
    

    

   
           
                

               
          
            

     

     

                     
  

     
 

 

 

   
 

 
 

                     
     

            

  

   
 

 

   

       

  

         

               
                

               
                

51 PROJECTION THEORY NOTES 

8. The Szemeredi-Trotter theorem 

Tues March 4 
The Szemeredi-Trotter theorem gives the sharp answer to a natural discrete pro-

jection problem in the plane. It was proven in the early 1980s. The proof of the 
theorem is based on topology, and it is completely different from the proofs we have 
explored earlier. Tom Wolff noticed the connection between the Szemeredi-Trotter 
theorem and problems in geometric measure theory like the exceptional set problem 
and the Furstenberg set problem. 

8.1. The Szemeredi-Trotter projection theorem. 

Theorem 8.1. Let X be a set of points in R2 and D a set of directions in S1 . Then 
we define 

(20) S(X, D) = max |πθ(X)|
θ∈D 

Then 

S2 

(21) |D| ≤ + 1 
|X| 

Now for the general theorem, let X be a set of points in R2 and L a set of lines in 
R2 . Then we define 

I(X, L) := #{x ∈ X,  ∈ L, x ∈ } 
Note that  

I(X, L) = | ∩ X|
∈L 

Then the SzemerdiTrotter (ST) theorem states that 

Theorem 8.2. 

(22) I(X, L) ≤ |X| + |L| + |X|2/3|L|2/3 

Example 8.3 (Example 1 for ST Theorem). The ST theorem is sharp with the |X|
bound when the number of lines is small and each point lies on a single line. 

Example 8.4 (Example 2 for ST Theorem). The ST theorem is sharp with the |L|
bound when the number of lines is large and each line lies on a single point. 



    

             

             

                 
                      

                  
                  
          

           

           

       

                   
        

           

            

      
 
      

 

                      
           

52 PROJECTION THEORY NOTES 

Figure 10. Example of setup where |X| term dominates and I ∼ |X| 

Figure 11. Example of setup where |L| term dominates and I ∼ |L|. 

Example 8.5 (Example 3 for ST Theorem). We let X be an N × N grid, and define 
QM := {a

b : a, b ∈ [M ]}. Define L to be the set of lines with slopes in QM that pass 
through points in X. Then |QM | ∼ M2 (the double counting when gcd(a, b) > 1 only 
affects the magnitude of |QM | up to a constant factor). Every point in X has a line 
passing through it for each slope in QM . Then 

(23) I(X, L) = |X||QM | ∼ N2M2 

We now define projection operators for each s ∈ QM as 

(24) πs(x1, x2) = x2 = −sx1 

The fibers of πs are lines of slope s, and the number of lines in L with direction s 
is |πs(X)|. We now prove the following lemma: 

Lemma 8.6. For all s ∈ QM , |πs(X)|  MN 

Proof. Take x1, x2 ∈ [N ] and s = a
b . Then 

a bx2 − ax1
(25) πs(x1, x2) = x2 − x2 = 

b b 

Since a, b ≤ M and x1, x2 ≤ N , |bx2 − ax1|  MN . Since bx2 − ax1 must be an 
integer, there are at most MN distinct values in πs(X).  
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Then since L has at most NM lines for every element of QM . |L  |QM |NM ∼ 
M3N . Then 

(26) I(X, L) ∼ N2M2  (M3N · N2)2/3  |X|2/3|L|2/3 

Therefore the grid is a sharp example of the SzemerdiTrotter theorem where the 
|X|2/3|L|2/3 term dominates. Note that the SzemerdiTrotter theorem implies the ST 
projection theorem, which is a special case when L is the set of lines with directions 
in D passing through points in X. 

8.2. Question: Are there other sharp examples for the SzemerdiTrotter 
theorem? Another example is grids over number fields. Let R be a number field,√ 
(for example Z[ 2]). Then define 

√ 
RN = {a1 + a2 2 : a1, a2 ∈ Z, |a1|, |a2| ≤ N} 

a 
QRM = { : a, b ∈ RM }

b 
Then define X := RN × RN and L as the set of lines with slopes in QRM that 

pass through a point in X. This is similar to the grid example. 

