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Now we come to the second main issue in the real case. We have Lemma 14.8.
Following the finite field case, we would like to iterate this lemma. However, there
is an issue with this iteration, which is that we do not know whether Q(A) is a
(0,5 4 €,0)-set, and in fact this is likely not true in general. Instead, we will use
that Q(A) contains a (0, s + €, ¢)-set. It takes significant extra work to prove this
fact. We will discuss the issues more next time.

15. BOURGAIN’S PROJECTION THEOREM II
April 10
Definition 15.1. A (§,s,C)g4-set is a set X C B0, 1) such that
|1 X N B(x,r)|s < Crélx|s.

Remark 15.2. We think of a (0,s,C) set as a set which is 'non-concentrated’ on
the scale § with degree s.

Using this language we can rewrite the Bourgain projection theorem as.

Theorem 15.3. Given 0 <t < 2,0 < s < 1, there exist €, > 0 such that
If X € B*0,1) is a (6,t,07")9-set with | X|s =6 and D C [0,1] is a (5,5,67);-
set. Then there exists some 0 € D such that
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Last time we saw that there exists a polynomial () such that for every 0 < s < 1
there exists £, > 0 such that if A is a (J,s,0"7);-subset of [0, 1] and |A|s = §~* then
|Q(A)|s > 07°¢. Now we cannot yet iterate this because we do not know that Q(A)
is a non-concentrated, in fact this is not true, but we can ask for Q(A) to contain a
(0,5 +¢,6 ") set (though with different ¢, 7).

In these notes, we discuss some of the ideas to deal with this technical issue,
although we don’t give a complete proof.

Let us quickly confirm some properties of non-concentrated sets.

Lemma 15.4. If X is a (9, s, C)q4-set then:
(1) | X1, > Ctp~* for all p € [4,1].
(2) If Y € X and |Y]s > +|X|s then Y is a (3,5, CK);-set.

Intuitively (i) tells us that if X is non-concentrated on scale ¢ then it is large on
all scales at least §, (ii) tells us that this concept is preserved under taking ’'dense’
subsets.
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Proof. (1) If X c U“, B(zy, p) then

X5 < Z | X N B(wi, p)ls

i=1
but we know that | X N B(x;, p)ls < Cp®|X|s so
1 X|s < mCp¥|X|s = m>C p =
(2) This is even simpler since
Y N B(z,p)ls < [X N Bz, p)ls < Cp|X|s < (CK)p[Y]s
U

Now due to this lemma if we want Q(A) to contains a (4, s + &,0™"7) set then it
must be that |Q(A)|, > p~57° Vo € [, 1].

Now we notice two important things about the above property.

e We don’t get this for free because A need not be a (p, s,d~")-set for p € [4, 1].
e This property is necessary but not sufficient.
We can fix both of these problems with one framework, that of the 'uniform set’,
which is very useful even outside of this theory.

Assume that 0 is some negative power of 2, we will denote by Djs the set of )-mesh
cubes tiling RY. For any given set X we denote by Ds(X) the set of those cubes that
intersect X. We then define | X |} := |Ds(X)| and notice that | X|; ~ | X|s as we saw
in the last lecture.

Definition 15.5. Given A € 1/N and m € N, A set X C [0,1]¢ is (A, m)-uniform
if for any j € {0,...,m — 1} and for any cube Q € Ds(X) we have
QN X[am = B,
where R; 1s independent of ().
The numbers R; are called "branching factors” of X.
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FIGURE 14. A (1/2,2)-uniform set with its 3 branching factors
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We can see why these uniform sets are useful with the following lemma.

Lemma 15.6. Let X C [0,1]? be a (A, m)-uniform set and let § = A™.

(a) If |X|, > C71p~* for all p € {1,A, A% ...,A™}, then X is a (8,5, 0a(C))s
set.

(b) If X is a (0,s,C) set then X is also a (p,s,Oa(C)) for all p € [6,1].

If we believe this, and we know that A and Q(A) are both uniform, then that
immediately solves both our problems and lets us continue the proof. Before we
explain how to make A and Q(A) uniform let us prove this lemma.

