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17. RANDOM WALKS ON FINITE GROUPS I

April 17.

In the next several sections, we will discuss applications of projection theory to
different areas. First we will discuss random walks on finite groups. Then we will
discuss the distribution of orbits in homogeneous dynamics.

We here apply projection theory to studying the behavior of random walks on a
finite group. Let G be a finite group and u be a probability measure on G. A random
walk starting at gy is defined as a sequence of random variables (g,,),>0 such that
gn+1 = gng with probability u(g). Essentially, at every step, a random element is
chosen from G using p, and then the current state is right multiplied by the chosen
element. The guiding question is how evenly distributed the random walk is after
K steps. We now develop several formal definitions to phrase this question more

precisely. First, define a convolution of functions fi, fo : G — C in the standard
way:

(31) fix fa(g) = Z fi(g1)f2(92)

91,92€G:g192=9g

We now view the random walk as a Markov chain with transitions given by a linear
operator T}, defined as

(32) Tf = fon

When f is viewed as a probabilty distribution of a state g,, T, f gives the prob-
ability distribution of g,.;. When the random walk starts at a state gy, that is
equivalent to starting with initial probability distribution d,4,. Then after one step
the probability distribution is 7},4,, so the probability of state goh is

(33> T go gOh Z 590 91 )
(34) = dgo(g0)pu(h) = pu(h)

After K steps, the probability distribution of the random walk position gx is
T K84, This leads to the first question, which is to estimate the L? norm
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or alternatively, other L” norms. The 1/|G| term is the average value of the
distribution over all of GG, so the L” norms are measures of the regularity of the
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distribution. Since T}, is a linear operator, we can approach this by examining the
singular values of 7T),. The squares of the singular values are the eigenvalues of the
matrix TE T,, where T;f is the transpose. When 7' is symmetric, the singular values
are the same as the eigenvalues, but in general they are different.

We first show the following lemma:

Lemma 17.1.

(36) T fllze < |If]lze
Proof.

(37) T,.f(g) =f = pu(g)

(38) = > flg)ulg2)

(39) = f(99, " ilg2)

We then define the right multiplication operator R, so that R,f(h) = f(hg™')
Then applying the triangle inequality and the translation invariance of the L? norm,

(40) T f e =11 1lg2) Ry f1] 22
(41) <D nlg2)l| Ros f |12
(42) <I[f]l2

O

Then since 7,1 = 1, 1 is the largest singular value of 7. We now define the
subspace

L*(G)o = {f € L*(G) : (£,1) = 0}
where (,) is the standard inner product with the counting measure on G. We can
then analyze the restriction of 7,

T, : L*(G)o — L*(G)o
This restriction quotients out the trivial singular value 1 and allows us to examine
the next singular value, which governs the decay rate of the L? norms. Denote o4(7),)
as the largest singular value of T}, restricted to L*(G)o. Then we can quantitatively
express the decay of the L? norm in terms of the following proposition:
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Proposition 17.2.
1
1T, 090 — 77122 < o (T)*

|G|
Proof. Note that
1
0go — —=7,1) =0
< 90 |G’7 >
SO
5, — — e L)
” Gl ’
Then T}, maps &y, — \_él to L?(G)g, so the claim follows from the fact that the
largest singular value of a linear operator is also its operator norm. U

This proposition leads to the second guiding question, which is to estimate o1(7},).
The proposition shows that an estimate on o1(7},) is sufficient to give an estiamte
on the decay of the L? norm. We additionally remark that since we are using the
counting measure, the L° norm is bounded by the L? norm, so this gives an estimate
of the L*> norm as well.

We now examine the group G = SLy(F,) where p is prime. The case where p is
the uniform measure on a subset A of G was studied by Selberg. For convenience,
define Ty = T),, to be the operator corresponding to the measure on A. In particular,
Selberg studied the particular set

=16 3)-( )

which has four elements. Selberg essentially proved the following theorem about
this case:

Theorem 17.3. There exists a universal constant ¢ > 0 so that for every prime p,
then

(43) Jl(TA) § 1—c

The theorem that Selberg actually proved is about the smallest eigenvalue of the
Laplacian on a hyperbolic surface X, whose geometry is closely related to SLs(IF,)
with the generating set A above. Using modern techniques such as Cheeger’s in-
equality, it is not difficult to translate between Selberg’s eigenvalue bound and the
mixing bound in Theorem 17.3.

Before discussing the proof of Selberg’s theorem, we recall the connection between
mixing estimates and isoperimetric inequalities on graphs. For a finite group G and
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a subset A C G define a graph C(G, A) = (V, E) with set of vertices V' indexed by
G and an edge (g1, 92) € F if g7 'gs € A, or equivalently there exists a € A such that
g2 = gia. Therefore the nodes that are connected by edges are the nodes that can

be connected by a single step of the random walk. Now for two subsets S, T C V,
define

E(S,T) ={(g1,92) € SxT:(g1,92) € E}
or equivalently, E(S,T) = ENS x T. We now consider the following proposition:

Proposition 17.4. If S is a subset of G, then

Al|S||S¢
(44) 515,57 2 (1= oz 2
Proof. We first prove that
(45) E(S, SC)| — |A|<TA15,]_Sc>
which follows from the following computation'
Tals(g Z ls(ga™")
aeA
<TA15(Q), 1Sc = Z Z 15 gCL ]_Sc )

gGG aeA

Note that 15(ga )1g:(g) = 1 if ga=! € S and g € S¢, which is equivalent to the
statement (ga™',g) € E(S,S¢), which shows equation 45. We then decompose 1g
into a constant and mean zero part as

