
    

    

  
           

              
         

             
             

               
      

               
               

                       
                  

              
              

               
             

              
               
               

 
               

                    
                  

                
  

                 
                 

          

 
  

 

 

 

    

 
  

 

 

                 
   

    
        

             
            

         
     

108 PROJECTION THEORY NOTES 

20. Homogenenous Dynamics I 

April 29 
There has been recent striking work applying projection theory to homogeneous 

dynamics. We will try to give a friendly introduction to the field of homogeneous 
dynamics and how projection theory can help understand it. 
In this lecture we introduce homogeneous dynamics and then explain in a simple 

example how projection theory connects to dynamics. In the next lecture, we flesh 
out this simple example. After that, we give a brief survey of the recent work 
connecting homogeneous dynamics and projection theory. 
First we introduce homogeneous dynamics. Let G be a Lie group and Γ a discrete 

subgroup. The space X = G/Γ is called a homogeneous space, because the group G 
acts on G/Γ, and for each x ∈ X, the orbit Gx = X. If H ⊂ G is a subgroup, then we 
can study the orbits Hx inside of X. We focus on the case that Γ has finite covolume, 
meaning that X has finite volume. One important example is when G = SLn(R) 
and Γ = SLn(Z). In this case, the space X = SLn(R)/SLn(Z) parametrizes the 
lattices in Rn with unit covolume. Here we could choose H to be a lower-dimensional 
subgroup, such as the diagonal matrices or the upper triangular matrices. Since H 
has infinite volume and X has finite volume, Hx “wraps around and around inside 
of X”. There are examples where Hx is dense. There are other examples where Hx 
is contained in a lower dimensional submanifold inside of X. How might Hx look in 
general? 
In this discussion, we have to be careful about left actions and right actions. An 

element of G/Γ is a coset of the form hΓ where h ∈ G. The group G acts on the 
left on G/Γ, so an element g ∈ G maps the coset hΓ to the coset g−1hΓ. (The 
inverse here makes it a left action and is traditional, but it’s not that important in 
our discussion.) 
The simplest example is G = SL2(R), and Γ = SL2(Z). Let m be a right invariant 

metric on G, which induces a metric on G/Γ. The left action of G on G/Γ distorts    
1 t 1 t 

the metric but it preserves the volume. Define U = { } and ut = 
1 1 

t∈R 
A typical problem of homogeneous dynamics is to study the orbit U · x in G/Γ for 
x ∈ G/Γ. 

Theorem 20.1. (Hedlund 30’s) 
U · x is either periodic or dense. 

These questions are interesting in their own right and they also have applications 
to other areas of math. We describe one application to number theory. 
Let Q(x1, · · · , xn) be a quadratic form. 

Question: How is Q(Zn) distributed? 



    

               
                 

            
            
               

                  
              

                  
         
              
               

  

     

                  
                 
       

              
               

            
                 

              
                  

             
            

             
                
               

                 
             

             
           

           
             

               
               

               
              

              

109 PROJECTION THEORY NOTES 

Conjecture 20.2. (Oppenheim) If n ≥ 3, the signature of Q is mixed, and the 
coeffiencts of Q are not contained in Zα for any α, then Q(Zn) is dense in R. 

This conjecture was proven by Margulis in the 1980s. Raghunathan observed that 
the Oppenheim conjecture is related to homogeneous dynamics, and the proof uses 
this connection. Suppose that n = 3, which is the hardest case. Since the signature 
of Q is mixed, we can assume that it has signature (2, 1). Then there is a linear 
change of variables that converts Q to a standard quadratic form of signature (2, 1), 

2 2 2such as Q1(x) = x1 + x2 − x3. This linear change of variables converts Z3 to some 
lattice Λ, and so we have Q(Z3) = Q1(Λ). 
The key point is that the quadratic form Q1 has many symmetries. In particular, 

SO(2; 1) ⊂ SL(3; R) preserves the quadratic form. Therefore, for any h ∈ SO(2, 1), 
we have 

Q(Z3) = Q1(Λ) = Q1(hΛ). 

