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17. Random walks on finite groups I

April 17.  
In the next several sections, we will discuss applications of projection theory to 

different areas. First we will discuss random walks on finite groups. Then we will 
discuss the distribution of orbits in homogeneous dynamics. 
We here apply projection theory to studying the behavior of random walks on a 

finite group. Let G be a finite group and µ be a probability measure on G. A random 
walk starting at g0 is defined as a sequence of random variables (gn)n≥0 such that 
gn+1 = gng with probability µ(g). Essentially, at every step, a random element is 
chosen from G using µ, and then the current state is right multiplied by the chosen 
element. The guiding question is how evenly distributed the random walk is after 
K steps. We now develop several formal definitions to phrase this question more 

precisely. First, define a convolution of functions f1, f2 : G → C in the standard 
way: 

 
(31) f1 ∗ f2(g) = f1(g1)f2(g2) 

g1,g2∈G:g1g2=g 

We now view the random walk as a Markov chain with transitions given by a linear 
operator Tµ defined as 

(32) Tµf = f ∗ µ 

When f is viewed as a probabilty distribution of a state gn, Tµf gives the prob-
ability distribution of gn+1. When the random walk starts at a state g0, that is 
equivalent to starting with initial probability distribution δg0 . Then after one step 
the probability distribution is Tµδg0 , so the probability of state g0h is 

 
(33) Tµδg0 (g0h) = δg0 (g1)µ(g2) 

g1g2=g0h 

(34) = δg0 (g0)µ(h) = µ(h) 

After K steps, the probability distribution of the random walk position gK is 
Tµ

K δg0 . This leads to the first question, which is to estimate the L2 norm 

1 
(35) ||TµK δg0 − ||L2 

|G| 
or alternatively, other Lp norms. The 1/|G| term is the average value of the 

distribution over all of G, so the Lp norms are measures of the regularity of the 
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distribution. Since Tµ is a linear operator, we can approach this by examining the 
singular values of Tµ. The squares of the singular values are the eigenvalues of the 
matrix Tµ

T Tµ where Tµ
T is the transpose. When T is symmetric, the singular values 

are the same as the eigenvalues, but in general they are different. 
We first show the following lemma: 

Lemma 17.1. 

(36) ||Tµf ||L2 ≤ ||f ||L2 

Proof. 

(37) Tµf(g) =f ∗ µ(g) 
(38) = f(g1)µ(g2) 

g1g2=g 
(39) = f(gg2 

−1)µ(g2) 
g2 

We then define the right multiplication operator Rg so that Rgf(h) = f(hg−1) 
Then applying the triangle inequality and the translation invariance of the L2 norm, 

 
(40) ||Tµf ||L2 =|| µ(g2)Rg2 f ||L2 

g2 

(41) ≤ µ(g2)||Rg2 f ||L2 

g2 

(42) ≤||f ||L2 



Then since Tµ1 = 1, 1 is the largest singular value of Tµ. We now define the 
subspace 

L2(G)0 = {f ∈ L2(G) : f, 1 = 0}
where ,  is the standard inner product with the counting measure on G. We can 

then analyze the restriction of Tµ 

Tµ : L
2(G)0 → L2(G)0 

This restriction quotients out the trivial singular value 1 and allows us to examine 
the next singular value, which governs the decay rate of the Lp norms. Denote σ1(Tµ) 
as the largest singular value of Tµ restricted to L2(G)0. Then we can quantitatively 
express the decay of the L2 norm in terms of the following proposition: 
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Proposition 17.2. 
1 ||TµK δg0 − ||L2 ≤ |σ1(Tµ)|K|G| 

Proof. Note that 
1 δg0 − , 1 = 0 
|G|

so 

δg0 − 
1 ∈ L2(G)0|G|

Then Tµ maps δg0 − 1 to L2(G)0, so the claim follows from the fact that the|G|
largest singular value of a linear operator is also its operator norm. 

