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18. Random walks on finite groups II

April 22. Transcribed by Hang Du. Used with permission. 
Setup: 

• Let G be a finite group. 
• µ : G → R is a probability measure on G, i.e., µ(g) ≥ 0, g∈G µ(g) = 1. 
• Starting with g0 ∈ G, let ht ∈ G, t = 1, 2, . . . be sampled according to µ, and
define the random walk on G by gt = gt−1 · ht, t = 1, 2, . . . . 

Question: how evenly distributed is gK on G for large K? 
To state our question more precisely, we introduce some definitions. For two 

functions f1, f2 : G → C, define  
f1 ∗ f2(g) = f1(g1)f2(g2) , ∀g ∈ G . 

g1,·g2=g 

Define the operator Tµ : 2(G) → 2(G) by Tµf = f ∗ µ. It is straightforward to 
check that for any K, T K is the distribution of gK defined as above. Our mainµ δg0 

question is to estimate 
T K 1 

µ δg0 − 12(G)|G| 

for large K ∈ N. 
We start with some easy observations. 

Lemma 18.1. Tµ1 = 1, and Tµf2(G) ≤ f2(G), ∀f ∈ 2(G). 

Proof. The first claim can be checked straightforwardly. For the second claim, we 
define the right shift operator Rg : 2(G) → 2(G) by 

Rgf(h) = f(f · g −1) , ∀f ∈ 2(G), g, h ∈ G . 

It is easy to check that Rg : 2(G) → 2(G) is an isometry, and it holds that  
Tµf = f ∗ µ = µ(g)Rgf , ∀f ∈ 2(G) . 

g∈G 

Therefore, it follows from the triangle inequality that  
Tµf2(G) ≤ µ(g)Rgf2(G) = f2(G) . 

g∈G 

Denote 2(G)0 as the orthogonal complement of the constant functions in 2(G). 
One can verify that Tµ maps 2(G)0 to itself. Denote by σ1(Tµ) the largest singular 
value of the operator Tµ : 2(G)0 → 2(G)0. 

Lemma 18.2. For any K ∈ N, it holds that 
1 )KT K δg0 − 12(G) ≤ σ1(Tµ .µ |G| 
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Proof. Write δg0 = 1 1 +(δg0 )h, where (δg0 )h = δg0 − 1 1 ∈ 2(G)0. We have for any |G| |G|
K ∈ N, T K 1 1 + T K 

µ δg0 = µ (δg0 )h, and thus |G| 

T K 1 )K 
µ δg0 − 12(G) ≤ TµK (δg0 )h2(G) ≤ σ1(Tµ)

K (δg0 )h2(G) ≤ σ1(Tµ . |G| 

For a subset A of G, we denote µA = 1 1A and abbreviate TµA as TA. Of particular |A|
interest of us is the following concrete example: let G = SL2(Fp) where p is a large 
prime and     

1 ±1 1 0 
Asel = , ⊂ SL2(Fp) .0 1 ±1 1 

We will focus on the following theorem of Selberg. 

Theorem 18.3. There exists a universal constant c > 0 such that, for every p, 
) ≤ 1 − c.σ1(TAsel 

In general, for a pair (G, A) where A is a subset of the group G, we are interested 
in σ1(TA). This is not only because it is related to the mixing of random walks on 
G with steps in A (see Lemma 18.2), but also because the spectral gap 1 − σ1(TA) 
reflects a certain expansion property of the corresponding Cayley graph. 
More precisely, for A ⊂ G that is symmetric and generates G, we define C(G, A) as 

the graph with vertices corresponding to the elements of G, and with edges (g1, g2) ∈ 
E if there exists a ∈ A such that g2 = g1 · a. Note that A generates G, which implies 
that C(G, A) is connected. Moreover, for a subset S ⊂ G, we denote E(S, Sc) as the 
set of edges (g1, g2) ∈ E such that g1 ∈ S and g2 ∈ Sc . 

