13. Proof of the Balog-Szemeredi-Gowers Theorem

Thur Apr 3

In this lecture we'll prove the BSG theorem that we used in the proof of the BKT theorem. Here's the statement again:

Theorem 13.1 (Balog–Szemerédi–Gowers). Let A and B be subsets of an abelian group and suppose $X \subset A \times B$. If $|A|, |B| \leq N, |X| \geq K^{-1}N^2$, and $|\pi_1(X)| \leq KN$, then there are $A' \subset A$ and $B' \subset B$ such that $|A' + B'| \leq K^{O(1)}N$ and $|X'| \geq K^{-O(1)}N^2$, where $X' = X \cap (A' \times B')$.

Here
$$\pi_1(X) = \{a + b : (a, b) \in X\}.$$

Example 13.2. As subsets of \mathbb{Z} , let A = B be the union of [N] and some garbage. Let X be the union of any subset of $[N] \times [N]$ and a little garbage. Then $\pi_1(X)$ is small $(\leq N)$, while $|A + B| \gtrsim N^2$ is large. We can take A' = B' = [N].

The theorem was originally proved by Balog and Szemerédi, but in the bounds $K^{O(1)}$ was instead F(k) and $K^{-O(1)}$ was $\frac{1}{F(K)}$, and F(K) was some function with crazy growth. The bounds in the version stated above are due to Gowers.

We will proceed by thinking of $X \subset A \times B$ as a bipartite graph with A on the left, B on the right, and an element $(a, b) \in X$ representing an edge from a to b. Let

$$P_K(a,b) = \#\{\text{paths of length } K \text{ in the graph } X \text{ from } a \text{ to } b\}.$$

Lemma 13.3. If $A' \subset A$ and $B' \subset B$, and for any $a \in A'$, $b \in B'$, $P_3(a,b) \geq P$, then

$$|A' + B'| \le \frac{\pi_1(X)^3}{P}.$$

Proof. A path of length 3 from a to b goes from a to some $b_1 \in B$, then to some $a_1 \in A$, then to b. So $(a, b_1), (a_1, b_1), (a_1, b) \in X$ and hence

$$\underbrace{a+b_1}_{z_1},\underbrace{a_1+b_1}_{z_2},\underbrace{a_1+b}_{z_2}\in\pi_1(X).$$

We can write $a + b = z_1 - z_2 + z_3$. Therefore

$$\#\{(z_1, z_2, z_3) \in \pi_1(X)^3 : a+b=z_1-z_2+z_3\} \ge P_3(a,b) \ge P.$$

Summing over A' + B' we get

$$|A' + B'| \cdot P \le |\pi_1(X)|^3$$
.

From now on, everything we prove will be a statement about bipartite graphs, i.e. we don't need the addition law for anything that follows.

Lemma 13.4 (Key Lemma). If $X \subseteq A \times B$ and $|X| \ge K^{-1}|A||B|$, then there are $A' \subset A$ and $B' \subset B$ such that $|X'| \ge K^{-O(1)}|A||B|$ where $X' = X \cap (A' \times B')$ and for any $a \in A'$, $b \in B'$,

$$P_3(a,b) \ge K^{-O(1)}|A||B|.$$

The BSG theorem is proved by combining Lemma 13.3 and the Key Lemma.

13.1. Simple Bounds About $P_K(a,b)$. In this section, we have

edges =
$$|X| = \ge K^{-1}|A||B|$$
,
 $P_{\ell} := \text{#paths of length } \ell \text{ starting in } A$,
 $P_1 = |X| \ge K^{-1}|A||B|$.

Definition 13.5. For $a \in A$, the **neighborhood** of a is the set N(a) of points that share an edge with a.

We can average over |A| to get

$$\operatorname{Avg}_{a \in A} P_1(a, \cdot) = \frac{|P_1|}{|A|} \ge K^{-1}|B|.$$

To get an estimate for the average of P_2 , we use Cauchy-Schwarz to get

$$P_{2} = \sum_{b} |N(b)|^{2}$$

$$\geq \frac{\left(\sum_{b} |N(b)|\right)^{2}}{|B|}$$

$$\geq \frac{(K^{-1}|A||B|)^{2}}{|B|}$$

$$= K^{-2}|A|^{2}|B|.$$

Averaging this get us

$$\operatorname{Avg}_{a_1,a_2} P_2(a_1, a_2) \ge K^{-2} |B|.$$

As an exercise, use similar methods to prove $|P_3| \ge K^{-3}|A|^2|B|^2$ and

$$\text{Avg}_{a,b} P_3(a,b) \ge K^{-3}|A||B|.$$

The Key Lemma says that $P_3(a, b)$ is at least a small fraction of the average for all $a \in A'$, $b \in B'$.

Lemma 13.6 (Length 2). If $X \subset A \times B$, $|X| \ge K^{-1}|A||B|$, $\epsilon > 0$, then there is a subset $A' \subset A$ such that $|A'| \ge \frac{1}{2}K^{-1}|A|$ and $P_2(a_1, a_2) \ge \epsilon K^{-2}|B|$ for $(1 - 2\epsilon)|A'|^2$ choices of $(a_1, a_2) \in (A')^2$.

