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23. SHARP PROJECTION THEOREMS II: AD REGULAR CASE

May 8

A set E is called AD regular if the spacing of the set £ behaves similarly at all
scales. AD regular sets include classical fractals such as the Cantor set. Orponen
and Shmerkin proved the AD regular case of the Furstenberg set conjecture. We
discuss their proof and how the self similar spacing comes into play.

Recall that we want to prove the following:

Theorem 23.1 (OSRW). If E C R? is a (4,t,C)-set and for all z € E, T, is a set
of 0-tubes going through X, Dir(Tx) is a (9, s, C)-set, with Tx uniform, |T,| ~ 6=,
and s > 0, then

T| > cdC~OW min (677,675 % 6717+,

When 07°* is the minimum, call this case A. When §727% is the minimum, call
this case B. And if §717* is the minimum, call this case C.

In case A, s > t and the result follows by double counting. In case C, s +t > 2,
and we can deduce the theorem using the Fourier method. This leaves case B, which
is the essentially new content of this theorem.

It will be a little easier to think about things in terms of

R(E,T) := “typical number of d-balls of E on a typical tube of T”.

More precisely,
|Elo~

|T|

We will be interested in the AD-regular case. Suppose E is uniform. Let § = A™
(m large). Then

R(E,T) =

|E ﬂ QAj|Aj+1 ~ Bj,
where B; is the branching number, for all dyadic cubes Qs intersection E.

Definition 23.2. F is (6,t,C)-AD-regular if

J
115

j=1

1

E(AJ>_t S S C(AJ)_t.

Let
Rap(s,t,6,C) = max R(E,T).

E, T obey hypotheses of theorem, F is (§,¢, C')-AD-regular
We won'’t worry about C, so we'll just set C' = 1. The argument works if C' T 1.
And we’ll abbreviate the above to Rap(d). Then in terms of these quantities, the
theorem in the AD-regular case is
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Theorem 23.3. [OS]
Rap(s,t,8) < max (1, 57563, 51—t> .

The AD regular case seems like a very special case, but as we’ll see, this is a very
important case that is crucial to proving the theorem. Breaking into cases was an
important step to proving the general theorem.

The AD regular case is special because it interacts in a very nice way with mul-
tiscale arguments. This gives us special tools for studying the AD regular case. If
E is an AD regular set, of dimension ¢ then if we take E'N B(x,p) and rescale it
to diameter 1, we get an AD regular set of dimension ¢. In contrast, if F is just a
(0,s,C) set, and if we take E'N B(x, p) and rescale it to diameter 1, then we can say
much less about it. This feature of AD regular sets leads to the following key lemma.

Lemma 23.4 (Submultiplicative Lemma). If 6 = §,d2, 01,02 < 1, then
Rap(0) £ Rap(01)Rap(02).

Proof Sketch. The idea is to take a set E of d-balls and T of d-tubes and thicken it
to set E; of d;-balls and a set Ty of §;-tubes. We can also restrict £ and T to a
01-ball and magnify it. Then we’ll get a set Ey of do-balls and a set Ty of do-tubes.
Then (E4,Ty) and (FE», Ts) satisfy the hypotheses, and

Rap(6) < (number of d;-balls in a §;-tube)
- (number of §-balls in a §-tube within one d;-ball)

< Rap(01)Rap(d2).
]

(1) If £ and T, are uniform and E is (d,t), then E; is (61,t). If T, is (0, s), then
Ty is (01, s). If E is AD-regular then so is Ej.

(2) Because E is AD-regular, £ N Bs, magnifies to a set that is (d2,¢) and AD-
regular.

This is why we need to work with AD-regular sets.

Remark. This lemma is analogous to a submultiplicative lemma from decoupling
theory in Fourier analysis. In both cases, multiscale analysis turns out to be very
powerful. Beyond that, it’s not clear to me whether the two theories are parallel.

Next we give several applications of the submultiplicative lemma and then discuss
some of the ideas in the proof of Theorem 23.3.

23.1. Brute force proof. One can give a brute force proof of the AD-regular OS
theorem. For some specific dy, check by brute force

Rap(s,t,00) < max(1, 8, 202, 6170)5:
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FI1GURE 20. Submultiplicative lemma

for some € > 0. There are essentially only finitely (but a very very large number!)
many cases for a fixed dy, so this can theoretically be check by brute force. Then we
can use the submultiplicative lemma many times to get

Rap(s,t,65) < max(L, (83)"2(65)%, (65)' ) (69)™
and so on.

