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16. BOURGAIN’S PROJECTION THEOREM III

April 15. Transcribed by Hang Du. Used with permission.

Let us review the problem where we left off last time. Suppose that A is a (4, s, C')-
set. Lemma 14.8 tells us that there is a fixed polynomial @ so that |Q(A)|s > 0.
We would like to iterate this lemma to prove a stronger lemma, which we now state.

Lemma 16.1. For each s > 0 and each € > 0, there is a polynomial P = P so
that, if A is a (0,s,C) set, then |P(A)|s > d—1Te.

However, we cannot prove Lemma 16.1 just by iterating Lemma 14.8, because we
don’t yet know whether Q(A) contains a (d, s + €, C’) set.

Using the uniformization lemma, we can reduce to the case that A is uniform. In
this case, we know that A is a (p, s, C) set for all p > §. Now, by Lemma 14.8, we
know that |Q(A)|, > p~°7° for all p > §. If we knew that Q(A) was uniform, then
it would follow that Q(A) is a (9, s + €, C") set with a reasonable C’. However, just
because A is uniform, it does not tells us that QQ(A) is uniform.

The main enemy here is that |Q(A)|, may be large, and |Q(A)|; may be large, but
it could still happen that there is a subset B C Q(A) so that |B|, < |Q(A)|, and
vet |Q(A)\ Bls < |Q(A)|s . (It’s a good exercise to draw a picture of this scenario.)

Recall that the map @ is a polynomial map from R¥ to R for some k. And recall
that Q(A) is shorthand for Q(A*). In Lemma 14.8, we showed that the entire image
Q(A*) is large: |Q(A*)|; > 67°7=. To deal with this technical problem, it is very
helpful to have a more robust estimate.

Lemma 16.2. There is a polynomial Q : R¥ — R so that the following holds. If A
is a (6,5,C) set and X C A* with | X|s Z |A"]s, then |Q(X)|s > d—57°.

In Subsection 16.1, we will sketch how the robust lemma, Lemma 16.2, implies
Lemma 16.1. Then in Subsection 16.2, we will sketch the proof of Lemma 16.2.

In these sketches, we will deal with an important technical issue in the theory :
formulating theorems in a robust way. We will see that more robust estimates are
more useful — for instance because they work better in iteration. So having a more
robust estimate is really useful. But on the other hand, we will see that the more
robust estimate in Lemma 16.2 does not follow from simple tweaks to our previous
Lemma 14.8. It requires a really new input — the Balog-Szemeredi-Gowers theorem.
This part further develops the ideas from Lecture 12 where we introduced BSG.

16.1. Why robust estimates are useful. Let us begin on the positive side and
discuss how to use Lemma 16.2. Suppose that A is uniform and A is (J,s,C). We
will use Lemma 16.2 to show that Q(A) contains a (§,s + €/2,C") set. Such a result
can then be iterated to prove Lemma 16.1.
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We are going to build a (d, s + ¢/2, C') subset of Q(A). Let us recall the definition
of a (4,s,C) set. A set Sis (4,s,C) if, for every ball B(z,r) we have

SN B(x,r)|s < Cr®|S|s.
We are going to build a set which is (p, s, C) for every p € [d,1]. So for every
p € [0,1], and every ball B(z,r), out set will obey

(27) S Bla,r)], < Cr'[S],.

Consider a sequence of scales 1 > p; > ps > ... > py = §. Assume these scales are
very close together.

First consider |Q(A)|,,. Since A is uniform, we know that A is (p1,s,C) and so
|Q(A)],, > p1° . Cover Q(A) with disjoint intervals I; of length p;. We will pick
some of these intervals I; to include in B. Initially, we include all of them, but as
we continue through the construction, we will remove bad intervals.

We pick a small parameter n > 0 with n < e.

