108 PROJECTION THEORY NOTES

20. HOMOGENENOUS DyNAMICS 1

April 29

There has been recent striking work applying projection theory to homogeneous
dynamics. We will try to give a friendly introduction to the field of homogeneous
dynamics and how projection theory can help understand it.

In this lecture we introduce homogeneous dynamics and then explain in a simple
example how projection theory connects to dynamics. In the next lecture, we flesh
out this simple example. After that, we give a brief survey of the recent work
connecting homogeneous dynamics and projection theory.

First we introduce homogeneous dynamics. Let GG be a Lie group and I' a discrete
subgroup. The space X = G/I is called a homogeneous space, because the group G
acts on G/I', and for each x € X, the orbit Gx = X. If H C G is a subgroup, then we
can study the orbits Hz inside of X. We focus on the case that I has finite covolume,
meaning that X has finite volume. One important example is when G = SL,(R)
and I' = SL,(Z). In this case, the space X = SL,(R)/SL,(Z) parametrizes the
lattices in R™ with unit covolume. Here we could choose H to be a lower-dimensional
subgroup, such as the diagonal matrices or the upper triangular matrices. Since H
has infinite volume and X has finite volume, Hx “wraps around and around inside
of X”. There are examples where Hx is dense. There are other examples where Hx
is contained in a lower dimensional submanifold inside of X. How might Hz look in
general?

In this discussion, we have to be careful about left actions and right actions. An
element of G/I' is a coset of the form AI' where h € G. The group G acts on the
left on G/T, so an element g € G maps the coset hI' to the coset g~ 'hT'. (The
inverse here makes it a left action and is traditional, but it’s not that important in
our discussion.)

The simplest example is G = SLy(R), and I' = SLy(Z). Let m be a right invariant
metric on G, which induces a metric on G/I". The left action of G on G/I" distorts

the metric but it preserves the volume. Define U = {[1 i] } and up = {1 ﬂ
teR

A typical problem of homogeneous dynamics is to study the orbit U - z in G/I" for
reG/I.

Theorem 20.1. (Hedlund 30’s)
U - x is either periodic or dense.

These questions are interesting in their own right and they also have applications
to other areas of math. We describe one application to number theory.

Let Q(xy,--- ,x,) be a quadratic form.
Question: How is Q(Z") distributed?
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Conjecture 20.2. (Oppenheim) If n > 3, the signature of Q) is mized, and the
coeffiencts of Q are not contained in Zow for any «, then Q(Z") is dense in R.

This conjecture was proven by Margulis in the 1980s. Raghunathan observed that
the Oppenheim conjecture is related to homogeneous dynamics, and the proof uses
this connection. Suppose that n = 3, which is the hardest case. Since the signature
of @) is mixed, we can assume that it has signature (2,1). Then there is a linear
change of variables that converts @) to a standard quadratic form of signature (2, 1),
such as Q(x) = 2% + 23 — x2. This linear change of variables converts Z* to some
lattice A, and so we have Q(Z3) = Q:(A).

The key point is that the quadratic form (); has many symmetries. In particular,
SO(2;1) C SL(3;R) preserves the quadratic form. Therefore, for any h € SO(2,1),
we have

Q(Zg) = Q1(A) = Q1 (hA).

Thus we are led to study the SO(2, 1)-orbit of A in the space of lattices. The space
of lattices in R™ is X,, = SL,(R)/SL,(Z). If SO(2,1)A is dense in X3, then Q(Z?)
is dense in Upex, (@Q1(A)) = R.

Margulis showed that SO(2, 1)A is dense in X3 except for some very special lattices
A. When SO(2,1)A is not dense in X3, Margulis showed that it must be a lower-
dimensional homogeneous space contained in X3. In terms of the original problem,
this scenario implies that the quadratic form () has coefficients in Za for some o € R.