8.3. Proof of the Szemeredi-Trotter theorem. We begin the proof of the Szemeredi-
Trotter theorem with a lemma. 

Lemma 8.7. 
I(X, L) ≤ |X||L|1/2 + |L| 

Proof. We start with expanding I(X, L) and applying Cauchy Schwartz to get   1/2 

I(X, L) = | ∩ X| ≤ |L| | ∩ X|2 

∈l ∈L |∩X|This is advantageous because | ∩ X|2  + 1. Then
2    | ∩ X|| ∩ X|2  |L| + 

2 
∈L ∈L 

Since for every pair of points x1, x2 ∈ X, there is at most one line  that contains 
x1 and x2, every pair of points in X can be counted at most once. Then     | ∩ X| |X|≤  |X|2 

2 2 
∈L 
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This gives the final conclusion  1/2 
I(X, L)  |L|(|X|2 + |L|) ≤ |X||L|1/2 + |L| 

 

Note that this proof uses only the very general fact that any two points define a 
line. Therefore it holds over spaces such as finite fields. However, the SzemerdiTrotter 
theorem does not hold over finite fields. To see this take X = F2 

q (as the whole space) 
and L as all lines in F2 

q . Then for every , | ∩ X| = q, so I(X, L) = q3 . However, 
|X|2/3|L|2/3 8/3= q ≤ I(X, L). Therefore, the SzemerdiTrotter theorem requires 
properties of the topology of R2 to work. In particular, it uses a cell decomposition 
lemma, which allows cutting the plane into pieces. 

Lemma 8.8 (Cell decomposition lemma). Let X be a set of points in R2 and pick 
an integer s ≥ 1. Then the plane can be disjointly partitioned into a set of open sets 
Oi and a closed set W such that  

R2 = W ∪ Oi 

i 

and additionally, 

| ∩ W | ≤ s 

and for every i, 

|X||X| ∩ Oi|  
s2 

This lemma essentially states that the plane can be split into cells that each contain 
only a small subset of X, and that the walls don’t intersect any line too many times. 
As an example of this theorem, let X be a ”roughly” square grid. That is ⊂ [N ]2 

and fir every ball B1(c) of radius 1 (where c is an arbitrary point in the plane), 
|X ∩ B1(c)|  1. The below example shows the grid for s = 2. 
Each line can only intersect 2s lines in W , so | ∩ W | ≤ 2s. Since X is roughly 

grid shaped, and each cell is a square of side length N/s, |X ∩ Oi|  |X|/s2 , which 
satisfies the requirements. 
We now proceed to the proof of the SzemerdiTrotter theorem. It hinges on the 

fact that lemma 8.7 is sharp when the number of lines is either small (bounded by 
a constant) or much larger than the number of points (|L| > |X|2). We can use this 
by using the cell decomposition lemma to pick cells where one of these conditions 
holds. 
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Figure 12. The points show the points in X. The dashed lines indi-
cate the ”rough grid” shape of X. The solid lines show W , which is 
the set dividing X 

Proof. Given X and L, and arbitrary s. Then using the cell decomposition lemma, 
define Xi = X ∩ Oi. Then |Xi| ≤ |X|/s2 and 

 
|Xi| ≤ |X|

i 

Define 

Li = { ∈ L :  ∩ Oi = ∅} 

From the cell decomposition lemma 

 
|Li| ≤ s|L|

i 

Then as every intersection of a point and a line is either on a cell boundary or 
within a cell. Then 

 
I(X, L) ≤ I(Xi, Li) + I(X ∩ W, L) 

i 

Applying lemma 8.7 to the first term, and the | ∩ W |  s bound to the second 
term, 



    

   
 

 

     

 

 
 

 

 
 

 

 

  

  

 

 
 

 

 
 

 

  

   

   

               
     

  
   

  

       

    

      

                 
                    

                  
            

           
    

               
                     

               
           

                   
                  

                

56 PROJECTION THEORY NOTES 

 
I(X, L)  (|Xi||Li|1/2 + |Li|) + s|L| 

i   1/2 

 |Xi|2 |Li| + 2s|L| 

 
i i 1/2 |X|

 |Xi| (s|L|)1/2 + 2s|L|
2s 

i 

s −1/2|X||L|1/2 + s|L| 

We then choose s to minimize this quantity. This is effectively choosing s so that 
both terms are equal. Then 

s −1/2|X||L|1/2 =s|L| 
|X||L|−1/2 =s 3/2 

s =|X|2/3|L|−1/3 

Plugging s back into the inequality gives 

I(X, L)  |X|2/3|L|2/3 

which gives the desired bound.  

Note that in the above argument s must be an integer, so this can only be done 
when |X|2 > |L|. When |X|2 < |L| then setting s = 1 gives the the bound I(X, L)  
|L|. Additionally, s2 can be at most |X|. Then when |X| < |X|4/3|L|−2/3 , |X| > |L|2 , 
so setting s = |X|1/2 gives the bound I(X, L)  |X|
We now prove the cell decomposition lemma. However, several prelimary theorems 

must be shown first. 

Theorem 8.9 (Borsuk Ulam Theorem). Let f : Sn → Rn be a continuous function 
that is antipodal, ie for every θ ∈ Sn , f(θ) = −f(−θ). Then 0 is in the image of f . 

Corollary 8.10 (Ham Sandwich Theorem). Let O1, O2, ..., On ⊂ Rn be bounded open 
subsets. Then there exists a hyperplane H that bisects every Oi. 

