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8. THE SZEMEREDI-TROTTER THEOREM

Tues March 4

The Szemeredi-Trotter theorem gives the sharp answer to a natural discrete pro-
jection problem in the plane. It was proven in the early 1980s. The proof of the
theorem is based on topology, and it is completely different from the proofs we have
explored earlier. Tom Wolff noticed the connection between the Szemeredi-Trotter

theorem and problems in geometric measure theory like the exceptional set problem
and the Furstenberg set problem.

8.1. The Szemeredi-Trotter projection theorem.

Theorem 8.1. Let X be a set of points in R? and D a set of directions in S*. Then
we define

(20) S(X, D) = max |my(X)|
Then
SQ
21) DI<—+1
( D)< %

Now for the general theorem, let X be a set of points in R? and L a set of lines in
R2. Then we define

I(X,L) =#{re X,le Lz el}
Note that

I(X,L) =) [nX|
(L
Then the SzemerdiTrotter (ST) theorem states that

Theorem 8.2.
(22) I(X,L) < |X|+|L| + | X]P?|L]*?

Example 8.3 (Example 1 for ST Theorem). The ST theorem is sharp with the | X|
bound when the number of lines is small and each point lies on a single line.

Example 8.4 (Example 2 for ST Theorem). The ST theorem is sharp with the |L|
bound when the number of lines is large and each line lies on a single point.
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F1GURE 10. Example of setup where |X| term dominates and I ~ | X|

FIGURE 11. Example of setup where |L| term dominates and I ~ |L].

Example 8.5 (Example 3 for ST Theorem). We let X be an N x N grid, and define
Qu = {3 1 a,b € [M]}. Define L to be the set of lines with slopes in Qn; that pass
through points in X. Then |Qus| ~ M? (the double counting when ged(a,b) > 1 only
affects the magnitude of |Qnr| up to a constant factor). Every point in X has a line
passing through it for each slope in Qn;. Then

(23) I(X, L) = |X||Qu| ~ N*M*

We now define projection operators for each s € Qu as

(24) Ts(T1, ) = xo = —ST1

The fibers of ms are lines of slope s, and the number of lines in L with direction s
is |ms(X)|. We now prove the following lemma:

Lemma 8.6. For all s € Qyy, |7s(X)| S MN
Proof. Take xy, 25 € [N] and s = ¢. Then

o5 (@ ) = g — Ly = 2T 0T
’ b b

Since a,b < M and 1,29 < N, |bxy — ax1| < MN. Since brs — ar; must be an
integer, there are at most M N distinct values in m4(X). O



PROJECTION THEORY NOTES 53

Then since L has at most NM lines for every element of Qpr. |L < |Qu|NM ~
M3N. Then

(26) I(X,L) ~ N*M* Z (M®N - N*)*3 > | X [*/3|L]*/*

Therefore the grid is a sharp example of the SzemerdiTrotter theorem where the
| X|?/3|L|*/® term dominates. Note that the SzemerdiTrotter theorem implies the ST
projection theorem, which is a special case when L is the set of lines with directions
i D passing through points in X.

8.2. Question: Are there other sharp examples for the SzemerdiTrotter
theorem? Another example is grids over number fields. Let R be a number field,
(for example Z[v/2]). Then define

Ry = {ay + asV2 : ay, a3 € Z, |ay|, |as| < N}

QRM:{%:a,beRM}

Then define X := Ry X Ry and L as the set of lines with slopes in QR,; that
pass through a point in X. This is similar to the grid example.