Next we consider scale py. We know that A is (p, s,C) and so |Q(A)],, > ps* “.
Cover Q(A) with disjoint intervals I, of length p,. Now we notice how many intervals
I5 lie in each interval I;. We say that an interval [ is bad if

Q(A) NIl > o7 |Q(A) -
(Notice that a bad interval [; is a ball B(x,r) that violates (27) with p = ps. )

The number of bad intervals I; is at most p;(‘%e*”). Next define X poq C A* by

X1 paa = {(a1,...,ax) € Ak Q(aq, ..., ax) lies in a bad interval I;}.
Our robust estimate Lemma 16.2 tells us that |Xipaal, < A
uniform, this also tells us that for every p < pq,

|p,. Since A is

|X1,bad|p < |Ak|p-
Define X; = A%\ X1 paa-
Applying Lemma 16.2, we also see that

(28) QX D)|pr = p1*

(29) QX D)o, = P2

Typically, we have |Q(X1)|, ~ |Q(A)|,. We will focus on that special case in
this sketch. (If |Q(X1)|p, < |Q(A)|y,, then we redefine bad intervals and repeat the
argument above.)
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We claim that Q(X;) obeys (27)with dimension s = s + € — 7, in the special case
where r and p are either 1 or p; or py. There are three cases here. If r = 1 and
p = p1, (27) boils down to (28. If r = 1 and p = po, then (27) boils down to (29).
And if r = p; and p = po, then (27) boils down to the definition of a good interval:

|Q(X1) N Ly, = |Q(A) N L, < pi+6_n|Q(A)|pg ~ pf+€_n|Q(X1)|p2.
Now we continue by the same method working through all the scales p;. In this
way, we will find a subset X = Xy C A* so that Q(Xy) obeys (27) at all the scales

r,p of the form p;. Since these cover essentially all scales, this finishes our proof
sketch that Q(A) contains a (J,s + €/2,C") set.

16.2. How to prove robust estimates. In this Subsection, we will outline the
proof of Lemma 16.2.

We first encountered the issue of robust estimates in the proof of the Bourgain-
Katz-Tao projection theorem in Lecture 12. Recall that in the previous lecture, we
had proven that if A C F, with |A| = p*4 and D C F, with |D| = p°» with 0 <
sa,Sp < 1, then there exists t € D so that |7, (A x A)| > p*a*t€ for € = €(sa, sp) > 0.
We wanted to replace the product set A x A by a general set X C IF; and to prove
that there exists ¢ € D so that |m,(X)| > p°|X|"/2. By changing variables we could
assume that our direction set D included horizontal and vertical projections, and
then we could reduce to the case that X C A; x Ay with |X| > p=2¢|A;||Az|. So we
only needed to make our previous estimates a little more robust, extending from the
case when X is an honest product A x A to the case when X is a large subset of a
product A; x As.

But we found that this extension was not straightforward. It required a signficant
new idea. The key idea to make this extension work is the Balog-Szemeredi-Gowers
theorem. The BSG theorem can be used in a similar way in the proof of Lemma
16.2.

To prove the more robust estimate Lemma 16.2, we use the BSG theorem and
follow some of the ideas from Lecture 12. We will ultimately prove Lemma 16.2 with
k = 3 and with polynomial Q(a1, as, as) = a; + asas.

We sketch the steps of this argument. Each step is similar to proofs we have done
in the last lectures. It is a good exercise to fill in the details of these arguments.

The first step is to prove that if A is a (9, s,C) set, then there is an a € A so that

(30) 1A+ adls > 675

By Lemma 14.8, we know that there is a polynomial @ so that |Q(A)|s > 6 ¢, and
it’s not hard to show that Q(A) is a (J,s,C) set. Using a careful double counting
argument, we can then show that there exists b € Q(A) so that |A + bA|s > ¢
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And then using the contagious structure argument, based on Plunnecke-Ruzsa, we
can find a € A so that |A + aA|s > 6°~¢. This argument is similar to Lecture 11.

The second step is to upgrade this estimate by proving that there is some a € A so
that if X C A x A is a large subset, then |m,(X)|s £ 6~°~°. More precisely, we would
prove that there is some 1 > 0 so that if | X|s > 07|A x Als, then |7, (X)]s L 0.
This upgrade is based on Balog-Szemeredi-Gowers and a symmetry argument, as in
Lecture 12.

With just a little more work, we can prove that almost all a € A have the good
property in the second step. To prove this upgrade, we set Ago,q C A to be the set
of a € A with the good property in the second step, and we set Apeg = A\ Agooa- If
Apaq 1s a large subset of A, then we can get a contradiction by applying our previous
results to Apgq- 3 )

All together, we see that if Q(a1,as,a3) = a1 +azas and X C A x A x Ais a large
subset, then |Q(X)|s > 6~*~¢. This finishes our proof sketch for Lemma 16.2.
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