
    

        

   
            

           
                  

                 
              

  

              

                   
                       

          

 
 

    

 

 
 

 
   

      

               
     

                  
                  

       

                
                 

                     

     
            

               
      

              
                       

      

                    
          

78 PROJECTION THEORY NOTES 

14. Bourgain’s projection theorem over R, part 1 

Tues Apr 8 
Over the next three lectures, we discuss Bourgain’s projection theorem over R. 

Bourgain’s projection theorem is analogous to the BKT projection theorem which 
we studied in the last four lectures, but with balls in R2 in place of points in F2 

p. 
The proof ideas are analogous but there are some new issues in R2 . To motivate the 
statement of the theorem, we begin by recalling what we learned about the finite 
field case. 

14.1. Finite field case. Let us first recall the BKT projection theorem over Fp. 

Theorem 14.1 (Bourgain-Katz-Tao). Let 0 < t < 2, 0 < s ≤ 1 and p be a prime. 
Then there exists some  = (s, t) > 0 such that for all X ⊂ F2 with |X| = pt and all p 

sD ⊂ Fp with |D| = p , we have 

t/2+ max |πθX| ≥ p
θ∈D 

and 
t/2+ max min |πθY | ≥ p . 

θ∈D Y ⊂X,|Y |≥p−|X| 

We proved the first part of this theorem in a previous lecture and made some 
comments about the second part. 

Remark 14.2. Note that if we instead consider  = 0 and |D| ≥ 2, then the bound 
becomes trivial. Indeed, for any θ1 = θ2, we have an injective map X → πθ1 X ×πθ2 X, 
which implies maxθ∈D |πθX| ≥ |X|1/2 . 

14.2. Real case. Now, let us consider the analogous theorem for unit balls in R2 . 
Let R be some positive real number and let X ⊂ BR be a (not necessarily disjoint) 
union of unit balls. Let D ⊂ [0, 1] be a 

R 
1 -separated set, and set πθ(x1, x2) = x1 + θx2 

like in the Fp case. 
Note that without any additional assumptions, the trivial bound in Remark 14.2 

does not hold in the real case. So to state Bourgain’s projection theorem we will 
need additional assumptions on X, D. 

Example 14.3. (1) Consider when X is a 1×R rectangle packed with unit balls. 
Then if we set D = [0, Rs] then we get max |πθX| ∼ Rs , so if s < t then we

2 

get max |πθX| < Rt/2 . 
(2) Let X = B(0, R1/2). Then |X| ∼ R and |πθX| ∼ R1/2 for all θ. So in this 

case we do not get max |πθX| ≥ Rt/2+ . 



    

                     
                        

                

       
  

 

  
         

         

 
   

     

                   
                

               
         

              
              

               
           

                 

          

         

         
            
                       

        
            

      
        
            

     

         

        
         

                
                      

               
                 

79 PROJECTION THEORY NOTES 

Theorem 14.4 (Bourgain). Let 0 < t < 2, 0 < s ≤ 1. Then there exist , η > 0, 
both functions of s, t, such that for all X with |X| = Rt , D with |D| = Rs , if for all 
x ∈ BR, r ≤ R, θ ∈ [0, 1], ρ ∈ [0, 1] we have  tr |X ∩ B(x, r)| ≤ Rη |X|, |D ∩ B(θ, ρ)| ≤ Rηρs|D|,

R 
then there exists some θ ∈ D such that 

inf |πθY | ≥ Rt/2+ . 
Y ⊂X,|Y |≥R−η |X| 

Note that this theorem does not hold over C. Indeed, if we take X = BR ∩ R2 and 
D the set of real directions, then we get a similar counterexample to the Fp2 case. 
We would like to adopt the various inequalities we used in the Fp case (Ruzsa 

triangle inequality, Plunnecke inequality, Balog-Szemeredi-Gowers) to the real case. 
Carrying out this program, many of the steps work smoothly, but there are two 

particular steps that require new ideas. In these notes, we will identify these two 
steps and describe the new issue that arises and the idea to get around it. 
First we introduce a new notion of size of a set. 

Definition 14.5. Let X ⊂ Rd . Then for any δ > 0, the δ-covering number |X|δ 

is the smallest number of δ-balls needed to cover X. 

We make a few observations about delta covering numbers: 

• If X is 2δ-separated, then |X|δ = |X|. 
• If X is a union of δ-balls, then |X|δ ∼d δ

−d|X|. 
• Let Dδ = {δk + [0, δ)d, k ∈ Zd}. Then |X|δ ∼d |{Q ∈ Dδ, Q ∩ X = ∅}|. 