Lemma 18.4. For any S ⊂ G, it holds that 

|A||S||Sc||E(S, Sc)| ≥ (1 − σ1(TA)) . 
|G| 

Proof. It is straightforward to check that 

|E(S, Sc)| = |A|TA1S , 1Sc  

= |A| |
|
G
S|
| 1, 

|
| 
S
G 

c 

|
| 1 + |A|TA(1S )h, (1Sc )h

|A||S||Sc|≥ − σ1(TA)(1S )h2(G)(1Sc )h2(G)|G| 
|A||S||Sc|≥ (1 − σ1(TA)) . 
|G| 

Combining Lemma 18.2 with Theorem 18.3, we obtain that for any S ⊂ G = 
SL2(Fp) with |S| ≤ |G 

2 
| , in the graph C(SL2(Fp), Asel), 

c|A||S|
E(S, Sc) ≥ . 

2 
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For a large graph H = (V, E), we say H is an expander graph, if there exists a 
c|E||S|universal constant c > 0 such that for any S ⊂ V with S ≤ |V | , E(S, Sc) ≥ .

2 |V |
The above result indicates that C(SL2(Fp), Asel) is a sparse expander graph (here 
sparse means that the graph has average degree O(1)). While Selberg did not state 
his theorem exactly in the form above, his work is in a sense the first proof of the 
existence of sparse expander graphs. In what follows we fix a large prime number p 
and let G = SL2(Fp). We now discuss the proof of Theorem 18.3. We will not give 
a complete proof, but we will discuss some of the ideas in the proof, following the 
approach developed by Sarnak-Xue in the early 1990s. 
2-bound. We claim the following 2-estimate of σ1(Tµ). 

Theorem 18.5. There exists a universal constant C > 0 such that 

σ1(Tµ)
2 ≤ Cp2µ2 

2(G) . 

We begin with a lemma on non-trivial representations of G = SL2(Fp). 

Lemma 18.6. Let ρ : G → U(d) be a non-trivial representation of G, then d ≥ p− 
2
1 . 

Proof. Consider the following two elements in G:     
1 1 1 0 

u = , v = .
0 1 1 1 

It is easy to check that u, v generates G. Since ρ is non-trivial, without loss of 
generality we may assume that ρ(u) = Id. Note that       −1 2a 0 1 1 a 0 1 a 

−1 = , ∀a ∈ F∗ 
p .0 a 0 1 0 a 0 1 

aThis implies that u is conjugate to u 
2 
for any a ∈ F∗ 

p. Let Λ be the multi-set of 
peigenvalues of ρ(u), we have Λ = Λa2 

, ∀a ∈ F∗ 
p. On the other hand, since u = 1, 

we have Λ ⊂ {z ∈ C, zp = 1}. Moreover, one can check that Λ = {1, . . . , 1}, as this 
would imply that ρ(u)p = Id (unless ρ(u) = Id). Consequently, we can pick λ ∈ Λ 
such that λ = 1. Then, the p− 

2
1 distinct elements λa

2 
, a ∈ F∗ 

p all lie in Λ. We conclude 
that d ≥ |Λ| ≥ p−1 , as desired. 

2 

The above lemma says that any non-trivial representation of G = SL2(Fp) has 
dimension at least of order p. This lower bound is order tight: consider the subgroup 
U of G:    

a t 
U = −1 , a ∈ F∗ 

p, t ∈ Fp ,
0 a 

which has size of order p2 . We have G acts on G/U induces a non-trivial represen-
tation with dimension of order p. 
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Before proving Theorem 18.5, we first introduce some notations. For µ : G → R, 
−1), ∀g ∈ G. ∗ ∗ .define µ ∗(g) = µ(g One can check that Tµ , the adjoint of Tµ, equals Tµ 

T ∗ ∗Moreover, Tµ = TµTµ ∗ = Tµ∗µ ∗ . Denote ν = µ ∗ µ .µ 

Proof of Theorem 18.5. Let V ⊂ 2(G)0 be the eigenspace of Tν = TµTµ 
∗ that cor-

responds to the eigenvalue λ1(Tν ) = σ1(Tµ)2 . Consider the left shift operator Lg : 
2(G) → 2(G) defined by Lgf(h) = f(g−1h), ∀f ∈ 2(G), g, h ∈ G. It is straightfor-
ward to check that Lg commutes with Tν , and thus Lg maps V to itself. Since V 
does not contain any constant function, Lg induces a non-trivial representation of G 
on V . By Lemma 18.6, we have dim(V ) ≥ p− 

