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9. REFLECTIONS ON THE SZEMEREDI-TROTTER THEOREM

Thur March 6

There is an important analogy between the Szemeredi-Trotter theorem and the
exceptional set problem in projection theory. The Szemeredi-Trotter theorem can be
viewed as the sharp projection theorem for finite sets of points in R%. The exceptional
set problem concerns the projection theory of a finite set of balls in R? subject to
a natural spacing condition. The sharp answers to both problems are essentially
the same — based on integer grids. This analogy was noticed by Tom Wolff in the
late 1990s. He adapted proof methods from combinatorial geometry to problems
in geometric measure theory and harmonic analysis, with striking results. He tried
hard to adapt the proof of Szemeredi-Trotter to the exceptional set problem and the
Furstenberg set conjecture, but he was not able to prove sharp results.

The proof of Szemeredi-Trotter using topological methods is elegant and impor-
tant, but there are several important questions that it does not address. In this class
we will discuss them.

First let’s recall the statement of Szemerédi-Trotter theorem. Let X be a set of
points, L be a set of lines (both in R?), we use I(X, L) to denote the set of incidences
between them:

I(X,L)={(p,l) e X xL:peL}.
Szemerédi-Trotter claims that
[1(X, D) S 1X]+ L]+ [X 2L,

All the current proofs of this theorem, like the cell decomposition method we
discussed in the previous lectures, used the topology of Euclidean plane. This is not
surprising, as the conclusion of this theorem is indeed related to the structure of the
base field. If we replace R? by ]FIQ), Szemerédi-Trotter bound will fail as one can see
by taking L to be all the lines in F?.

On the other hand, the current methods provide little information on some closely
related problems, such as:

1. Projection theory over finite fields.

2. Structure of sharp examples for Szemerédi-Trotter.

3. Projection theory of unit balls, instead of points, in R? with spacing conditions
(lots of attempts by Wolff).

Structure of Sharp Examples. Let’s stare at the Szemerédi-Trotter bound:
[1(X, D) SIXT+ L]+ [XPPLP2.

There are three terms on the RHS. The first two terms are given by double counting
which generalizes to other fields. They dominate when there are too many points or
lines, in which case the structure of the sharp examples example is not very rigid,
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giving us many degrees of freedom. To be more specific, when the first dominates we
have | X| > |L|?, which means that the number of points has already exceeded the
total number of intersections among the lines. In this case, the upper bound is tight
if each point has a line passing through it. The typical sharp example looks like some
chains of beads. Similarly, when the second term dominates the sharp examples look
like a bunch of stars, where each line doesn’t have much chance to pass through too
many points.

The case where the third term dominates is the most interesting one. The known
sharp examples are integer grids and their variation R-grids, where R is the integer
rings of number fields. We expect that the sharp examples in this case are highly
structured. To see what information about the sharp examples the proof of Sze-
merédi-Trotter theorem tells us, let’s briefly review the cell decomposition proof:
Divide R? into s* cells. In each cell there are | X|/s? points and (in average) |L|/s
lines. By choosing s to be large enough we will have |L|/s = (]X|/s?)? and then
apply the double counting bound. The proof doesn’t tell us much information on the
structure of the sharp example unless we can figure out the way our cells interact.
Unfortunately the proof of cell decomposition is not very constructive and based on
existence theorems from topology.

Remark 9.1. In the projective plane PR? there is something called point-line duality.
It preserves the incidence relationship between points and lines. In fact, the statement
that a point with coordinates [ag, ay, as] lies on a line with coefficients [bg, by, bs] simply
means agby + a1by + asby = 0, where the roles of a; and b; are interchangeable. The
chain example and the star examples are mapped to each other via the point-line
duality, while the grid ezample will be mapped to something different.

There are also some interesting variations of this problem. For example, one may
ask about the structure of X which maximizes the projections for some particular D.
Define Sp(NN) = min|x|—n S(X, D). For an arbitrary D, what can we tell about the
structure of X achieving this maximum? All the known examples are for direction
sets with special structures.

Denote the directions in R? by elements of RU{oo} with corresponding projections
mi(x) = w1 +tag for t € R, moo(x) = 2. Since we can use a projective transformation
to map any three directions to any three specified directions without changing the
incidence structure, let’s begin with |D| = 4. Without of loss of generality we
may assume D = {0,1,¢,00}. When ¢ is rational with small denominator the grid
example still works. Things become more interesting when ¢ is transcendental. For
example, we may take Py, = {ag + ait + -+ ap1t" ' 1 a; € 2,0 < a; < 5 — 1}
be a set of polynomials in ¢ and let X = P, X Py, Then | X| = 5%k We have
To(X) = Too(X) = Prs, m(X) C Pras, m(X) C Pypq2s. Since t is transcendental,
S(X,D) ~ |m(X)| ~ 2k X|¥/2*|X|'2. Choose k = (log,(]X])/2'/? to maximize
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the RHS, we obtain that is this case Sp(X) ~ et XDY?| X |1/2 It would also be
interesting to analyze S(X, D) for other D’s, like D = {0,1, 00,1, ...,t;} where ;s
are algebraic independent over Q.

Projection Theory over Finite Fields. We have seen that projection theory over
finite fields may be different from that over the reals. Let X be a set of points, D be
a set of directions. Let S = maxgep mg(X). Our conjecture is that for |[S| < p/2,

S| 2 |DI'2|X |2,

It would be attempting to investigate the structure of sharp examples for this bound,
and one may conjecture they are essentially grids.

Remark 9.2. Let’s give an example showing that the original version of Szemerédi-
Trotter bound fails over complex field. Again, let X be a set of unit balls in B%Q c C?,
D c BY c C be an R™*-separated set of directions. Fort € D, let m; : C2 — C
be the map (z1,22) — 21 + tzo. For our example, choose X to be a mazimal set of
R~ '-separated unit balls with centers in R?, and D to be a maximal R™'-separated
subset of RN BS. Then |X| ~ R?, |D| ~ R satisfy the Hausdor{f spacing condition,
while S(X, D) ~ R < | X|Y2|D|'/2.

Projection Theory of Unit Balls. Let X be a set of unit balls in B, D be a
set of 1/R-separated directions. Define Nx(r) = max.cp, |X N B(c,7)|, Np(p) =
Max,cst |y|=p |D N 7y]. We will assume that X has Hausdorff spacing, which means
there exists 0 < a < 1 such that |X| ~ R* Nx(r) < r*. Similarly we will also
assume that |D| ~ R?, Np(r/R) < 1. The following conjecture by Furstenberg was
recently proved by Orponen, Shmerkin, Ren and Wang:

Theorem 9.3. Under the above assumption, we have
<
D] = |S]?/|X]
i 1D S R~ min(R, | X|).

We will discuss briefly why cell decomposition doesn’t work in this case. Suppose
that we have divided Bp into s? cells. There is no guarantee on the shape of each
cell O;, but in one important scenario, most cells are roughly balls of some radius r
so that it is possible for us to apply induction hypothesis. (At first one might think
r = R/s, but this may not be the case. It may be that most of the balls of radius
r cover only a fractal subset of Bg which contains our set X.) The problem is, the
R~ '-separated directions may look indistinguishable at smaller scales. In each cell
we have to choose an r-separated subset D; C D. By the Hausdorff assumption, in a
typical cell we will have | X;| ~ r®, |D;| ~ %, So we can not force | X;|? to be smaller
than |L;| by simply passing to smaller balls.
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