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18. RANDOM WALKS ON FINITE GROUPS II

April 22. Transcribed by Hang Du. Used with permission.
Setup:

e Let G be a finite group.

e ;1 : G — R is a probability measure on G, i.e., u(g) > 0,3 o pu(g) = 1.

e Starting with g9 € G, let hy € G,t =1,2,... be sampled according to u, and
define the random walk on G by ¢; = g; 1 - he, t =1,2,.. ..

Question: how evenly distributed is gx on G for large K?
To state our question more precisely, we introduce some definitions. For two
functions fi, fo : G — C, define

fixfalg) = Y. flg)falge), YgeG.

Define the operator T, : (*(G) — (*(G) by T,.f = f* p. It is straightforward to
check that for any K, T4y, is the distribution of gx defined as above. Our main
question is to estimate

1T, 800 — G711l

for large K € N.
We start with some easy observations.

Lemma 18.1. 7,1 =1, and |T,f||ec) < || fllez(c). Vf € (G).

Proof. The first claim can be checked straightforwardly. For the second claim, we

define the right shift operator R, : (*(G) — ¢*(G) by

Ryf(h) = f(f-g7"), Vfel’(G).gheq.
It is easy to check that R, : (*(G) — *(G) is an isometry, and it holds that
Tuf = frp=>Y uwlg)Ref, Vfel(G).
geG
Therefore, it follows from the triangle inequality that
1Tuflle < Y w@) I Roflle = 1 fllex - O
geG

Denote (?(G)y as the orthogonal complement of the constant functions in 2(G).
One can verify that 7, maps ((G)o to itself. Denote by o1(7},) the largest singular
value of the operator T}, : (2(G)y — (*(G)o.

Lemma 18.2. For any K € N, it holds that
|7 890 — Gl < on(T)"
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Proof. Write g4, = ﬁl + (840 )1y Where (0 )p, = 0gy — 21 € £2(G)o. We have for any

T al
K eN, TKo,, = \_C1¥|1 + TX(0gy )1, and thus

175000 — G tllee) < 1T Ggo)nllezey < 01(T) [ Ogo)nllezey < oa(T)™ . O

For a subset A of G, we denote s = ﬁlA and abbreviate T),, as Ts. Of particular
interest of us is the following concrete example: let G = SLy(FF,) where p is a large

prime and
1 +1 1 0
Aselz {(0 1 ) ) (:I:l 1)} CSLQ(FP).

We will focus on the following theorem of Selberg.

Theorem 18.3. There exists a universal constant ¢ > 0 such that, for every p,
al(TAsel) S 1—c.

In general, for a pair (G, A) where A is a subset of the group G, we are interested
in 01(T4). This is not only because it is related to the mixing of random walks on
G with steps in A (see Lemma 18.2), but also because the spectral gap 1 — o1(74)
reflects a certain expansion property of the corresponding Cayley graph.

More precisely, for A C G that is symmetric and generates G, we define C(G, A) as
the graph with vertices corresponding to the elements of G, and with edges (g1, g2) €
E if there exists a € A such that go = g1 - a. Note that A generates GG, which implies
that C(G, A) is connected. Moreover, for a subset S C G, we denote E(S, S°) as the
set of edges (g1, ¢2) € E such that g; € S and gy € S°.

Lemma 18.4. For any S C G, it holds that
|A[ST]5¢]

’E(S?SC>’ = (1_01(TA)) |G‘

Proof. 1t is straightforward to check that
|E(S, 5| = |A|{(Tals, 1ge)
= AL ) + [ANTA(Ls)n, (Lse)n)

AllS||S¢
> % — T (Al I (Ls e
Al|S]|.S°
> (1—@(@1))%' -

Combining Lemma 18.2 with Theorem 18.3, we obtain that for any S C G =
SLy(F,) with |S| < 191 in the graph C(SLy(F,), As),

c C|‘1||S|
> —.
E(S,S°) > 5
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For a large graph H = (V,E), we say H is an expander graph, if there exists a
universal constant ¢ > 0 such that for any S C V with S < ‘—g', E(S,S5°¢) > %
The above result indicates that C(SLy(F,), Asel) is a sparse expander graph (here
sparse means that the graph has average degree O(1)). While Selberg did not state
his theorem exactly in the form above, his work is in a sense the first proof of the
existence of sparse expander graphs. In what follows we fix a large prime number p
and let G = SLy(F,). We now discuss the proof of Theorem 18.3. We will not give
a complete proof, but we will discuss some of the ideas in the proof, following the
approach developed by Sarnak-Xue in the early 1990s.
/*-bound. We claim the following ¢*-estimate of oy (T},).