2
1 , and thus λ1(Tν ) has multiplicity at 

least p− 
2
1 . Therefore, by the trace formula we have p − 1 p − 1 

σ1(Tµ)
2 = λ1(Tµ) ≤ λi(Tν ) = Tr(Tν )

2 2 i  
= Tr(TµT ∗ ) = T 2 = |G| µ(g)2 = |G|µ2µ µ,g1,g2 2(G) . 

g1,g2∈G g∈G 

Since |G| ∼ p3 , the desired result follows. 

As a corollary, we see that for any set A ⊂ G with |A| ≥ 2Cp2 , it holds that 
σ1(TA)

2 ≤ Cp2µA2 ≤ 1/2. Note that for U the subgroup of G defined as above, 2(G) 

we have |U | ∼ p2 and σ1(TU ) = 1. This example also shows that the result of 
Theorem 18.5 is order-tight. 
We say µ is symmetric if µ = µ ∗ (i.e. µ(g) = µ(g−1)). When µ is symmetric, 

we have Tµ is self-adjoint and thus σ1(Tµ)K = λ1(Tµ)K = λ1(Tµ
K ) = λ1(Tµ ∗K ) = 

σ1(Tµ ∗K ). Applying Theorem 18.5, we obtain that for any K ∈ N, it holds that 

)K ∗K 2σ1(TAsel ≤ Cp2µAsel 2(G) .

Our plan is to pick K = C0 log p for some universal constant C0 > 0, and show that 
∗K −2.1µ 2 ≤ p . This would imply that σ1(TAsel ) ≤ 1 − c for some universal Ase; |ell2(G) 

c = c(C, C0) > 0. 
Lifting to SL2(Z). Consider the projection πp : Z → Fp, which induces a group 

homomorphism Πp : SL2(Z) → SL2(Fp). Let M be a probability measure on SL2(Z) 
and we let µ = Πp(M) be its push-forward onto SL2(Fp). It holds that Πp(M

∗K ) = 
∗K ∗Kµ for any K ∈ N. Therefore, to understand µAsel 

for large K ∈ N, we may try to 
first understand M∗K , where MAsel = 1 , and then understand how it projects Asel 4 1Asel 

onto SL2(Fp). 
Some good features about SL2(Z): 
(1) SL2(Z) is virtually free, meaning that it has a finite index free subgroup. 
(2a) SL2(Z) ⊂ SL2(R) closely related to Lie groups. 
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(2b) SL2(Z) acts nicely on the H2 hyperbolic plane. 
Intuition about convolution on SL2(Z): As a warm-up, consider the convolu-

tion on Z. Let µ = 1
2 (δ1+δ−1). By the central limit theorem, µK can be approximated 

by Gaussian, which intimately relates to the heat kernel on R. In light of this, we 
might hope that for a probability measure M on SL2(Z), there is some central limit 
theorem for matrices, and the convolution M∗K would be related to the “heat kernel” 
on SL2(R). 
Consider the “ball” in SL2(R) with radius T , defined as follows:    

BT := 
a b ∈ SL2(R) : a 2 + b2 + c 2 + d2 ≤ T 2 . 
c d 

Moreover, we denote BT (Z) := BT ∩ SL2(Z). 

Lemma 18.7. For T large, we have |BT (Z)| ≈ T 2 . 

Proof sketch. We need to count the solutions of ad−bc = 1, a, b, c, d ∈ Z, a2 +b2 +c2 + 
d2 ≤ T 2 . For a typical pair (a, d) ∈ [−T, T ]2 , the number of pairs (b, c) ∈ [−T, T ]2

such that bc = ad−1 is at least 1, and at most T o(1). This suggests |BT (Z)| ≈ T 2 . 