8.3. Proof of the Szemeredi-Trotter theorem. We begin the proof of the Szemeredi-
Trotter theorem with a lemma.

Lemma 8.7.
I(X,L) < |X||L|"? + |L]

Proof. We start with expanding (X, L) and applying Cauchy Schwartz to get

1/2
I(X,L)=) [tnX|< (yLy > en X|2>

Lel el
This is advantageous because [ N X|* < (W;XD + 1. Then

0n X
Sienxp i+ 3 (1)

el el
Since for every pair of points x1,xs € X, there is at most one line ¢ that contains
21 and x,, every pair of points in X can be counted at most once. Then

5 (00 < (W) <

lel
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This gives the final conclusion

1/2
I(X, L) S (ILIX P+ [LD) ™ < XLV + |1
0

Note that this proof uses only the very general fact that any two points define a
line. Therefore it holds over spaces such as finite fields. However, the SzemerdiTrotter
theorem does not hold over finite fields. To see this take X =2 (as the whole space)
and L as all lines in F,. Then for every ¢, [{ N X| = ¢, so I(X,L) = ¢°. However,
| X|?3|L1>? = ¢*3 < I(X,L). Therefore, the SzemerdiTrotter theorem requires
properties of the topology of R? to work. In particular, it uses a cell decomposition
lemma, which allows cutting the plane into pieces.

Lemma 8.8 (Cell decomposition lemma). Let X be a set of points in R* and pick
an integer s > 1. Then the plane can be disjointly partitioned into a set of open sets
O; and a closed set W such that

R* =W Ul O
and additionally,
NW|<s
and for every i,
X
x|no s 2
s

This lemma essentially states that the plane can be split into cells that each contain
only a small subset of X, and that the walls don’t intersect any line too many times.
As an example of this theorem, let X be a ”roughly” square grid. That is C [N]?
and fir every ball Bi(c) of radius 1 (where ¢ is an arbitrary point in the plane),
|X N Bi(c)| < 1. The below example shows the grid for s = 2.

Each line can only intersect 2s lines in W, so [ N W| < 2s. Since X is roughly
grid shaped, and each cell is a square of side length N/s, | X N O;| < |X|/s? which
satisfies the requirements.

We now proceed to the proof of the SzemerdiTrotter theorem. It hinges on the
fact that lemma 8.7 is sharp when the number of lines is either small (bounded by
a constant) or much larger than the number of points (|L| > |X|?). We can use this
by using the cell decomposition lemma to pick cells where one of these conditions

holds.
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F1GURE 12. The points show the points in X. The dashed lines indi-
cate the "rough grid” shape of X. The solid lines show W, which is

the set dividing X

55

Proof. Given X and L, and arbitrary s. Then using the cell decomposition lemma,
define X; = X N O;. Then |X;| <|X|/s* and

Define

Z|Xi|§|X|

Li={leL:tn0O,#0}

From the cell decomposition lemma

Z|Lz| < s|Lj|

Then as every intersection of a point and a line is either on a cell boundary or

within a cell. Then

I(X,L) <) I(X;, L) + I(X "W, L)

Applying lemma 8.7 to the first term, and the |[¢ N W| < s bound to the second

term,
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I(X,L) S Z(!XiHLi\l/Q + |Li|) + s|L]|
1/2
< (z PSS m) 2

|X| 1/2
S (Z ?|Xi|> (s|L])"/* + 2s|L]

STV IXIL? + sl

We then choose s to minimize this quantity. This is effectively choosing s so that
both terms are equal. Then

s~V X|| L]V =s|L|
X2 2 =
s :’X‘Z/:}’Lyfl/:ﬁ
Plugging s back into the inequality gives

I(X,L) S |XPPPILP?
which gives the desired bound. U

Note that in the above argument s must be an integer, so this can only be done
when | X|?> > |L|. When |X|* < |L| then setting s = 1 gives the the bound (X, L) <
|L|. Additionally, s? can be at most |X|. Then when | X| < |X|[*3|L|7%3,|X]| > |L|?,
so setting s = | X|'/2 gives the bound I(X, L) < |X]|

We now prove the cell decomposition lemma. However, several prelimary theorems
must be shown first.

Theorem 8.9 (Borsuk Ulam Theorem). Let f : S™ — R" be a continuous function
that is antipodal, ie for every 0 € S™, f(0) = —f(—0). Then 0 is in the image of f.

Corollary 8.10 (Ham Sandwich Theorem). Let Oy, Os, ..., O, C R™ be bounded open
subsets. Then there exists a hyperplane H that bisects every O;.