Theorem 18.5. There exists a universal constant C' > 0 such that
01(T,)* < Cp?||pllzz (e -
We begin with a lemma on non-trivial representations of G = SLy(IF,).
Lemma 18.6. Let p : G — U(d) be a non-trivial representation of G, then d > ’%1.

Proof. Consider the following two elements in G:

() ()

It is easy to check that u,v generates GG. Since p is non-trivial, without loss of
generality we may assume that p(u) # ;. Note that

a 0 11 a0 1 a® "
(0 a1> (0 1>(0 a):<0 1)’ Va e, .

This implies that u is conjugate to u® for any a € F,. Let A be the multi-set of

eigenvalues of p(u), we have A = A" Va € [F;. On the other hand, since u? = 1,
we have A C {z € C, 2P = 1}. Moreover, one can check that A # {1,...,1}, as this
would imply that p(u)? # I; (unless p(u) = I;). Consequently, we can pick A € A

such that A\ # 1. Then, the p%l distinct elements Xlg, a € F all lie in A. We conclude

that d > |A| > 21, as desired. O

The above lemma says that any non-trivial representation of G = SLy(F,) has
dimension at least of order p. This lower bound is order tight: consider the subgroup

U of G:
a t "
U:{(O a_l),CLGFp,tE]Fp},

which has size of order p?>. We have G acts on G/U induces a non-trivial represen-
tation with dimension of order p.
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Before proving Theorem 18.5, we first introduce some notations. For u: G — R,
define 1*(g) = pu(g™"),Vg € G. One can check that T};, the adjoint of T),, equals T},
Moreover, T),T; =T, T,;» = T}~ Denote v = p* p*.

Proof of Theorem 18.5. Let V' C (*(G), be the eigenspace of T, = 1,1, that cor-
responds to the eigenvalue \;(7,) = o1(7T,)* Consider the left shift operator L,
(*(G) — (*(G) defined by L,f(h) = f(g7*h),Vf € *(G),g,h € G. It is straightfor-
ward to check that L, commutes with 7}, and thus L, maps V to itself. Since V'
does not contain any constant function, L, induces a non-trivial representation of G
on V. By Lemma 18.6, we have dim(V)) > 2%, and thus A;(7}) has multiplicity at
least p%l. Therefore, by the trace formula we have

P lomy =L)< DoMT) =TT

2
=TI = Y. T2, =G ule)? = |Gllul?e

91,92€G geG

Since |G| ~ p?, the desired result follows. O

As a corollary, we see that for any set A C G with |A] > 2Cp?, it holds that
01(Ta)? < CP?||palleq) < 1/2. Note that for U the subgroup of G defined as above,
we have |U| ~ p? and o,(Ty) = 1. This example also shows that the result of
Theorem 18.5 is order-tight.

We say p is symmetric if p = p* (i.e. u(g) = p(g™')). When p is symmetric,
we have T}, is self-adjoint and thus o1(7,)* = M (T,)* = M(TF) = M(Tpx) =
01(T),+x). Applying Theorem 18.5, we obtain that for any K € N, it holds that

Our plan is to pick K = Cylog p for some universal constant Cy > 0, and show that
||“Ase |||e”2 < p~*!. This would imply that o1(T4_,) < 1 — ¢ for some universal
c=c(C, CO) > 0.

Lifting to SLy(Z). Consider the projection 7, : Z — F,, which induces a group
homomorphism 11, : SLy(Z) — SLy(F,). Let M be a probability measure on SLy(Z)
and we let = I1,(M) be its push-forward onto SLy(F,). It holds that IT,(M*K) =
K for any K € N. Therefore, to understand ,uj{; | for large K € N, we may try to
first understand M3X , where My, = 714, and then understand how it projects
onto SLy(F,).