The Lie group SO(2,1) is a 3-dimensional Lie group. It contains a 1-dimensional
unipotent subgroup U C SO(2,1). Most of the work in the proof is to show that UA
is either dense or is contained in a lower-dimensional homogeneous subspace of Xj.
This can be viewed as a higher dimensional generalization of Hedlund’s theorem,
although the proof is much more difficult and involves new ideas. Ratner extended
this work to a very general theorem that applies to all G/T" and all unipotent orbits.

In these notes, we will sketch how projection theory leads to bounds related to the
geometry of the orbits U - x in SLy(R)/SLy(Z). While this will not lead to a full
proof of Hedlund’s theorem, it will give some interesting information. Then we will
discuss why it is more difficult to understand unipotent orbits in higher dimensional
homogeneous spaces like SL3(R)/SL3(Z). Finally, we will discuss some recent work
applying projection theory to help understand unipotent orbits in higher dimensions.

It’s important to note that Hedlund’s thoerem is special for the unipotent group
U. For the subgroup D of diagonal matrices, an orbit Dx may be neither periodic
nor dense. For instance, the Hausdorff dimension of the closure of Dz may be strictly
between 1 and 3. It is important to understand what is special about the unipotent
group. In our discussion, the special feature will be the way the unipotent group
interacts with the diagonal group. We need a little notation to state this interaction.
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,
Define a, = {e e‘r] . After some calculation, we see that

aruta;l = uet.

Denote Up e = {ux}icpo,r). Note that
Upmr = aRU[O,l]a;zlx

where 2% = T'. Also note that if R = Jr, agr = a.

Goal: Understand how a, acts on unipotent orbits.

We first spend some time visualizing how a, acts on X. Then we will use this
geometric information to prove bounds about how a, acts on unipotent orbits. For
this geometric discussion, it may be useful to look at the class video on the OCW
page.

We write L, for the left action of ¢ on G or on G/I. So L,(h) = g 'h and
Ly(hT') = g~'hL. (The inverse is traditional and makes it a left group action, but is
not too important for us.) We write R, for the right action of g on G. So R,(h) = hg.

Since the metric m is right invariant, the map R, : G — G preserves m. However,
Ly : G — G does not preserve m. The mapping L,-1 does not preserve m. For any
h € G, L,- maps T),G to T,-1,G. This mapping always has singular values e’ 1,
and e~?". The singular vectors are Vexp, V05 Veomp € TpG. Here veopm, is the singular
vector with singular value e=2" and we call it the compressing direction.

We shall consider a tube in the fundamental domain for G/T". By choosing coor-
dinates on the tube, we can identify it with D? x [0, 1] and put coordinates x, ¢ with
r € D? and t € [0,1]. We choose the coordinates so that each vertical line z x [0, 1]
is a piece of a U orbit, and so that ui(x,t;) = (z,t + 7).

When we apply L,-1 to the this tube, some directions get stretched and some
directions get compressed. The tangent direction to the U orbits is stretched — the
tangent direction is exactly vegp. So the compressing direction veem, is perpendicular
to the orbits. Now the key geometric point is that the compressing direction is
twisting relative to the unipotent orbits. The following picture illustrates how L -1
acts on slices of the tube at various heights t.

If we slice the tube at a given height ¢, we get a disk. The map L,-1 approximately
smooshes this disk to an ellipse. The direction veomy is the direction of the original
tube which is smooshed in this process. In the picture, at ¢ = 1, the direction vop,, is
vertical and at t = 0 the direction is horizontal. As ¢ goes from 0 to 1, the direction
Veomp twists gradually.

In the picture, there are three unipotent orbits. The three dots in each disk
represent where the unipotent orbit intersects that disk. So we see that at height
t = 0, two of the orbits get smooshed close together. On the other hand, at height
t =1, the action of L,-1 does not smoosh the orbits close together. The key point is
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FIGURE 16. Action of L -1 on slices of the tube at various heights .

that at most heights ¢, the action of L,-1 does not smoosh the orbits together very
much.
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