
    

                
              

                 
                   

                 
         

     

  

               

      

                 
      

           

                     
                       
          

 
 

 
 

 

  
  

                   
                       

                 
                  
           

               
       

         

          

          
          

        

                 
                

 

81 

PROJECTION THEORY NOTES

Transcribed by Jacob Reznikov. Used with permission.

Now we come to the second main issue in the real case. We have Lemma 14.8. 
Following the finite field case, we would like to iterate this lemma. However, there 
is an issue with this iteration, which is that we do not know whether Q(A) is a 
(δ, s + , δ−)-set, and in fact this is likely not true in general. Instead, we will use 
that Q(A) contains a (δ, s + , δ−)-set. It takes significant extra work to prove this 
fact. We will discuss the issues more next time. 

15. Bourgain’s Projection Theorem II

April 10 

Definition 15.1. A (δ, s, C)d-set is a set X ⊂ Bd(0, 1) such that 

|X ∩ B(x, r)|δ ≤ Crs|x|δ. 

Remark 15.2. We think of a (δ, s, C) set as a set which is ’non-concentrated’ on 
the scale δ with degree s. 

Using this language we can rewrite the Bourgain projection theorem as. 

Theorem 15.3. Given 0 < t < 2, 0 < s ≤ 1, there exist ε, η > 0 such that 
If X ⊂ B2(0, 1) is a (δ, t, δ−η)2-set with |X|δ = δ−t and D ⊂ [0, 1] is a (δ, s, δ−η)1 -

set. Then there exists some θ ∈ D such that 

−ε
2min |πθX | ≥ δ− t 

X⊂X 
|X|δ ≥δη |X|δ 

Last time we saw that there exists a polynomial Q such that for every 0 < s < 1 
= δ−sthere exists ε, η > 0 such that if A is a (δ, s, δ−η)1-subset of [0, 1] and |A|δ then 

|Q(A)|δ ≥ δ−s−ε . Now we cannot yet iterate this because we do not know that Q(A) 
is a non-concentrated, in fact this is not true, but we can ask for Q(A) to contain a 
(δ, s + ε, δ−η) set (though with different ε, η). 
In these notes, we discuss some of the ideas to deal with this technical issue, 

although we don’t give a complete proof. 
Let us quickly confirm some properties of non-concentrated sets. 

Lemma 15.4. If X is a (δ, s, C)d-set then: 

(1) |X|ρ ≥ C−1ρ−s for all ρ ∈ [δ, 1].
(2) If Y ⊂ X and |Y |δ ≥ 1 |X|δ then Y is a (δ, s, CK)1-set.K 

Intuitively (i) tells us that if X is non-concentrated on scale δ then it is large on 
all scales at least δ, (ii) tells us that this concept is preserved under taking ’dense’ 
subsets. 



    

     
 

    

  
 

 

    

           

       

      

              

 

                    
          

          
                     
        

               
         

                  
                   

                 
    

                   
                      

   
   

      
         

      

           

82 PROJECTION THEORY NOTES  
Proof. (1) If X ⊂ i

m 
=1 B(xi, ρ) then 

m 
|X|δ ≤ |X ∩ B(xi, ρ)|δ 

i=1 

but we know that |X ∩ B(xi, ρ)|δ ≤ Cρs|X|δ so 

|X|δ ≤ mCρs|X|δ =⇒ m ≥ C−1ρ−s . 

(2) This is even simpler since 

|Y ∩ B(x, ρ)|δ ≤ |X ∩ B(x, ρ)|δ ≤ Cρs|X|δ ≤ (CK)ρs|Y |δ 



Now due to this lemma if we want Q(A) to contains a (δ, s + ε, δ−η) set then it 
must be that |Q(A)|ρ ≥ ρ−s−ε ∀δ ∈ [δ, 1]. 
Now we notice two important things about the above property. 
• We don’t get this for free because A need not be a (ρ, s, δ−η)-set for ρ ∈ [δ, 1].
• This property is necessary but not sufficient.

We can fix both of these problems with one framework, that of the ’uniform set’, 
which is very useful even outside of this theory. 
Assume that δ is some negative power of 2, we will denote by Dδ the set of δ-mesh 

cubes tiling Rd . For any given set X we denote by Dδ(X) the set of those cubes that 
intersect X. We then define |X|δ 

∗ := |Dδ(X)| and notice that |X|∗ ∼ |X|δ as we saw δ 
in the last lecture. 

Definition 15.5. Given Δ ∈ 1/N and m ∈ N, A set X ⊂ [0, 1]d is (Δ,m)-uniform 
if for any j ∈ {0, . . . ,m − 1} and for any cube Q ∈ Dδ(X) we have 

|Q ∩ X|∗ = RjΔj+1 

where Rj is independent of Q. 
The numbers Rj are called ’branching factors’ of X. 

R1 = 3 R2 = 2 R3 = 1 

Figure 14. A (1/2, 2)-uniform set with its 3 branching factors 



    

             

                  
                         

 
                       

                
             

             

                  
        

      

   
           

 

       
              

   
       

   
 

       
      

   
    

       

   
   

  

                         
                 

  
                       

      

         

   
 

 
 

 
 

  

                 
         

               

                   
                

      

   

 

  

 
 
 

 

   

   
    

  
 

 

83 PROJECTION THEORY NOTES 

We can see why these uniform sets are useful with the following lemma. 

Lemma 15.6. Let X ⊂ [0, 1]d be a (Δ,m)-uniform set and let δ = Δm . 
≥ C−1ρ−s(a) If |X|ρ for all ρ ∈ {1, Δ, Δ2 , . . . , Δm}, then X is a (δ, s, OΔ(C))δ 

set. 
(b) If X is a (δ, s, C) set then X is also a (ρ, s, OΔ(C)) for all ρ ∈ [δ, 1]. 