On the one hand, the brute force part is completely unmanageable, and so this
is not a realistic of proof. Nevertheless, it is interesting to note that in principle
one can prove a nearly sharp Furstenberg estimate in the AD regular case just by
using the simple submultiplicative lemma and brute force. Most deep questions in
math cannot be easily reduced to a (hopelessly large) brute force computation. I

think this argument, while it is impractical, still suggests that the AD regular case
of Furstenberg may be especially approachable.

23.2. General AD vs Projective AD. Theorem 23.3 is related to projection the-
ory but it is more general.

Definition 23.5. We say (F,T) is projective if Dir(T,,) = Dir(T,,) for any
T1,x9 € K.
Let
RAD,proj (6) = max R(E, T)

(E,T) satisfy hypotheses, E is AD-reg, (E, T) projective

Then clearly Rap proj(0) < Rap(0).
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Notice that from the proof of the submultiplicative lemma, if we let §; = d, = /3,
then the small ball problems are all projective: We can only distinguish the angles
of tubes for the small ball up to ~ v/3, so they are the angles of the larger v/8-tubes.
So

Rap(8) < Rap(6"*)Rap proj(67%)

S Rap(6Y*) Rap proj (6"/*) Rap,proj (6'/%)
<

~

So to prove the theorem, it suffices to check the projective case.
We also note that the proof of the submultiplicative lemma applies to the projective
case giving

Lemma 23.6 (Submultiplicative Lemma, projective version). If 6 = 0192, 91,09 < 1,
then

RAD,proj (6) é RAD,proj (51 ) RAD,proj (52> .

23.3. Sketch of the proof for the AD regular case. When Pablo Shmerkin
was visiting me, he described to me the philosophy of the proof in a way that has
stuck with me. He said, “The goal of the proof is get an e-improvement to the
submultiplicative lemma.”

Let us state this in a precise way. Let us write RHS(6) for the right-hand side of

Theorem 23.3, so RHS(§) = max (1, 57263, 51_t> .

Lemma 23.7 (e-improvement to submultiplicative lemma). Fiz s,t. For every a > 0
there 1s some € > 0 so that either

Rap proj (0Y?) S 67“RHS,

or

Rap proj(8) S 0°Rap proj (0/7)°.

Given this lemma, a simple iteration argument shows that Rap p;(0) 5 RHS.
To prove the lemma, we have to examine the situation when the submultiplicative
lemma is almost sharp in the sense that

Rap proj (6) Z 8°Rap proj (3"%)%.

So what does it mean for the submultiplicative lemma to be (almost) sharp? Let’s
recall a little bit of the setup of the submultiplication lemma. We have E a set of §
balls and T a set of d-tubes, and we want to estimate R(FE,T), they typical number
of 6-balls of E in a d-tube T € T. We let T; be the set of §'/2-tubes formed by
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FiGUure 21. Top: Submultiplicative Lemma is Not Sharp, Bottom:
Submultiplicative Lemma is sharp

thickening tubes of T, and we let E; be the set of §'/2-balls formed by thickening
balls of K. Given the spacing conditions of F and of T,, we see that each tube of
T intersects < RAD,proj((Sl/ 2) thick balls of F;. And we see that the restriction of T
to a ball of radius §/2 intersects at most Rap pro;(0%/2) 0-balls of E. This gives the
submultiplicative bound Rap pro;(0) S Rap proj(61/2)%. If the argument is tight, then
each step must be tight. In particular, for a typical tube T" that intersects a typical
ball B € E;, we must have |T'0 BN E|s ~ Rap proj (612

So in the two pictures below, E must resemble the bottom picture in the following
figure.

In this picture, you may see a hint of a product structure. We're going to make
this precise. Let T} € T be a 6% tube. We are going to study E N T;. Choose
coordinates so that T} is described by 0 < x5 < 62,0 < x; < 1. Let A be the
projection of E'N T} on the x, axis and let B be the projection of E; NT7 on the x;
axis. Now we see that ENT; C A x B.

The set A x B is a union of horizontal rectangles of dimensions 6%/ x 6. When
the submultiplicative lemma is sharp, then a fraction Z 1 of these rectangles contain
~ Rapproj(6Y/2) d-balls of E. Let X C A x B be the union of rectangles that do
contain & Rap prej(61/2) d-balls of E.