Proof. An upper half (hyper)plane can be described as the set {x : a-x > b}, for
some vector a and b a real number. As scaling a and b by a positive real number
preserves this hyperplane, the tuple (a,b), can be identified with an element of S™.
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Then for an element 6 € S, corresponding to (a,b), we let ¢y be the affine operator
defined by cy(x) = a - x + b. We then define the vector valued function f by

fi(0) = Vol(O; N{z : ¢y(x) > 0}) — Vol(O; N {x : cp(z) < 0})
f is antipodal, so it has a zero. This zero corresponds to each set being bisected,
which proves the theorem O

The Ham Sandwich theorem works when there are up to n subsets of R™. This is
roughly because n degrees of freedom are needed to bisect the n sets. We can then
use polynomials to increase the number of degrees of freedom, and so the number of
sets that can be bisected.

Theorem 8.11 (Polynomial Ham Sandwich Theorem). We use the same setup as
the ham sandwich theorem, except that there can be up to N sets O;. Then there
exists a polynomial zero set that bisects every O;

Proof. First define the space

Poly(R") = {p € Rlz1,...,z,] : degp < D}

Poly,(R™) is then a vector space of degree D™. We claim that if N < D", then
there is a nonzero element of Poly,(R™) that satisfies the claim. We define the vector
valued function f by

filp) = Vol(O; N {z : p(x) > 0}) — Vol(O; N {z : p(x) < 0})
Since scaling each nonzero p by a positive real does not change f, f is a function

from SP" -1 to R™. Additionally, f is antipodal. Then by the Borsuk Ulam theorem
the conclusion follows. U

The Ham Sandwich theorems allow open subsets of Euclidean space to be subdi-
vided, but the cell decomposition lemma requires dividing sets of points. This is a
technical detail that follows from the Polynomial Ham Sandwich Theorem.

Lemma 8.12 (Ham Sandwich theorem for finite sets). Let sy, Sg, ..., sy be a set of
finite sets in R™. Then there exists a polynomial level set such that for every s;,

[sil
2
|8i|
2

As individual points cannot be bisected, this lemma instead guarantees that excess
points will lie on the level set.

lsi N {z:p(x) >0} <

5,1 {a < pla) < 0}] <
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Proof. Take some € > 0 and for each i define N,(s;) to be the set of balls of radius
e centered at the points on s;. Then by the Polynomial Ham Sandwich theorem the
N,(s;) can all bisected by the zero set of a polynomial of degree D™ > n. Then
taking € to 0 we get a sequence of polynomials p. that each bisect the N.(s;). Since
the sphere S™ is compact, there must a convergent subsequence to some polynomial
p. To show that this polynomial p satisfies the conclusion, for contradiction assume
that there exists ¢ such that

1
|si N {x: p(x) >0} > §|sl\

Since every point in s; N {x : p(z) > 0} is some nonzero distance from the set
{z : p(x) = 0}, there is some € > 0 such that modifying p by € and enlarging s; by €
gives

INe(s) 0 {2 pula) > 0} > 5IN.(s)] =

a contradiction. Note that this step requires the boundedness of s; to take a
perturbation of p continuous. [l

We will now prove the cell decomposition lemma.
Proof. We begin with step £k = 1. Then define p; to be the degree 1 polynomial that
splits X into two parts. Then X;; := {z € X : pi(z) > 0} and X5 :={z € X :
pi(z) < 0}

Then at stek k + 1, define pj;, to be the polynomial of degree D), with D? ~ 2 such
that py bisects all Xj 1, ..., Xj 0. Then Dy ~ 28/2.

Then pick kfinq such that 2ksmat ~, 2. Then let O; be the sets defined by {z :
+pi(z) > 0}N...0{x : £pg,,,,., (¥) > 0} for all choices of +. Define W = {z : pi(z) =

0} U...U{ : pry,0 () = 0}
X has been bisected ki, times, so then

|kainul77:| 5 |‘)(|/S2
A line can intersect a polynomial of degree D at most D times, so then

AW | <1+2+4+ ..+ 2krmal2 g
Then each line can intersect W at most ~ s times. ]
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