Thus we are led to study the SO(2, 1)-orbit of Λ in the space of lattices. The space 
of lattices in Rn is Xn = SLn(R)/SLn(Z). If SO(2, 1)Λ is dense in X3, then Q(Z3) 
is dense in ∪Λ∈X3 (Q1(Λ)) = R. 
Margulis showed that SO(2, 1)Λ is dense in X3 except for some very special lattices 

Λ. When SO(2, 1)Λ is not dense in X3, Margulis showed that it must be a lower-
dimensional homogeneous space contained in X3. In terms of the original problem, 
this scenario implies that the quadratic form Q has coefficients in Zα for some α ∈ R. 
The Lie group SO(2, 1) is a 3-dimensional Lie group. It contains a 1-dimensional 

unipotent subgroup U ⊂ SO(2, 1). Most of the work in the proof is to show that UΛ 
is either dense or is contained in a lower-dimensional homogeneous subspace of X3. 
This can be viewed as a higher dimensional generalization of Hedlund’s theorem, 
although the proof is much more difficult and involves new ideas. Ratner extended 
this work to a very general theorem that applies to all G/Γ and all unipotent orbits. 
In these notes, we will sketch how projection theory leads to bounds related to the 

geometry of the orbits U · x in SL2(R)/SL2(Z). While this will not lead to a full 
proof of Hedlund’s theorem, it will give some interesting information. Then we will 
discuss why it is more difficult to understand unipotent orbits in higher dimensional 
homogeneous spaces like SL3(R)/SL3(Z). Finally, we will discuss some recent work 
applying projection theory to help understand unipotent orbits in higher dimensions. 
It’s important to note that Hedlund’s thoerem is special for the unipotent group 

U . For the subgroup D of diagonal matrices, an orbit Dx may be neither periodic 
nor dense. For instance, the Hausdorff dimension of the closure of Dx may be strictly 
between 1 and 3. It is important to understand what is special about the unipotent 
group. In our discussion, the special feature will be the way the unipotent group 
interacts with the diagonal group. We need a little notation to state this interaction. 



    

   

 
  

 

 

       

 
     

         

      
 

  

                
        

                
             

                
 
                   

                
                    

                 
            

 
      

                     
                 

            
             

                   
                     
               

    
 

          
              

            
              

            
 

          
                  

 
 

               
                  

                   
   
              

              
                 
        

 
           

110 PROJECTION THEORY NOTES   
re 

Define ar = −r . After some calculation, we see that e 

−1 2r aruta = ue t.r 

Denote U[0,T ]x = {utx}t∈[0,T ]. Note that 
−1U[0,T ]x = aRU[0,1]aR x 

where e2R = T . Also note that if R = Jr, aR = aJr . 
Goal: Understand how ar acts on unipotent orbits. 
We first spend some time visualizing how ar acts on X. Then we will use this 

geometric information to prove bounds about how ar acts on unipotent orbits. For 
this geometric discussion, it may be useful to look at the class video on the OCW 
page. 
We write Lg for the left action of g on G or on G/Γ. So Lg(h) = g−1h and 

Lg(hΓ) = g−1hΓ. (The inverse is traditional and makes it a left group action, but is 
not too important for us.) We write Rg for the right action of g on G. So Rg(h) = hg. 
Since the metric m is right invariant, the map Rg : G → G preserves m. However, 

Lg : G → G does not preserve m. The mapping L a does not preserve m. For any −1 
r 

−1h ∈ G, L maps ThG to T −1 G. This mapping always has singular values e2r , 1,ar ar h 

and e−2r . The singular vectors are vexp, v0, vcomp ∈ ThG. Here vcomp is the singular 
vector with singular value e−2r and we call it the compressing direction. 
We shall consider a tube in the fundamental domain for G/Γ. By choosing coor-

dinates on the tube, we can identify it with D2 × [0, 1] and put coordinates x, t with 
x ∈ D2 and t ∈ [0, 1]. We choose the coordinates so that each vertical line x × [0, 1] 
is a piece of a U orbit, and so that ut(x, t1) = (x, t + t1). 
When we apply L a to the this tube, some directions get stretched and some−1 

r 

directions get compressed. The tangent direction to the U orbits is stretched – the 
tangent direction is exactly vexp. So the compressing direction vcomp is perpendicular 
to the orbits. Now the key geometric point is that the compressing direction is 
twisting relative to the unipotent orbits. The following picture illustrates how L a −1 

r 

acts on slices of the tube at various heights t. 
If we slice the tube at a given height t, we get a disk. The map L a approximately −1 

r 

smooshes this disk to an ellipse. The direction vcomp is the direction of the original 
tube which is smooshed in this process. In the picture, at t = 1, the direction vcomp is 
vertical and at t = 0 the direction is horizontal. As t goes from 0 to 1, the direction 
vcomp twists gradually. 
In the picture, there are three unipotent orbits. The three dots in each disk 

represent where the unipotent orbit intersects that disk. So we see that at height 
t = 0, two of the orbits get smooshed close together. On the other hand, at height 
t = 1, the action of L a does not smoosh the orbits close together. The key point is−1 

r 
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L −1 ar 

t = 1 

L −1 ar 

t = 0 

Figure 16. Action of L a −1 on slices of the tube at various heights t. 
r 

−1that at most heights t, the action of L a does not smoosh the orbits together very 
r 

much. 
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