Now we study the projection of £ N7} onto almost vertical lines. Suppose that
lc| < 62, and let £, be the line at angle ¢ from the z, axis. Let 7. : R? — £, be
orthogonal projection. Notice that since |¢| < 6'/2, we have

WC(E) N B51/2 = 7TC(E N Tl) = 7TC(X).



PROJECTION THEORY NOTES 131

We are studying the projective case of the Furstenberg set problem. So let D C S*
be the set of directions in which we are projecting. Let C' C D be the subset of D
corresponding to projections onto lines £, with |¢| < §'/2 as above.

When we choose the tube 77, we can arrange that A = my(X) has typical size, and
therefore we get

[T(X)]s < |Als for all ¢ € C.
Because we are assuming that the submultiplicative lemma, the set X is almost
a product set. Using a cousin of the Balog-Szemeredi-Gowers theorem called the

asymmetric BSG theorem, it is possible to reduce to the case that X is a product
set, X = A x B. Now we have

|A+¢B|s 5 |Als for all c € C.
At this point, we can use Plunnecke-Ruzsa to get stronger inequalities of the form

|A+ 1B+ coB+c3B|s S |Als for all c € C.

The full details of this argument are somewhat complicated, and we do not give
them here. First one needs to determine the spacing properties of A, B, C'. To
discuss this, it is convenient to first change coordinates. The set A is a set of 0-
intervals inside of B(§/2). It is natural to rescale A to a set of §*/2 intervals inside
[0,1]. Similarly, we can rescale C' to a set of §'/%intervals inside [0,1]. Let us set
p = 642, After rescaling, we have that |4 + c¢B|, < |A|, for all ¢ € C.

The spacing properties of A, B, C fall into different cases. The most interesting
case is when

o Alisa (p,a)-set with |A| ~ p~.
e Bis a (p,b)-set with |B| ~ p~°.
e Cisa (p,c)-set with |C| ~ p~°.
e For any c € C, |[A+ ¢B|, S |4],-

Orponen-Shmerkin formulated and proved a projection estimate called the ABC

sum product estimate.

Theorem 23.8. (ABC sum product theorem, Orponen-Shmerkin)
Under the hypotheses in the bullet points above, a > b+ c.

This theorem is sharp: if a = b + ¢ there is a natural example that satisfies the
hypotheses above, given by

A=[0,1NZ,

B =1[0,1]N6"Z,
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C' =[0,1] N Z.

Using the ABC sum product theorem and some computation, Orponen-Shmerkin
check that E, T must obey the conclusion of the Furstenberg set conjecture.

We will not prove the ABC sum product theorem here, but we make a few com-
ments about it.

The proof of the ABC sum product theorem is based on two key inputs. One key
input is the continuum Beck theorem from the last lecture. The ABC sum product
theorem would be false over C. Orponen-Shmerkin reduce it to continuum Beck
theorem, our first example of a sharp projection theorem distinguishing R from C.
The second key input is from additive combinatorics. The setup of the ABC sum
product theorem involves sum sets, and so Plunnecke-Ruzsa and other tools from
additive combinatorics naturally come into play, as we hinted above. These tools
give us a lot of leverage, and they allow the reduction from ABC sum product to
continuum Beck.

The ABC sum product theorem can be considered as a special case of the Fursten-
berg set conjecture. (The Furstenberg set conjecture directly implies the ABC sum
product theorem.) But it is a special case with extra structure, especially the prod-
uct structure, which makes it more accessible to tools from additive combinatorics.
The ABC sum product theorem has an analogue over prime fields, and the finite field
analogue has a short proof using additive combinatorics, even though the analogue
of the Furstenberg set conjecture over prime fields remains open.

To finish, let us summarize the ideas we have discussed about the AD regular case.

e In the AD regular case, we have the submultiplicative lemma.

e The submultiplicative lemma allows us to reduce to the AD regular projection
case.

e In a worst case example, the submultiplicative lemma must be sharp, and
this forces E/ to have some product structure.

e This product structure lets us use tools from additive combinatorics like
Plunnecke-Ruzsa.

e With these tools, Orponen-Shmerkin reduce the problem to the continuum
Beck theorem.

e As we discussed in the last lecture, the continuum Beck theorem reduces
to the Orponen-Shmerkin projection theorem, an e-improvement on a simple
double counting argument. And this theorem in turn reduces to the Bourgain
projection theorem.
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