=] 5] 151,
|G| |G|
Applying this decomposition to 1gc as well gives

lg = + 1(s—

Bl 151 Bl Bl
Talg, 1ge) =(T' 1lg — 1——+4+1ge — (1 — —
< Als, S> < A<|G| + 1s |G| ) ‘G| + 1s ( |G|)>

5] 11y . 18] 5|
-— 4T 1o — , 1 — lee — (1 —
=gt s —g) e e g

This then decomposes into the inner products of the constant and the non-constant
terms. The inner product of the constant terms is
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Gl (1= 1 2) =
el T G

The inner product of the non-constant terms is

m(u—%)u_u—%»

Applying Proposition 17.2 and Cauchy Schwartz gives the upper bound

S S SSC
ATls ~ igllialis - (1= Zhle = () 55

Then combining the terms from the constant and nonconstant parts gives

|S115]
|G|
Multiplying by A and applying equation 45 then gives the desired result:

(T'als,1se) > (1 —0o(Ta))

E(S,5) > (1 - U(TA))%
OJ

Without loss of generality S can be chosen so that |S| < |G|/2. Then if o(T4) <1

E(S,59 2 |5]

where the implicit constants depend on A. This property of a subset of vertices
and its complement sharing a large number of edges is known as an expander graph.
Note that when A is a subset of a proper subgroup H of GG, then the set of elements
generated by A is at most H. The distribution will therefore never become uniform
after repeatedly applying T4, which implies that o1(T4) = 1.

The original proof of Selberg’s theorem was difficult and relied on the Riemann
hypothesis for curves over a finite field. Around 1990, Sarnak and Xue gave a more
elementary proof (with slightly weaker bounds on the constants). We will discuss
some of the ideas in that proof. The first idea has to do with the representation
theory of the group SLy(FF,)/ Consider the following proposition:

Proposition 17.5. If p : SLy(F,) — U(d) is a nontrivial representation of SLy(IF,)
mapping to the unitary group with d dimensions, then d > ’%1
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Proof. This proof relies on the existence of the elements
(11
“=No 1
(10
Tl

These elements generate S Ly (F,), and are tranposes of each other, so without loss
of generality we assume that p(u) # e. u and v have the property that they are
conjugate to powers of themselves. In particular:

(26 Y6

The conjugates of v similarly are powers of v. Then because representations pre-
serve conjugacy classes, p(u) must be conjugate to p(u)® . Since conjugate matrices
have the same eigenvalues, then p(u) and p(u)® must have the same set of eigen-
values. p(u) has order p, so its eigenvalues must be roots of unity of order p, or
equivalently of the form e2™/? for integer n. Then the eigenvalues of p(u)®", and
equivalently of p(u), are of the form e2ma’n/p - Since this is true for arbitrary a,
a single nontrivial eigenvalue e?™"/P generates all eigenvalues corresponding to a?n
mod p. p(u) is by hypothesis not the identity, so must have at least one eigenvalue

p—1

not equal to 1. Since there are “5= distinct nonzero quadratic residues (and 1 is

an eigenvalue of p(u)), then p(u) has at least 2! distinct eigenvalues, and so has
t L
2

and

dimension at leas . This completes the proof. 0
We now apply this proposition to prove a further proposition.

Proposition 17.6. Let i be a measure on SLy(F,). Then

p+1
01(T,)" = < [SLa(Fy)] [fullz:

In particular, since |SLy(F,)| ~ p3, this implies

o1(T) < pllul|r2

Proof. Note that o4(T},)* is the ith eigenvalue of T, T};. Since T,,T}; is a right action,
its eigenspaces have a left G action L,f(h) = f(g~'h), which is nontrivial except
for the constant functions. Each action on an eigenspace induces a representation of
SLy(F,), which is unitary because
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(Lof by =Y flg~ O)h(0)

tcc

=" f(O)h(gt)
teG

:<f7 Lg*1h>

Therefore the representation must have dimension at least ’%1, so the singular
values must value multiplicity at least Z%l. Then because the Frobenius is invariant
under unitary operations, and since 7,7} is symmetric it is diagonalizable by a
unitary transformation:

4 with multiplicity

= Z |(Tu)g1,gz‘2

91,92

=> g ")
=|SLy(F,)| Y pulg)”

=|SLa(F,)| |z

Then returning to the case that y = pu, for a subset A

1 1

2
= —|A|l = —
||:uz4||L2 | 4|2| | ‘ 4’

This together with proposition 17.6 implies the following corollary:
Corollary 17.7.

This bound is only nontrivial when |A| 2 p?. The bound is tight in the sense
that there are sets A with |A| ~ p? and with o,(T4) = 1. Indeed, if A is a proper
subgroup of SLy(F,), then 1(74) = 1. The subgroup of upper triangular matrices
in SLy(F,) has cardinality ~ p?.

Therefore, this estimate implies that every proper subgroup of SLy(F,) has cardi-
nality < p?. We state this result as a corollary.
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Corollary 17.8. If H is a proper subgroup of SLy(F,) then |H| < p?.

Proof. If H is a proper subgroup, then o(Ty) = 1, which implies that p?/|H| = 1.
Multiplying both sides by |H| gives the desired result. O

(Note that the order of SLs(F), is p(p — 1)(p + 1), so this corollary is not a
consequence of Lagrange’s theorem. )

To get further bounds for o1(74) we will need to take account of other features of
A besides just the cardinality of A. We will explore how to do in the next lecture.
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