Proof. An upper half (hyper)plane can be described as the set {x : a · x > b}, for 
some vector a and b a real number. As scaling a and b by a positive real number 
preserves this hyperplane, the tuple (a, b), can be identified with an element of Sn . 



    

                  
                  

                 

                
     

                 
                

               
     

            
                

         

     

            

                   
               

    

                 

                 
 

               
    

            
              

          

                 
                 

        
 

 

        
 

 

            
       

57 PROJECTION THEORY NOTES 

Then for an element θ ∈ Sn corresponding to (a, b), we let cθ be the affine operator 
defined by cθ(x) = a · x + b. We then define the vector valued function f by 

fi(θ) = Vol(Oi ∩ {x : cθ(x) > 0}) − Vol(Oi ∩ {x : cθ(x) < 0}) 
f is antipodal, so it has a zero. This zero corresponds to each set being bisected, 

which proves the theorem  

The Ham Sandwich theorem works when there are up to n subsets of Rn . This is 
roughly because n degrees of freedom are needed to bisect the n sets. We can then 
use polynomials to increase the number of degrees of freedom, and so the number of 
sets that can be bisected. 

Theorem 8.11 (Polynomial Ham Sandwich Theorem). We use the same setup as 
the ham sandwich theorem, except that there can be up to N sets Oi. Then there 
exists a polynomial zero set that bisects every Oi 

Proof. First define the space 

PolyD(Rn) = {p ∈ R[x1, ..., xn] : deg p ≤ D}
PolyD(Rn) is then a vector space of degree Dn . We claim that if N < Dn , then 

there is a nonzero element of PolyD(Rn) that satisfies the claim. We define the vector 
valued function f by 

fi(p) = Vol(Oi ∩ {x : p(x) > 0}) − Vol(Oi ∩ {x : p(x) < 0}) 
Since scaling each nonzero p by a positive real does not change f , f is a function 

from SDN −1 to Rn . Additionally, f is antipodal. Then by the Borsuk Ulam theorem 
the conclusion follows.  

The Ham Sandwich theorems allow open subsets of Euclidean space to be subdi-
vided, but the cell decomposition lemma requires dividing sets of points. This is a 
technical detail that follows from the Polynomial Ham Sandwich Theorem. 

Lemma 8.12 (Ham Sandwich theorem for finite sets). Let s1, s2, ..., sN be a set of 
finite sets in Rn . Then there exists a polynomial level set such that for every si, 

|si||si ∩ {x : p(x) > 0}| ≤ 
2 
|si||si ∩ {x : p(x) < 0}| ≤ 
2 

As individual points cannot be bisected, this lemma instead guarantees that excess 
points will lie on the level set. 
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Proof. Take some  > 0 and for each i define N(si) to be the set of balls of radius 
 centered at the points on si. Then by the Polynomial Ham Sandwich theorem the 
N(si) can all bisected by the zero set of a polynomial of degree Dn > n. Then 
taking  to 0 we get a sequence of polynomials p that each bisect the N(si). Since 
the sphere Sn is compact, there must a convergent subsequence to some polynomial 
p. To show that this polynomial p satisfies the conclusion, for contradiction assume 
that there exists i such that 

1 |si ∩ {x : p(x) > 0}| > |si|
2 

Since every point in si ∩ {x : p(x) > 0} is some nonzero distance from the set 
{x : p(x) = 0}, there is some  > 0 such that modifying p by  and enlarging si by  
gives 

1 |N(si) ∩ {x : p(x) > 0}| > |N(si)| = 
2 

a contradiction. Note that this step requires the boundedness of si to take a 
perturbation of p continuous.  

We will now prove the cell decomposition lemma. 

Proof. We begin with step k = 1. Then define p1 to be the degree 1 polynomial that 
splits X into two parts. Then X1,1 := {x ∈ X : p1(x) > 0} and X1,2 := {x ∈ X : 
p1(x) < 0}
Then at stek k + 1, define pk to be the polynomial of degree Dk with D2 ∼ 2k such 

that pk bisects all Xk,1, ..., Xk,2k . Then Dk ∼ 2k/2 . 
such that 2kf inal 2Then pick kfinal ∼ s . Then let Oi be the sets defined by {x : 

±p1(x) > 0}∩ ...∩{x : ±pkf inal (x) > 0} for all choices of ±. Define W = {x : p1(x) = 
0} ∪ ... ∪ {x : pkfinal (x) = 0}
X has been bisected kfinal times, so then 

|Xkf inal,i|  |X|/s2 

A line can intersect a polynomial of degree D at most D times, so then 

| ∩ W | ≤ 1 + 2 + 4 + ... + 2kf inal/2 ∼ s 
Then each line can intersect W at most ∼ s times.  
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