2 gL2 . 

M M 
p∈PM 

Proof. We apply the proposition, Cauchy-Schwarz, and then the large sieve:   
(πp(f ∗ M g)) 

∗ 
h2 

L∞ ≤ (πpf)hL2 (πpg)hL2 

p∈PM p∈PM   
1/2   

1/2 

≤ (πpf)hL 
2 
2 (πpg)h2 

L2 

p∈PM p∈PM   1/2
N1 N2 + M + M fL2 gL2 . 
M M 

 
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For the main theorem, we have |f(n)|, |g(n)|  1, so f2  N1 and g2  N2,L2 L2 

so    √ 
(πq(f ∗ M g))h 

∗ L 
2 
∞  

N 
+ N1N + N2N + M N. 

M 
p∈PM 

This will be good if M ≤ N1/2− and N1, N2  N . We cannot have N1 or N2 close 
to N , because in that case the other factor will be close to 1 and the multiplicative 
convolution will not result in a more evenly spread function. And the first condition 
must be true for the projection theory methods to be able to say anything. 
Finally, we give a rough outline the proof of the Bombieri-Vinogradov theorem for 

q prime. 
I am actually not sure whether the full BV theorem can be proven following this 

outline. The proof in books is based on a different way of finding multiplicative 
convolution structure in the primes, which is called Vaughn’s identity. Vaughn’s 
identity is more efficient and leads to fewer terms, but I found it a little harder to 
motivate. 
Let S = P<N1/2 . If N1/2 < n < N , RPS (n) = P (n). Also 

RPS (N) = [1 ∗ M Dp1 ] ∗ M [. . . ∗ M DpR ] 

= f ∗ M g     
= f1I1 ∗ M g1I2 

I1 I2 
= f1I1 ∗ M g1I2 . 

I1,I2 

Here I1 and I2 are intervals that are narrower than dyadic intervals. Let N1 = min I1 

and N2 = min I2. For n ≤ N ,  
RPS (n) = f1I1 ∗ M g1I2 . 

I1,I2,N1·N2≤N 

We can then apply the theorem above for each pair of intervals. This works when 1  
N1, N2  N . Otherwise, we must group the convolutions for RPS (N) differently. It 
is a possible course project to think this through carefully and see what bounds it 
gives. 
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