Some good features about SLy(Z):

mall2(0)

(1) SLy(Z) is virtually free, meaning that it has a finite index free subgroup.
(2a) SLy(Z) C SLy(R) closely related to Lie groups.
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(2b) SLy(Z) acts nicely on the H? hyperbolic plane.

Intuition about convolution on SLy(Z): As a warm-up, consider the convolu-
tionon Z. Let p = %(51 +4_1). By the central limit theorem, u can be approximated
by Gaussian, which intimately relates to the heat kernel on R. In light of this, we
might hope that for a probability measure M on SLy(Z), there is some central limit
theorem for matrices, and the convolution M*¥ would be related to the “heat kernel”
on SLy(R).

Consider the “ball” in SLy(R) with radius 7", defined as follows:

BT :{(CCL 2) GSLQ(R)Z(I2+b2+C2+d2§T2} .

Moreover, we denote Br(Z) := Br N SLy(Z).
Lemma 18.7. For T large, we have |Br(Z)| ~ T?.
Proof sketch. We need to count the solutions of ad—bc = 1,a,b,c,d € Z, a>+b*+c+

d*> < T? For a typical pair (a,d) € [-T,T]?, the number of pairs (b,c) € [T, T]?
such that bc = ad—1 is at least 1, and at most 7°("). This suggests |Br(Z)| ~ T2. O
Vague statement: for large K, M*¥ is roughly equally distributed on Br(Z), where
T ~exp(c(M) - K).
Let us see how a statement of this form about random walks on SLs(Z) leads to
a spectral gap in SLy(IF,).
Lemma 18.8. If yu is symmetric, then |3y = w?* (1), where I € G is the
identity element.

Proof. By definition we have
HM*KH%(G) _ Z N*K(g>2 _ Z M*K(Q>M*K(gfl) _ /L*ZK([) . 0
9eG geq

This leads us to examine [|[p3% |17 o) = w25 (1), where I € SLy(IF,) is the identity.
We can relate this to a measure on SLs(Z). To set this up, let I'), C SLy(Z) be the
pre-image of I € SLy(F,) under II,,, i.c.,

r,:= {a,b,c,deZ,ad—bc:l, ((Cl Z)E(é ?) (modp)}

Now we have
s, ey = 1h (1) = T, (M35 (1)),
and by the vague statement, we expect

sel
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where T' ~ log p. Since SLy(FF,) has size of order p?, it is natural to expect that for
large T, T', N By(Z) occupies nearly a p~3-fraction in By(Z). The following lemma
shows that this is indeed the case.

Lemma 18.9. For T > p?, it holds that [T, N Br(Z)| < p~3T>.

Proof. For any (Z 2 € 'y, we have p | b,p | ¢, and thus p* | be = ad — 1.
Meanwhile, we have p | a—1, p | d—1, which implies p? | (a—1)(d—1) = ad—a—d+1.
Altogether we conclude that p? | a+d — 2. In light of this, we see that for ((2 Z) €

I, N Br(Z), a € [-T,T] has at most O(p~'T) choices, and given a, d satisfies

= —2—a (mod p?) has at most O(p~2T) choices (here we use the fact that T' > p?).
Finally, given a,d, b, c satisfies bc = ad — 1 has at most 7°!) choices. Combining
things together, we obtain the desired bound. 0

Proof sketch for Theorem 18.3. Assuming the vague statement about random walks
on SLy(Z) we can now assemble our ingredients to give a proof sketch of Selberg’s
theorem.

We pick K such that T ~ exp(c(Mgq)K) ~ p'!, and thus K < Cplogp for a
universal constant Cy > 0. By the vague statement and Lemmas 18.8, 18.9, we have
2 < [T, N Br(Z)| < p°T? _ -3
02(G) =~ |BT(Z)| I T2 :

Applying Theorem 18.5, we obtain that oy (T4, )* < p~'. Thisyields that o1(T4,,) <
1 — ¢ for some universal constant ¢ > 0. O

[

Connection to hyperbolic geometry

Selberg’s theorem is closely connected to hyperbolic geometry. In fact, Selberg’s
original theorem was about the eigenvalues of the Laplacian on certain hyperbolic
manifolds. The hyperbolic manifold perspective also gives a nice approach to the
vague statement in the proof sketch above. In this short section, we briefly introduce
these ideas.