Proof. (a) Let p = AJ and @ some cube in Da;(X). We clearly have the recursive
relation | X N Q|ai+1 = R;| X N Q| which when iterated gives us
X NQ[am = RjRjp1- R | X N QL

but we know that | X N Q[%, = 1 precisely because @ is a A/ cube. We thus have

RoRy -+ Ry
XNQ|Am = ,

| |A ROR]_ . R]’_]_
Now the numerator here is precisely |X|A» and the denominator is |X|%; so by
assumption we have | X |4, 2 C~'p~* which gives us
(XN Qam S Cp°|X|am.

This shows that X is a (d, s, C')s set at scales 1, A, ..., A™. For the scales in between
we can sandwich them between two powers of A, this loses us an extra factor of at
most Oa(C).

(b) Again let p = A% then for any j with 0 < j < jo, let Q be some square in
Dai(X) then we have again

Ry~ Rj, 1 _ | XT,
Ro---Rjy X[},
where in the last step we applied the previous lemma for (4, s, C') sets. Again the
sandwiching gives us an extra factor of Oa(C). O

|X N Q|AJ’0 =

N CpS|X|p

Now we learn an important tool, which is the method to make any set uniform.

Lemma 15.7 (Uniformization). Let § = A™, X C [0,1]%, and let u be an arbitrary
sub-additive set function (eg. w(B) = |B|s). Then there exists a subset Y C X such
that Y is (A, m)-uniform and

)= 2w (5 )| w0 = 57onc0

In(2ln L
where o = ( 1A)
Inx
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Note that as A — 0 we have ¢ — 0 so we can make this power arbitrarily small
by picking A at the end.

Proof. We will construct a uniform subset by thinking of X as a tree, and pruning
it from the leaves to make it uniform. We will do this step by step, first we set
X, = X, then at each step, from X; we construct X;_; by removing enough mass
from level j to make it uniform.

To do this let X; 1, = {Q € Dai—1(X) : QN X[, € [2° 27!} where ¢ ranges
between 0 and dln %. This splits X into dln% different pieces across which we
have similar magnitude branching on level j. Then because we have a sub-additive
function

so we can pick the 'largest’ piece and lost at most a factor of dIn1A. Assume that
X_1, 1s that piece, we set X;_; to be the X;_; , where at level j we removed enough
of the set to get the branching factor to be exactly 2¢. Since the branching factors
are all within a factor of 2 away from 2¢ this loses us at most half of the 'measure’
of X,;_1, so that

1 1
2dIn Zp(Xj1) 2 dln Zp(Xjo10) 2 p(X;)

iterating this process m times gives us exactly the lemma. U
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FIGURE 15. Applying uniformization with A = 1/2 and m = 2 to a set.

Now we return to our original goal. We recall that A is a (4, s, C')-set. By Lemma
14.8 from last lecture, we know that |Q(A)|s > §~*7¢, where @ is a fixed polynomial.
However, we don’t yet know whether QQ(A) contains a (d,s + ¢, C") set, and so we
cannot iterate.

Using the uniformization lemma, we can reduce to the case that A is uniform. In
this case, we know that A is a (p, s, C) set for all p > §. Now, by Lemma 14.8, we
know that |Q(A)|, > p~° ¢ for all p > §. If we knew that Q(A) was uniform, then
it would follow that Q(A) is a (d, s + €, C") set with a reasonable C'. However, just
because A is uniform, it does not tells us that Q(A) is uniform.

The main enemy here is that |Q(A)|, may be large, and |Q(A)|; may be large, but
it could still happen that there is a subset B C Q(A) so that |B|, < |Q(A)|, and
vet |Q(A)\ Bls < |Q(A)|s . (It’s a good exercise to draw a picture of this scenario.)
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This enemy scenario sounds somewhat bizarre and even unlikely, but it takes a
fair amount of work to rule it out. And it involves somewhat changing the outline of
the proof. We will discuss these somewhat technical but yet important issues next
time.
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