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7. APPLICATIONS OF THE LARGE SIEVE TO NUMBER THEORY

Linnik initially used the large sieve to study the distribution of quadratic residues.
We will see that work on Problem set 4.

Perhaps the most important application of the large sieve in number theory con-
cerns the distribution of primes mod gq.

7.1. Distribution of primes mod ¢. Let 7(N) denote the number of primes less
than or equal to N. Let m(NN, ¢,a) be the number of primes p satisfying p < N and
p=a mod g. We want to focus on a € Z, since if a and ¢ are not relatively prime,

m(N,q,a) is at most one. So let ¢(q) = |Z;|. If the primes were evenly distributed
T(N)

mod ¢, then 7(V, q,a) would be close to )

. To quantify how badly this fails, we
introduce the function

Ay(N) = max (N, q,a) — 72(];7))

Here are some results on A,(N):

Theorem 7.1 (Dirichlet). For all g,
A
AN
N—o00 N/q
Theorem 7.2 (Siegel-Walfisz). For any A, there is some c4 such that
A (N) < caN(log N)™.

This is the best result that applies to all g. If one assumes the generalized Riemann
hypothesis, then it is true that

A, (N) < (C.N)NV?

for any € > 0. Montgomery conjectured that for any € > 0, there is a constant C,
1/2

such that A, (N) < (C.N°) <%> :

Instead of trying to understand what happens for all ¢, we will be concerned with
the typical behavior of A, (N). The theorem we will discuss is

Theorem 7.3 (Renyi, Bombiere—Vinogradov). For all € > 0 and all A,
D AN) < Ce, A)N(log N) .
qSNl/Q—e

This says that for most ¢ < NY/27¢ A (N) < %(log N < %. So the primes
are close to equidistributed mod ¢ for most ¢ up to N%/?~¢,
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We will not give the complete proof, which is somewhat messy, but we will discuss
most of the main ideas. In particular, we will explain how the large sieve and
projection theory enter the story.

7.2. Multiplicative Convolution and Primes. To prove this, we will use the
multiplicative convolution, which interacts nicely with prime numbers and pro-
jections.

Definition 7.4. If f,g : N — C, then their multiplicative convolution is the
function

[ g(n) = Z f(n1)g(na).

ni,nz,nin2=n

This is related to the prime numbers through the sieve. Sieving is the process of
obtaining prime numbers by crossing off all the multiples of 2, then all the multiples
of 3, and so on, until only the primes are left. If you try to write this down with a
formula, the multiplicative convolution will appear. Let 1 = 1y and define

1 n=1,
Dp(”): —1 n=p,
0 n#1,p.

Then we can calculate
In*p Do = 1y — 1oy = Loga.

Similarly, 1y *ps Do %5 D3 is the indicator function for n relatively prime to 2 and 3.
For a set of primes S, define

wr={ TIES
Note that if S = Pyi/2 and NY/2 < n < N, then RPs(n) = P(n).
Lemma 7.5. If S = {p1,...,p,}, then

RPs(n) = 1%y Dy, *pr ... %01 Dy

7.3. Multiplicative Convolution and Projections. Now we will examine the
relationship between multiplicative convolution and projection. Multiplicative con-
volution interacts nicely with the projection Z — Z, because this projection is a ring
homomorphism.

Lemma 7.6 (Lemma 1). If f,g: N — C, then 7 (f *a g) = 7o f *am m49.
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To be extra careful, we should say what we mean by multiplicative convolution in
Lg:

FuyGla)= Y Fla)G(a)

a1,a2€%q,a102=a

for functions F, G : Z, — C.
Proof. Write
f = Zén1f<n1)7 g = Zénzg(nz)

Then
f *Mg = Z 5n1n2f(n1)g(n2)'

ni,n2
1 n=

m . Then

Here 4, is the delta function §,,(m) =
0 else

qu(a) = Z 5n1 mod q(a)f<n1)a

7qu *M qu(a) = Z Onina mod qf(nl)g(HQ)

ni,n2

= 7q(f a1 9)(a).
U

For our final result, we want L bounds, but our theory is geared toward L?
bounds. Here’s how we can get L* bounds:

Lemma 7.7 (Lemma 2). If f,g: N — C, then
1f #2019l oe(zg) < I f 1l e2llgllze-

Proof. Yor a € Z;, f*pg(a) = Ebezg f()g(ab™) < || fllz2]lgllz2 by Cauchy-Schwarz.
OJ
There is also the minor technical annoyance of switching between Z, and Zj. If
[ Zy— C,let f*: Z; — C be the restriction. Then we can write f = fo + fu
and f* = f§ + fy, where the starred functions are defined on Z; and the unstarred
functions are defined on Z,, the subscript zero indicates a constant function, and the
subscript A indicates an average zero function.
Lemma 7.8 (Lemma 3).
1 fallzz@z) < Il fallz2czy)-

Finally, taking the high frequency part commutes with multiplicative convolution:



PROJECTION THEORY NOTES 49
Lemma 7.9 (Lemma 4). If f*,g* : Z} — C, then
(f* *r 9*)h = f;: *M QZ'
If we combine all of these, we get the following proposition:

Proposition 7.10.
(7 (f a1 9Dl < ([ f)nllz2 || (7qg)nll 22

Proof. By Lemma 1 then Lemma 4,
(g (f *ar 9))1, = (g f *a1 mqg))y, = (Tgf )} *m1 (T49)3-

Then using Lemma 2 and Lemma 3, we get

(g (f a0 @)L < (7o )Rl [ (mag)h 2
< (g fnll 21 (meg)nll 22
[l

7.4. Large Sieve and Multiplicative Convolution. Our goal is to prove that
P(n) is evenly distributed mod ¢ for most ¢ of a given size. We will focus on the case
that ¢ is prime, which avoids technical issues but still shows the main proof ideas.
We have seen that for a large range of n, P(n) is equal to RPg(n), where S =
Py1s2. The key property of RPg(n) is that it is a multiplicative convolution. Our
next theorem shows that most projections of a multiplicative convolution are nearly
constant — it is the main analytic ingredient in the proof of Bombieri-Vinogradov.

Theorem 7.11. If f : [N1] — C and g : [No] — C, then f xp g : [N] — C, where
N = N1Ny, and

5 twts o il 5 ( (w00 (2 0) ) i1t

pEPM

Proof. We apply the proposition, Cauchy-Schwarz, and then the large sieve:

D M (f +ar g)illEe < D N fnllez Nl (mp9)nll e

PpEP); pPEPNM
1/2 1/2
< (Z ||(7Tpf)h||%2> (Z ||(7Tpg)h||%2)
PEPNM pEPyr

N, N, 1/2
() (5 +01)) Wlaslolie



50 PROJECTION THEORY NOTES

For the main theorem, we have |f(n)|,|g(n)| < 1, s0 || f]|3. £ N and ||g|3.  No,
S0

S Wro #as 9illie £ 37 + VRN + VNN + MV,

pEPN
This will be good if M < N'/2=¢ and N;, Ny < N. We cannot have N; or N, close
to IV, because in that case the other factor will be close to 1 and the multiplicative
convolution will not result in a more evenly spread function. And the first condition
must be true for the projection theory methods to be able to say anything.

Finally, we give a rough outline the proof of the Bombieri-Vinogradov theorem for
q prime.

[ am actually not sure whether the full BV theorem can be proven following this
outline. The proof in books is based on a different way of finding multiplicative
convolution structure in the primes, which is called Vaughn’s identity. Vaughn’s
identity is more efficient and leads to fewer terms, but I found it a little harder to

motivate.
Let S = P_yi2. If NY2 <n < N, RPs(n) = P(n). Also

RPs(N) = [1xp Dy ] *ar [ - %01 Dy

=f*uyg
I]_ 12
= > fly % gl
1,12

Here I, and I, are intervals that are narrower than dyadic intervals. Let N; = min I3
and Ny = min I,. Forn < N,

RPs(n)= > fly % gl
I1,I2,N1-N2<N

We can then apply the theorem above for each pair of intervals. This works when 1 <
Ny, Ny < N. Otherwise, we must group the convolutions for RPs(N) differently. It
is a possible course project to think this through carefully and see what bounds it
gives.



MIT OpenCourseWare
https://ocw.mit.edu

18.156 Projection Theory
Spring 2025

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.



https://ocw.mit.edu/terms
https://ocw.mit.edu

	Blank Page