If we believe this, and we know that A and Q(A) are both uniform, then that 
immediately solves both our problems and lets us continue the proof. Before we 
explain how to make A and Q(A) uniform let us prove this lemma. 

Proof. (a) Let ρ = Δj and Q some cube in DΔj (X). We clearly have the recursive 
relation |X ∩ Q|Δi+1 = Ri|X ∩ Q|∗ which when iterated gives usΔi 

|X ∩ Q|∗ 
Δm = Rj Rj+1 · · · Rm−1|X ∩ Q|∗ 

Δj

but we know that |X ∩ Q|∗ = 1 precisely because Q is a Δj cube. We thus have Δj 

R0R1 · · · Rm−1|X ∩ Q|∗ = 
Rj−1 

,Δm 
R0R1 · · · 

Now the numerator here is precisely |X|∗ 
Δm and the denominator is |X|∗ 

Δj so by 
 C−1ρ−sassumption we have |X|∗ which gives usΔj 

|X ∩ Q|∗ 
Δm  Cρs|X|∗ 

Δm .

This shows that X is a (δ, s, C)δ set at scales 1, Δ, . . . , Δm . For the scales in between 
we can sandwich them between two powers of Δ, this loses us an extra factor of at 
most OΔ(C). 
(b) Again let ρ = Δj0 , then for any j with 0 ≤ j ≤ j0, let Q be some square in 

DΔj (X) then we have again 

R0 · · · Rj0−1 |X|∗ 
ρ|X ∩ Q|Δj0 = =  Cρs|X|ρ

R0 · · · Rj−1 |X|∗ 
Δj

where in the last step we applied the previous lemma for (δ, s, C) sets. Again the 
sandwiching gives us an extra factor of OΔ(C). 

Now we learn an important tool, which is the method to make any set uniform. 

Lemma 15.7 (Uniformization). Let δ = Δm , X ⊂ [0, 1]d , and let µ be an arbitrary 
sub-additive set function (eg. µ(B) = |B|δ). Then there exists a subset Y ⊂ X such 
that Y is (Δ,m)-uniform and   −m 

µ(Y ) ≥ 2d ln 
1 

µ(X) = δ−σ µ(X)
Δ 

ln(2 ln 1 )
where σ = Δ . 

ln 
Δ
1 



    

                   
      

                
                  

                
       
                     

                   
             

 

   

  

 

  

                   
                  

                 
                   

    

  
 

     
 

     

           

84 PROJECTION THEORY NOTES 

Note that as Δ → 0 we have σ → 0 so we can make this power arbitrarily small 
by picking Δ at the end. 

Proof. We will construct a uniform subset by thinking of X as a tree, and pruning 
it from the leaves to make it uniform. We will do this step by step, first we set 
Xm = X, then at each step, from Xj we construct Xj−1 by removing enough mass 
from level j to make it uniform. 
To do this let Xj−1, = {Q ∈ DΔj−1 (X) : |Q ∩ X|∗ ∈ [2 , 2+1]} where  rangesΔj 

between 0 and d ln 
Δ
1 . This splits Xj into d ln 

Δ
1 different pieces across which we

have similar magnitude branching on level j. Then because we have a sub-additive 
function 

d ln 
Δ
1 

µ(Xj ) ≤ µ(Xj−1,). 
=0 

so we can pick the ’largest’ piece and lost at most a factor of d ln 1Δ. Assume that 
Xj−1, is that piece, we set Xj−1 to be the Xj−1, where at level j we removed enough 
of the set to get the branching factor to be exactly 2 . Since the branching factors 
are all within a factor of 2 away from 2 this loses us at most half of the ’measure’ 
of Xj−1, so that 

1 1 
2d ln µ(Xj−1) ≥ d ln µ(Xj−1,) ≥ µ(Xj )

d d 

iterating this process m times gives us exactly the lemma. 



    

 

  

      

 

  

      

 

               

                  
                 

                  
  

               
                      

                  
                    

             
                

                  
                  

85 PROJECTION THEORY NOTES 

X2 X1 

X1,0 X1,1 X0,0 X0,1 

µ(X2,0) = 8, µ(X2,1) = 14 µ(X0,0) = 4, µ(X0,1) = 10 
X0 

Figure 15. Applying uniformization with Δ = 1/2 and m = 2 to a set. 

Now we return to our original goal. We recall that A is a (δ, s, C)-set. By Lemma 
14.8 from last lecture, we know that |Q(A)|δ ≥ δ−s−ε , where Q is a fixed polynomial. 
However, we don’t yet know whether Q(A) contains a (δ, s + , C ) set, and so we 
cannot iterate. 
Using the uniformization lemma, we can reduce to the case that A is uniform. In 

this case, we know that A is a (ρ, s, C) set for all ρ ≥ δ. Now, by Lemma 14.8, we 
≥ ρ−s−εknow that |Q(A)|ρ for all ρ ≥ δ. If we knew that Q(A) was uniform, then 

it would follow that Q(A) is a (δ, s + , C ) set with a reasonable C  . However, just 
because A is uniform, it does not tells us that Q(A) is uniform. 
The main enemy here is that |Q(A)|ρ may be large, and |Q(A)|δ may be large, but 

it could still happen that there is a subset B ⊂ Q(A) so that |B|ρ  |Q(A)|ρ and 
yet |Q(A) \ B|δ  |Q(A)|δ . (It’s a good exercise to draw a picture of this scenario.) 



    

             
                
             

 

86 PROJECTION THEORY NOTES 

This enemy scenario sounds somewhat bizarre and even unlikely, but it takes a 
fair amount of work to rule it out. And it involves somewhat changing the outline of 
the proof. We will discuss these somewhat technical but yet important issues next 
time. 
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