This proposition leads to the second guiding question, which is to estimate σ1(Tµ). 
The proposition shows that an estimate on σ1(Tµ) is sufficient to give an estiamte 
on the decay of the L2 norm. We additionally remark that since we are using the 
counting measure, the L∞ norm is bounded by the L2 norm, so this gives an estimate 
of the L∞ norm as well. 
We now examine the group G = SL2(Fp) where p is prime. The case where µ is 

the uniform measure on a subset A of G was studied by Selberg. For convenience, 
define TA ≡ TµA to be the operator corresponding to the measure on A. In particular, 
Selberg studied the particular set     

A = 
1 
0 
±1 
1 

, 
1 
±1 

0 
1 

which has four elements. Selberg essentially proved the following theorem about 
this case: 

Theorem 17.3. There exists a universal constant c > 0 so that for every prime p, 
then 

(43) σ1(TA) ≤ 1 − c 

The theorem that Selberg actually proved is about the smallest eigenvalue of the 
Laplacian on a hyperbolic surface Xp whose geometry is closely related to SL2(Fp) 
with the generating set A above. Using modern techniques such as Cheeger’s in-
equality, it is not difficult to translate between Selberg’s eigenvalue bound and the 
mixing bound in Theorem 17.3. 
Before discussing the proof of Selberg’s theorem, we recall the connection between 

mixing estimates and isoperimetric inequalities on graphs. For a finite group G and 
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a subset A ⊂ G define a graph C(G, A) = (V, E) with set of vertices V indexed by 
G and an edge (g1, g2) ∈ E if g1 

−1 g2 ∈ A, or equivalently there exists a ∈ A such that 
g2 = g1a. Therefore the nodes that are connected by edges are the nodes that can 
be connected by a single step of the random walk. Now for two subsets S, T ⊂ V , 
define 

E(S, T ) ≡ {(g1, g2) ∈ S × T : (g1, g2) ∈ E} 
or equivalently, E(S, T ) = E ∩ S × T . We now consider the following proposition: 

Proposition 17.4. If S is a subset of G, then 

|A||S||Sc|
(44) |E(S, Sc)| ≥ (1 − σ1(TA)) |G| 
Proof. We first prove that 

(45) E(S, Sc)| = |A|TA1S , 1Sc  

which follows from the following computation: 1 −1)TA1S (g) = 1S (ga 
|A| 

a∈A  
TA1S (g), 1Sc  = 

1
1S (ga −1)1Sc (g)

|A|
g∈G a∈A 

Note that 1S (ga
−1)1Sc (g) = 1 if ga−1 ∈ S and g ∈ Sc , which is equivalent to the 

statement (ga−1, g) ∈ E(S, Sc), which shows equation 45. We then decompose 1S 

into a constant and mean zero part as 

|S| |S|
1S = + 1(S− )

|G| |G|
Applying this decomposition to 1Sc as well gives   

|S| |S| |S| |S|TA1S, 1Sc  =TA + 1S − , 1 − + 1Sc − (1 − ) 
|G| |G| |G| |G|  

|S| |S| |S| |S|
= + TA 1S − , 1 − + 1Sc − (1 − ) 
|G| |G| |G| |G| 

This then decomposes into the inner products of the constant and the non-constant 
terms. The inner product of the constant terms is 
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|S| |S| |S||Sc||G| (1 − ) = 
|G| |G| |G| 

The inner product of the non-constant terms is 

  
|S| |S|TA 1S − , 1Sc − (1 − ) 
|G| |G| 

Applying Proposition 17.2 and Cauchy Schwartz gives the upper bound 

|S| |S| |S||Sc|
σ1(TA)||1S − ||L2 ||1Sc − (1 − )||L2 = σ1(TA)|G| |G| |G| 

Then combining the terms from the constant and nonconstant parts gives 

|S||Sc|TA1S , 1Sc  ≥ (1 − σ(TA)) |G| 
Multiplying by A and applying equation 45 then gives the desired result: 

|A||S||Sc|
E(S, Sc) ≥ (1 − σ(TA)) |G| 



Without loss of generality S can be chosen so that |S| ≤ |G|/2. Then if σ(TA) ≤ 1 

E(S, Sc)  |S|
where the implicit constants depend on A. This property of a subset of vertices 

and its complement sharing a large number of edges is known as an expander graph. 
Note that when A is a subset of a proper subgroup H of G, then the set of elements 
generated by A is at most H. The distribution will therefore never become uniform 
after repeatedly applying TA, which implies that σ1(TA) = 1. 
The original proof of Selberg’s theorem was difficult and relied on the Riemann 

hypothesis for curves over a finite field. Around 1990, Sarnak and Xue gave a more 
elementary proof (with slightly weaker bounds on the constants). We will discuss 
some of the ideas in that proof. The first idea has to do with the representation 
theory of the group SL2(Fp)/ Consider the following proposition: 

