
    

      

   
           

           
                

                
            

                
           

            
              

            
          

               
    

              
                    

  
             

   

         

             
              

               
                

          
             

    
      
       
              
     

          

         

                
              

               

59 PROJECTION THEORY NOTES 

9. Reflections on the Szemeredi-Trotter theorem 

Thur March 6 
There is an important analogy between the Szemeredi-Trotter theorem and the 

exceptional set problem in projection theory. The Szemeredi-Trotter theorem can be 
viewed as the sharp projection theorem for finite sets of points in R2 . The exceptional 
set problem concerns the projection theory of a finite set of balls in R2 subject to 
a natural spacing condition. The sharp answers to both problems are essentially 
the same – based on integer grids. This analogy was noticed by Tom Wolff in the 
late 1990s. He adapted proof methods from combinatorial geometry to problems 
in geometric measure theory and harmonic analysis, with striking results. He tried 
hard to adapt the proof of Szemeredi-Trotter to the exceptional set problem and the 
Furstenberg set conjecture, but he was not able to prove sharp results. 
The proof of Szemeredi-Trotter using topological methods is elegant and impor-

tant, but there are several important questions that it does not address. In this class 
we will discuss them. 
First let’s recall the statement of Szemerédi-Trotter theorem. Let X be a set of 

points, L be a set of lines (both in R2), we use I(X, L) to denote the set of incidences 
between them: 

I(X, L) = {(p, l) ∈ X × L : p ∈ L}. 
Szemerédi-Trotter claims that 

|I(X, L)|  |X| + |L| + |X|2/3|L|2/3 . 

All the current proofs of this theorem, like the cell decomposition method we 
discussed in the previous lectures, used the topology of Euclidean plane. This is not 
surprising, as the conclusion of this theorem is indeed related to the structure of the 
base field. If we replace R2 by F2 

p, Szemerédi-Trotter bound will fail as one can see 
by taking L to be all the lines in F2 

p. 
On the other hand, the current methods provide little information on some closely 

related problems, such as: 
1. Projection theory over finite fields. 
2. Structure of sharp examples for Szemerédi-Trotter. 
3. Projection theory of unit balls, instead of points, in R2 with spacing conditions 

(lots of attempts by Wolff). 

Structure of Sharp Examples. Let’s stare at the Szemerédi-Trotter bound: 

|I(X, L)|  |X| + |L| + |X|2/3|L|2/3 . 

There are three terms on the RHS. The first two terms are given by double counting 
which generalizes to other fields. They dominate when there are too many points or 
lines, in which case the structure of the sharp examples example is not very rigid, 
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giving us many degrees of freedom. To be more specific, when the first dominates we 
have |X|  |L|2 , which means that the number of points has already exceeded the 
total number of intersections among the lines. In this case, the upper bound is tight 
if each point has a line passing through it. The typical sharp example looks like some 
chains of beads. Similarly, when the second term dominates the sharp examples look 
like a bunch of stars, where each line doesn’t have much chance to pass through too 
many points. 
The case where the third term dominates is the most interesting one. The known 

sharp examples are integer grids and their variation R-grids, where R is the integer 
rings of number fields. We expect that the sharp examples in this case are highly 
structured. To see what information about the sharp examples the proof of Sze-
merédi-Trotter theorem tells us, let’s briefly review the cell decomposition proof: 
Divide R2 into s2 cells. In each cell there are |X|/s2 points and (in average) |L|/s 
lines. By choosing s to be large enough we will have |L|/s  (|X|/s2)2 and then 
apply the double counting bound. The proof doesn’t tell us much information on the 
structure of the sharp example unless we can figure out the way our cells interact. 
Unfortunately the proof of cell decomposition is not very constructive and based on 
existence theorems from topology. 

Remark 9.1. In the projective plane PR2 there is something called point-line duality. 
It preserves the incidence relationship between points and lines. In fact, the statement 
that a point with coordinates [a0, a1, a2] lies on a line with coefficients [b0, b1, b2] simply 
means a0b0 + a1b1 + a2b2 = 0, where the roles of ai and bi are interchangeable. The 
chain example and the star examples are mapped to each other via the point-line 
duality, while the grid example will be mapped to something different. 