Vague statement: for large K, M∗K is roughly equally distributed on BT (Z), where 
T ∼ exp(c(M) · K). 
Let us see how a statement of this form about random walks on SL2(Z) leads to 

a spectral gap in SL2(Fp). 
∗K 2Lemma 18.8. If µ is symmetric, then µ = µ ∗2K (I), where I ∈ G is the2(G) 

identity element. 

Proof. By definition we have   
µ ∗K  2 

2(G) = µ ∗K (g)2 = µ ∗K (g)µ ∗K (g −1) = µ ∗2K (I) . 
g∈G g∈G 

∗K 2 ∗2KThis leads us to examine µ = µ (I), where I ∈ SL2(Fp) is the identity.Asel 2(G) Asel 

We can relate this to a measure on SL2(Z). To set this up, let Γp ⊂ SL2(Z) be the 
pre-image of I ∈ SL2(Fp) under Πp, i.e.,      

Γp := a, b, c, d ∈ Z, ad − bc = 1, 
a 
c 

b 
d 
≡ 

1 
0 
0 
1 

(mod p) 

Now we have 
∗K ∗2Kµ 2 (I2) = Πp(M ∗2K (I)),= µAsel 2(G) Asel sel 

and by the vague statement, we expect 

|Γp ∩ BT (Z)|
(M ∗2K (I2)) ≈Πp sel |BT (Z)|
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where T ∼ log p. Since SL2(Fp) has size of order p3 , it is natural to expect that for 
large T , Γp ∩ BT (Z) occupies nearly a p−3-fraction in BT (Z). The following lemma 
shows that this is indeed the case. 

2 −3T 2Lemma 18.9. For T > p , it holds that |Γp ∩ BT (Z)|  p .  
a b 

Proof. For any ∈ Γp, we have p | b, p | c, and thus p2 | bc = ad − 1. 
c d 

Meanwhile, we have p | a−1, p | d−1, which implies p2 | (a−1)(d−1) = ad−a−d+1.  
a b 

Altogether we conclude that p2 | a + d − 2. In light of this, we see that for ∈ 
c d 

Γp ∩ BT (Z), a ∈ [−T, T ] has at most O(p−1T ) choices, and given a, d satisfies 
d ≡ −2−a (mod p2) has at most O(p−2T ) choices (here we use the fact that T > p2). 
Finally, given a, d, b, c satisfies bc = ad − 1 has at most T o(1) choices. Combining 
things together, we obtain the desired bound. 

Proof sketch for Theorem 18.3. Assuming the vague statement about random walks 
on SL2(Z) we can now assemble our ingredients to give a proof sketch of Selberg’s 
theorem. 
We pick K such that T ∼ exp(c(Msel)K) ∼ p1.1 , and thus K ≤ C0 log p for a 

universal constant C0 > 0. By the vague statement and Lemmas 18.8, 18.9, we have 
−3T 2|Γp ∩ BT (Z)| p∗K 2 −3µ   
T 2 

= p .Asel 2(G) |BT (Z)| 
Applying Theorem 18.5, we obtain that σ1(TAsel )

K  p−1 . This yields that σ1(TAsel ) ≤
1 − c for some universal constant c > 0. 

Connection to hyperbolic geometry 
Selberg’s theorem is closely connected to hyperbolic geometry. In fact, Selberg’s 

original theorem was about the eigenvalues of the Laplacian on certain hyperbolic 
manifolds. The hyperbolic manifold perspective also gives a nice approach to the 
vague statement in the proof sketch above. In this short section, we briefly introduce 
these ideas. 
Recall that SL2(Z) acts isometrically on H2 . Let X(p) = H2/Γp. If p is large, 

then the action is properly discontinuous, and so X(p) is a hyperbolic surface. It 
is a complete surface with finite area and with some cusps. Note that X(p) is a 
cover of X(1), and the group of deck tranform of X(p) is SL2(Fp). So the “large 
scale geometry” of X(p) is closely related to the geometry of the Cayley graph of 
SL2(Fp) with generators A, where A is the reduction mod p of some set of generators 
of SL2(Z). For instance, we could take A = Asel. 
Consider the spectrum of the Laplacian of X(p). We have 0 lies in the spectrum, 

but above 0 there is a gap. Denote λ1(X(p)) the smallest positive eigenvalue of 
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the Laplacian of X(p). Selberg proved that λ1(X(p)) ≥ 
16
3 and conjectured that