In lieu of this last observation, we define 

X(δ) = {k : (δk + [0, δ)d) ∩ X = ∅}, 
so we have |X|δ ∼ |X(δ)|. 
Now, the Ruzsa triangle inequality, Plunnecke inequality, and Balog-Szemeredi-

Gowers all hold for δ-covering numbers. For example, for the Ruzsa triangle inequal-
ity the statement is now 

|B|δ|A − C|δ  |A − B|δ|B − C|δ 

for all A, B, C ⊂ Rd . 
Recall the key idea for expanding sets over Fp: 

Lemma 14.6. There exists a polynomial Q such that given s ∈ (0, 1), there exists 
s s+some (s) > 0 such that for all A ⊂ Fp with |A| = p , we have |Q(A)| ≥ p . 

Iterating this lemma, we could obtain all of Fp within some polynomial of A (that 
depends on s). In the proof of this lemma, the key idea was to consider the set 



    

     
                      

                      
              

                
                 

                    
                     

                  
                    

         

                      
                    

           

                
                        

        

          

     

   
             

                  
    

                     
                    
 
     

   
      

       
              

                     
                     

                  
              
           

                     
       

             
                 

   
                  

            

80 PROJECTION THEORY NOTES 

B = 
A
A 
−
− 
A
A . If B = Fp, we could run an argument to imply the lemma, and if B = Fp, 

then there would be some x ∈ B such that x + 1 ∈ B, and we could use this x to 
prove the lemma. We would like to extend these ideas to the real case. 
However, there are some problems with the real case. This is the first set of issues 

in dealing with the real case. First, B can be unbounded, as the denominator A − A 
could be very small. Also, if A is a segment, then A + A, A · A are segments with 
|A + A|, |A · A| ∼ |A|, so we have no real growth when we take a polynomial of A. 
It is also not immediately clear what the equivalent of adding 1 to get from x ∈ B 
to x + 1 ∈ B is in the real case. Finally, R has subgroups of uncountable size, so we 
need to be able to “escape” such a subgroup. 

Definition 14.7. Let X ⊂ Bd(0, 1), δ ∈ (0, 1), s ∈ [0, d], C ≥ 1. Then X is a 
(δ, s, C)d-set if |X ∩ B(x, r)|δ ≤ Crs|X|δ for all x and all δ ≤ r ≤ 1. 

For Bourgain’s projection theorem, we will take C = δ−η . 

Lemma 14.8. There exists a polynomial Q such that given s ∈ (0, 1), there exists 
some (s) > 0 and η(s) > 0 such that for all A ⊂ [0, 1] with |A|δ = δ−s , if A a 
(δ, s, δ−η)-set, then |Q(A)|δ ≥ δ−s− . 

Proof idea. Pick some γ ∈ (0, 1). Then set 

a1 − a2
B = { : ai ∈ A, |a3 − a4| > δγ } ∩ [0, 1]. 

a3 − a4 

This γ will have to be chosen carefully to make the rest of the proof work, but we 
omit the details here. 

Lemma 14.9. Let B ⊂ [0, 1] be closed with 0, 1 ∈ B, and let ρ be the supremum of 
the lengths of the segments in [0, 1] \ B. Then there exists a b ∈ B such that either 
d( b , B) ≥ ρ or d( b+1 , B) ≥ ρ .
2 5 2 5 

B ∪ B+1Proof. Let B = 
2 2 ⊂ [0, 1]. Then it suffices to show there is an element of 

B ρ ∈ Bthat is a distance 
5 away from B. Note that 1

2 since 0 ∈ B, so the longest 
segment in [0, 1] \ B has length at most ρ 

2 . Now, consider an interval of length ρ −  
in [0, 1] \ B, and consider the middle 

2 
ρ interval inside it. By the above this middle 

interval contains some point in B . But by construction this middle interval has 
distance at least ρ 

5 from B, which completes the proof.  

Now, for ρ ∈ (0, 1), we have two cases. First, if B is ρ-dense in [0, 1], then we have 
an argument similar to the A

A 
−
− 
A
A = Fp case in the finite field version of this lemma. 

b b+1Otherwise, by the above lemma there is some b ∈ B such that either 
2 , 2 are far 

from B, in which case we can run an argument similar to the case in the Fp version 
where we have x ∈ B, x + 1 ∈ B.  
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