Note that we cannot always take A' = A, because there are graphs X where only $\frac{1}{K}|A|$ vertices in A have an edge and there are also graphs with multiple connected components. What we will do is let A' = N(b) for some $b \in B$.

Definition 13.7. A pair (a_1, a_2) is ϵ -bad if $P_2(a_1, a_2) < \epsilon K^{-2}|B|$. Let

$$BP_{\epsilon}(b) = \#\{(a_1, a_2) \in N(b)^2 : (a_1, a_2) \text{ is } \epsilon\text{-bad}\}.$$

Lemma 13.8 (P1).

$$\mathbb{E}_b|BP_{\epsilon}(b)| \le \epsilon K^{-2}|A|^2.$$

Lemma 13.9 (P2).

$$\mathbb{E}_b|N(b)|^2 \ge K^{-2}|A|^2$$
.

This says there's only about an ϵ -fraction of bad pairs.

Proof of P2. By Cauchy-Schwarz,

$$\sum_{b} |N(b)|^{2} \ge \frac{\left(\sum_{b} |N(b)|\right)^{2}}{|B|}$$

$$\ge \frac{(K^{-1}|A||B|)^{2}}{|B|}$$

$$= K^{-2}|A|^{2}|B|.$$

Divide by |B|.

Proof of P1.

$$\sum_{b} |BP_{\epsilon}(b)| = \#\{a_1, a_2, b \text{ such that } (a_1, b), (a_2, b) \in X \text{ and } P(a_1, a_2) \le \epsilon K^{-2}|B|\}$$

$$< |A|^2 \epsilon K^{-2}|B|.$$

Divide by |B|.

Proof of Length 2. Let A' = N(b). Then by the previous two lemmas,

$$\mathbb{E}\left(|N(b)|^2 - \frac{1}{2\epsilon}|BP_{\epsilon}(b)|\right) \ge \frac{1}{2}K^{-2}|A|^2.$$

So we can pick b to satisfy

$$|N(b)|^2 - \frac{1}{2\epsilon}|BP_{\epsilon}(b)| \ge \frac{1}{2}K^{-2}|A|^2$$

and let A' = N(b). Then $|BP_{\epsilon}(b)| \leq 2\epsilon |N(b)|^2$.

By discarding some a_1 's, we can upgrade this.

Lemma 13.10 (2). If $X \subset A \times B$, $|X| \geq K^{-1}|A||B|$, and $\epsilon > 0$, then there exists $A_2 \subset A$ such that $|A_2| \geq \frac{1}{4}K^{-1}|A|$ and for every $a \in A_2$, there are at most $10\epsilon |A_2|$ choices for a_2 such that (a, a_2) is ϵ -bad.

We won't prove this, but the idea is to let

$$A_2 = A' \setminus \{a \in A' : (a, a_2) \text{ is } \epsilon\text{-bad for many } a_2 \in A'\}.$$

The second part of the conclusion can be written as $A = B(a) \cup G(a)$, where $|B(a)| \le 10\epsilon |A_2|$ and for any $a_2 \in G(a)$, $P_2(a, a_2) \ge \epsilon K^{-2} |B|$.

Proof of Key Lemma. First, let

$$A_1 = \{ a \in A : |N(a)| \ge \frac{1}{10} K^{-1} |A| \}.$$

Let

$$X(A', B') := \{(a, b) \in (A' \times B') \cap X\} = (A' \times B') \cap X.$$

Choose $A' \subset A$ be the A_2 of Lemma 2. Let

$$B' = \{ b \in B : |N(b) \cap A'| > 20\epsilon |A'| \}$$

SO

$$|B(a)| \le 10\epsilon |A'|$$
.

For any $a \in A'$, $b \in B'$, we have

$$P_3(a,b) \ge \epsilon K^{-2}|B|(|N(b) \cap G(a)|)$$

$$\ge \epsilon K^{-2}|B|(|N(b) \cap A'| - |B(a)|)$$

$$\gtrsim \epsilon^2 K^{-3}|A||B|$$

using $|A'| \gtrsim K^{-1}|A|$. Now we just need to check $|X(A', B')| \geq K^{-O(1)}|X|$. Since $|A'| \gtrsim K^{-1}|A|, A' \subset A, N(a) \geq \frac{1}{10}K^{-1}|B|$ for $a \in A'$, and $|X(A', B)| \gtrsim K^{-2}|A||B|$, so

$$|X(A', B \setminus B')| \le 20\epsilon |A'||B|$$

 $\le 20\epsilon |A||B|.$

Let $\epsilon = \frac{1}{10^6} K^{-2}$, so $|X(A', B \setminus B')| \ll |X(A', B)|$. Hence

$$|X(A', B')| \sim |X(A', B)| \ge K^{-O(1)}|A||B|.$$

MIT OpenCourseWare https://ocw.mit.edu

18.156 Projection Theory Spring 2025

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.