There are also some interesting variations of this problem. For example, one may 
ask about the structure of X which maximizes the projections for some particular D. 
Define SD(N) = min|X|=N S(X, D). For an arbitrary D, what can we tell about the 
structure of X achieving this maximum? All the known examples are for direction 
sets with special structures. 
Denote the directions in R2 by elements of R∪{∞} with corresponding projections 

πt(x) = x1 + tx2 for t ∈ R, π∞(x) = x2. Since we can use a projective transformation 
to map any three directions to any three specified directions without changing the 
incidence structure, let’s begin with |D| = 4. Without of loss of generality we 
may assume D = {0, 1, t, ∞}. When t is rational with small denominator the grid 
example still works. Things become more interesting when t is transcendental. For 
example, we may take Pk,s = {a0 + a1t + · · · + ak−1tk−1 : ai ∈ Z, 0 ≤ ai ≤ s − 1}
be a set of polynomials in t and let X = Pk,s × Pk,s. Then |X| = s2k . We have 
π0(X) = π∞(X) = Pk,s, π1(X) ⊂ Pk,2s, πt(X) ⊂ Pk+1,2s. Since t is transcendental, 
S(X, D) ∼ |πt(X)| ∼ 2k|X|1/2k|X|1/2 . Choose k = (log2(|X|)/21/2 to maximize 
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c(log |X|)1/2 |X|1/2the RHS, we obtain that is this case SD(X) ∼ e . It would also be 
interesting to analyze S(X, D) for other D’s, like D = {0, 1, ∞, t1, . . . , tk} where tj ’s 
are algebraic independent over Q. 

Projection Theory over Finite Fields. We have seen that projection theory over 
finite fields may be different from that over the reals. Let X be a set of points, D be 
a set of directions. Let S = maxθ∈D πθ(X). Our conjecture is that for |S| ≤ p/2, 

|S|  |D|1/2|X|1/2 . 

It would be attempting to investigate the structure of sharp examples for this bound, 
and one may conjecture they are essentially grids. 

Remark 9.2. Let’s give an example showing that the original version of Szemerédi-
Trotter bound fails over complex field. Again, let X be a set of unit balls in BR 

C2 ⊂ C2 , 
D ⊂ B1 

C ⊂ C be an R−1-separated set of directions. For t ∈ D, let πt : C2 → C 
be the map (z1, z2) → z1 + tz2. For our example, choose X to be a maximal set of 
R−1-separated unit balls with centers in R2 , and D to be a maximal R−1-separated 
subset of R ∩ BR 

C . Then |X| ∼ R2 , |D| ∼ R satisfy the Hausdorff spacing condition, 
while S(X, D) ∼ R  |X|1/2|D|1/2 . 

Projection Theory of Unit Balls. Let X be a set of unit balls in BR, D be a 
set of 1/R-separated directions. Define NX (r) = maxc∈BR |X ∩ B(c, r)|, ND(ρ) = 
maxγ⊂S1 ,|γ|=ρ |D ∩ γ|. We will assume that X has Hausdorff spacing, which means 
there exists 0 ≤ α ≤ 1 such that |X| ∼ Rα , NX (r)  rα . Similarly we will also 
assume that |D| ∼ Rβ , ND(r/R)  rβ . The following conjecture by Furstenberg was 
recently proved by Orponen, Shmerkin, Ren and Wang: 

Theorem 9.3. Under the above assumption, we have 
< 

|D| ≈ |S|2/|X| 
if |D|  R− min(R, |X|). 

We will discuss briefly why cell decomposition doesn’t work in this case. Suppose 
that we have divided BR into s2 cells. There is no guarantee on the shape of each 
cell Oi, but in one important scenario, most cells are roughly balls of some radius r 
so that it is possible for us to apply induction hypothesis. (At first one might think 
r = R/s, but this may not be the case. It may be that most of the balls of radius 
r cover only a fractal subset of BR which contains our set X.) The problem is, the 
R−1-separated directions may look indistinguishable at smaller scales. In each cell 
we have to choose an r-separated subset Di ⊂ D. By the Hausdorff assumption, in a 
typical cell we will have |Xi| ∼ rα , |Di| ∼ rβ . So we can not force |Xi|2 to be smaller 
than |Li| by simply passing to smaller balls. 
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