Proposition 17.5. If ρ : SL2(Fp) → U(d) is a nontrivial representation of SL2(Fp) 
mapping to the unitary group with d dimensions, then d ≥ p+1

2 
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Proof. This proof relies on the existence of the elements   
1 1 

u = 
0 1 

and   
1 0 

v = 
1 1 

These elements generate SL2(Fp), and are tranposes of each other, so without loss 
of generality we assume that ρ(u) = e. u and v have the property that they are 
conjugate to powers of themselves. In particular:       

a 0 1 1 a−1 0 1 a2 
a2 

= = u−10 a 0 1 0 a 0 1 

The conjugates of v similarly are powers of v. Then because representations pre-
serve conjugacy classes, ρ(u) must be conjugate to ρ(u)a

2 
. Since conjugate matrices 

have the same eigenvalues, then ρ(u) and ρ(u)a
2 
must have the same set of eigen-

values. ρ(u) has order p, so its eigenvalues must be roots of unity of order p, or 
equivalently of the form e2πin/p for integer n. Then the eigenvalues of ρ(u)a

2 
, and 

2πia2n/pequivalently of ρ(u), are of the form e . Since this is true for arbitrary a, 
a single nontrivial eigenvalue e2πin/p generates all eigenvalues corresponding to a2n 
mod p. ρ(u) is by hypothesis not the identity, so must have at least one eigenvalue 

p−1not equal to 1. Since there are 
2 distinct nonzero quadratic residues (and 1 is 

p+1 an eigenvalue of ρ(u)), then ρ(u) has at least 
2 distinct eigenvalues, and so has 

dimension at least p+1 . 
2 This completes the proof. 

We now apply this proposition to prove a further proposition. 

Proposition 17.6. Let µ be a measure on SL2(Fp). Then 

)2 p + 1 
σ1(Tµ ≤ |SL2(Fp)| ||u||L 

2 
2 

2 
In particular, since |SL2(Fp)| ∼ p3 , this implies 

σ1(Tµ)  p||u||L2 

)2 ∗ T ∗Proof. Note that σi(Tµ is the ith eigenvalue of TµT . Since Tµ µ is a right action, 
its eigenspaces have a left G action Lgf(h) = f(g− 

µ 
1h), which is nontrivial except 

for the constant functions. Each action on an eigenspace induces a representation of 
SL2(Fp), which is unitary because 
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 
Lgf, h = f(g −1)h() 

∈G 
= f()h(g) 

∈G 

=f, Lg−1 h 
p+1Therefore the representation must have dimension at least 
2 , so the singular 

values must value multiplicity at least p+1 . Then because the Frobenius is invariant 
2 

under unitary operations, and since TµTµ 
∗ is symmetric it is diagonalizable by a 

unitary transformation: 

p + 1 
σ1(Tµ)

2 ≤ σi(Tµ)
2 

2 
i with multiplicity  

= |(Tµ)g1,g2 |2 

g1,g2 
= µ(g1g2 

−1)2  
=|SL2(Fp)| µ(g)2 

g 

=|SL2(Fp)| ||µ||2 
L2 



Then returning to the case that µ = µA for a subset A 

1 1 ||µA||2 
L2 = |A| = 

|A|2 |A|
This together with proposition 17.6 implies the following corollary: 

Corollary 17.7. 
2 

σ1(TA)
2  

p 
|A| 

This bound is only nontrivial when |A|  p2 . The bound is tight in the sense
that there are sets A with |A| ∼ p2 and with σ1(TA) = 1. Indeed, if A is a proper 
subgroup of SL2(Fp), then σ1(TA) = 1. The subgroup of upper triangular matrices 
in SL2(Fp) has cardinality ∼ p2 . 
Therefore, this estimate implies that every proper subgroup of SL2(Fp) has cardi-

nality  p2 . We state this result as a corollary.
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Corollary 17.8. If H is a proper subgroup of SL2(Fp) then |H|  p2 .

Proof. If H is a proper subgroup, then σ(TH ) = 1, which implies that p2/|H|  1.
Multiplying both sides by |H| gives the desired result. 

(Note that the order of SL2(F)p is p(p − 1)(p + 1), so this corollary is not a 
consequence of Lagrange’s theorem. ) 
To get further bounds for σ1(TA) we will need to take account of other features of 

A besides just the cardinality of A. We will explore how to do in the next lecture. 
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