Recall that SLy(Z) acts isometrically on H2. Let X(p) = H?/T,. If p is large,
then the action is properly discontinuous, and so X(p) is a hyperbolic surface. It
is a complete surface with finite area and with some cusps. Note that X(p) is a
cover of X (1), and the group of deck tranform of X (p) is SLy(F,). So the “large
scale geometry” of X(p) is closely related to the geometry of the Cayley graph of
SLo(F,) with generators A, where A is the reduction mod p of some set of generators
of SLy(Z). For instance, we could take A = A.

Consider the spectrum of the Laplacian of X (p). We have 0 lies in the spectrum,
but above 0 there is a gap. Denote A;(X(p)) the smallest positive eigenvalue of
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the Laplacian of X (p). Selberg proved that A\ (X(p)) > = and conjectured that
M (X(p)) > 1 —o(1). Because of the close connection between the geometry of X (p)
and the geometry of the Cayley graph of SLy(F,), it is not too hard to show that
a lower bound for A\;(X(p)) is equivalent to an upper bound for o1(T4), with A as
above.

The proof we sketched above can be translated into hyperbolic geometry using
the heat kernel. The heat kernel describes a diffusion process on a Riemannian
manifold, and it is a continuous analogue of a random walk. The heat kernel on a
Riemannian manifold is written as Hy(x,y), where t represents time, and z,y live in
the Riemannian manifold. The probabilistic interpretation is that Hy(z,y)dvol, is
the probability distribution for the position of a particle that started at = and then
diffused for time ¢.

We write H; x(p) for the heat kernel on X (p). We think of H; x(, as analogous to
1** in the proof sketch above, with ¢ analogous to k.

First big step: Prove that H; x(,) is roughly evenly distributed on X (p). We will
discuss the proof of this more below.

In particular, we prove that there is a constant Cj so that if ¢t = Cjylogp and
x € X(p), and for t = Cylogp, then

1H ) (2, )l < p720

This is analogous to proving that [[4™*[|72gp,r ) < p~*!. There is a close con-
nection between the mixing properties of the heat kernel and the eigenvalues of the
Laplacian on a Riemannian manifold. This connection is analogous to the trace
formula that we used in the finite group setting. On a closed manifold, the for-
mula has a simple form closely parallel to the formulas we used above. If we let
0= X < A1 < Xy < ... be the spectrum of the Laplacian on a compact Riemannian
manifold M, then we have

Ze_zt’\j :/ HQt(x,x)dvol:/ Hy(z,y)*dxdy.
M M

j XM

Since X (p) is not compact, its spectral theory is a little more complicated, but
this is a technical detail. This part of the proof is less elementary in the hyperbolic
setting than in the finite group setting, but it is basically analogous.

Since SLo(F,) acts isometrically on X (p), each eigenspace is a representation of
SLy(F,). The main case is when the representation on the \; eigenspace is non-
trivial. Then it has dimension at least (p — 1)/2 and so we get

—1
= Ze-an §/ Hy(x,y)*dxdy.
2 MxM
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Then the first big step gives us, with t = C'log p,

p— 16_29\1 < / Hi(z, y)2dady < pPp~2!
2 MxM

and so e 2 < p~! and so \; > ¢ > 0 uniformly in p.

Now we return to the first big step.

We write Hy x(p) for the heat kernel on X(p) and H,y for the heat kernel on
the hyperbolic plane. These two heat kernels are closely connected: H x(p) is the
pushforward of H,y by the covering map I, : H — X (p). In other words, if IL,(Z) =
x and IL,(y = y), then

}¥tXXp xZ, JI j{: }{tH
€l
In particular, to do the first big step, we have to estimate

Hyt xpy (7, 7) = ZH%H
v€elyp

This is analogous to estimate M**(I",) in the proof sketch above. This was a key
moment in the proof sketch above where we made a vague statement. This part
of the proof is easier in the hyperbolic context because there is a simple explicit
formula for H;p. Using this explicit formula and Lemma 18.9, it is fairly easy to
prove the desired bounds for Hy x (). So this part of the proof is actually easier in
the hyperbolic setting than in the finite group setting.
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