λ1(X(p)) ≥ 1
4 − o(1). Because of the close connection between the geometry of X(p) 

and the geometry of the Cayley graph of SL2(Fp), it is not too hard to show that 
a lower bound for λ1(X(p)) is equivalent to an upper bound for σ1(TA), with A as 
above. 
The proof we sketched above can be translated into hyperbolic geometry using 

the heat kernel. The heat kernel describes a diffusion process on a Riemannian 
manifold, and it is a continuous analogue of a random walk. The heat kernel on a 
Riemannian manifold is written as Ht(x, y), where t represents time, and x, y live in 
the Riemannian manifold. The probabilistic interpretation is that Ht(x, y)dvoly is 
the probability distribution for the position of a particle that started at x and then 
diffused for time t. 
We write Ht,X(p) for the heat kernel on X(p). We think of Ht,X(p) as analogous to 

µ ∗k in the proof sketch above, with t analogous to k. 
First big step: Prove that Ht,X(p) is roughly evenly distributed on X(p). We will 

discuss the proof of this more below. 
In particular, we prove that there is a constant C0 so that if t = C0 log p and 

x ∈ X(p), and for t = C0 log p, then 

Ht,X(p)(x, y)2 
L2 ≤ p −2.1 . 
y 

∗k2 −2.1This is analogous to proving that µ ≤ p . There is a close con-L2(SL2(Fp) 

nection between the mixing properties of the heat kernel and the eigenvalues of the 
Laplacian on a Riemannian manifold. This connection is analogous to the trace 
formula that we used in the finite group setting. On a closed manifold, the for-
mula has a simple form closely parallel to the formulas we used above. If we let 
0 = λ0 < λ1 ≤ λ2 ≤ ... be the spectrum of the Laplacian on a compact Riemannian 
manifold M , then we have   

−2tλje = H2t(x, x)dvol = Ht(x, y)
2dxdy. 

M M×Mj 

Since X(p) is not compact, its spectral theory is a little more complicated, but 
this is a technical detail. This part of the proof is less elementary in the hyperbolic 
setting than in the finite group setting, but it is basically analogous. 
Since SL2(Fp) acts isometrically on X(p), each eigenspace is a representation of 

SL2(Fp). The main case is when the representation on the λ1 eigenspace is non-
trivial. Then it has dimension at least (p − 1)/2 and so we get  

p − 1 −2tλ1e ≤ Ht(x, y)
2dxdy. 

2 M×M
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Then the first big step gives us, with t = C log p,  
p − 1 −2tλ1 3 −2.1 e ≤ Ht(x, y)

2dxdy  p p
2 M×M

−2tλ1 −.1and so e ≤ p , and so λ1 ≥ c > 0 uniformly in p. 
Now we return to the first big step. 
We write Ht,X(p) for the heat kernel on X(p) and Ht,H for the heat kernel on 

the hyperbolic plane. These two heat kernels are closely connected: Ht,X(p) is the 
pushforward of Ht,H by the covering map Πp : H → X(p). In other words, if Πp(x̃) = 
x and Πp(ỹ = y), then  

Ht,X(p)(x, x) = Ht,H(γx,˜ ỹ). 
γ∈Γp

In particular, to do the first big step, we have to estimate  
H2t,X(p)(x, x) = H2t,H(γx,˜ x̃). 

γ∈Γp

This is analogous to estimate M∗k(Γp) in the proof sketch above. This was a key 
moment in the proof sketch above where we made a vague statement. This part 
of the proof is easier in the hyperbolic context because there is a simple explicit 
formula for Ht,H. Using this explicit formula and Lemma 18.9, it is fairly easy to 
prove the desired bounds for H2t,X(p). So this part of the proof is actually easier in 
the hyperbolic setting than in the finite group setting. 
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