
    

        

  
                  

             
             

            
        

                      
                   

     

     
 

     
  

 
 

             
     

              
                     

               
        

             

               

  

   
 

 
 

                

   
      

             

        

 
 

   

 
 
 
 
 

 

 

 

 
 
 
 
 

     

 

      
           

  

                   
              

      

126 PROJECTION THEORY NOTES 

23. Sharp Projection Theorems II: AD Regular Case 

May 8 
A set E is called AD regular if the spacing of the set E behaves similarly at all 

scales. AD regular sets include classical fractals such as the Cantor set. Orponen 
and Shmerkin proved the AD regular case of the Furstenberg set conjecture. We 
discuss their proof and how the self similar spacing comes into play. 
Recall that we want to prove the following: 

Theorem 23.1 (OSRW). If E ⊂ R2 is a (δ, t, C)-set and for all x ∈ E, Tx is a set 
of δ-tubes going through X, Dir(TX ) is a (δ, s, C)-set, with TX uniform, |Tx| ∼ δ−s , 
and s > 0, then   

2 2|T| ≥ cδ
C−O(1) min δ−s−t, δ− t − 3s 

, δ−1−s . 

2 2When δ−s−t is the minimum, call this case A. When δ− t − 3s 
is the minimum, call 

this case B. And if δ−1−s is the minimum, call this case C. 
In case A, s ≥ t and the result follows by double counting. In case C, s + t ≥ 2, 

and we can deduce the theorem using the Fourier method. This leaves case B, which 
is the essentially new content of this theorem. 
It will be a little easier to think about things in terms of 

R(E, T) := “typical number of δ-balls of E on a typical tube of T”. 
More precisely, 

|E|δ−s 

R(E, T) = . 
|T|

We will be interested in the AD-regular case. Suppose E is uniform. Let δ = Δm 

(m large). Then 
|E ∩ QΔj |Δj+1 ∼ Bj , 

where Bj is the branching number, for all dyadic cubes QΔj intersection E. 

Definition 23.2. E is (δ, t, C)-AD-regular if   J 1  
(ΔJ )−t ≤  Bj  ≤ C(ΔJ )−t . 

C   
j=1 

Let 

RAD(s, t, δ, C) = max R(E, T). 
E, T obey hypotheses of theorem, E is (δ, t, C)-AD-regular 

We won’t worry about C, so we’ll just set C = 1. The argument works if C  1. 
And we’ll abbreviate the above to RAD(δ). Then in terms of these quantities, the 
theorem in the AD-regular case is 
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Theorem 23.3. [OS]   
2 δRAD(s, t, δ)  max 1, δ− t 

2 
s 
, δ1−t . 

The AD regular case seems like a very special case, but as we’ll see, this is a very 
important case that is crucial to proving the theorem. Breaking into cases was an 
important step to proving the general theorem. 
The AD regular case is special because it interacts in a very nice way with mul-

tiscale arguments. This gives us special tools for studying the AD regular case. If 
E is an AD regular set, of dimension t then if we take E ∩ B(x, ρ) and rescale it 
to diameter 1, we get an AD regular set of dimension t. In contrast, if E is just a 
(δ, s, C) set, and if we take E ∩ B(x, ρ) and rescale it to diameter 1, then we can say 
much less about it. This feature of AD regular sets leads to the following key lemma. 

Lemma 23.4 (Submultiplicative Lemma). If δ = δ1δ2, δ1, δ2 < 1, then 

RAD(δ)  RAD(δ1)RAD(δ2). 

Proof Sketch. The idea is to take a set E of δ-balls and T of δ-tubes and thicken it 
to set E1 of δ1-balls and a set T1 of δ1-tubes. We can also restrict E and T to a 
δ1-ball and magnify it. Then we’ll get a set E2 of δ2-balls and a set T2 of δ2-tubes. 
Then (E1, T1) and (E2, T2) satisfy the hypotheses, and 

RAD(δ) ≤ (number of δ1-balls in a δ1-tube) 

· (number of δ-balls in a δ-tube within one δ1-ball) 

≤ RAD(δ1)RAD(δ2). 

 

(1) If E and Tx are uniform and E is (δ, t), then E1 is (δ1, t). If Tx is (δ, s), then 
T1,x is (δ1, s). If E is AD-regular then so is E1. 

(2) Because E is AD-regular, E ∩ Bδ1 magnifies to a set that is (δ2, t) and AD-
regular. 

This is why we need to work with AD-regular sets. 
Remark. This lemma is analogous to a submultiplicative lemma from decoupling 

theory in Fourier analysis. In both cases, multiscale analysis turns out to be very 
powerful. Beyond that, it’s not clear to me whether the two theories are parallel. 
Next we give several applications of the submultiplicative lemma and then discuss 

some of the ideas in the proof of Theorem 23.3. 

23.1. Brute force proof. One can give a brute force proof of the AD-regular OS 
theorem. For some specific δ0, check by brute force 

2 2RAD(s, t, δ0) ≤ max(1, δ 
− t 

δ0 

s 

, δ1−t)δ− 0 0 0 
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δ1 

E1 

E 

T1 

T 

Figure 20. Submultiplicative lemma 

for some  > 0. There are essentially only finitely (but a very very large number!) 
many cases for a fixed δ0, so this can theoretically be check by brute force. Then we 
can use the submultiplicative lemma many times to get 

RAD(s, t, δ0
2) ≤ max(1, (δ0

2)− 
2 
t 
(δ0
2) 2 

s 
, (δ0

2)1−t)(δ0
2)− 

and so on. 
On the one hand, the brute force part is completely unmanageable, and so this 

is not a realistic of proof. Nevertheless, it is interesting to note that in principle 
one can prove a nearly sharp Furstenberg estimate in the AD regular case just by 
using the simple submultiplicative lemma and brute force. Most deep questions in 
math cannot be easily reduced to a (hopelessly large) brute force computation. I 
think this argument, while it is impractical, still suggests that the AD regular case 
of Furstenberg may be especially approachable. 

23.2. General AD vs Projective AD. Theorem 23.3 is related to projection the-
ory but it is more general. 

Definition 23.5. We say (E, T) is projective if Dir(Tx1 ) = Dir(Tx2 ) for any 
x1, x2 ∈ E. 

Let 

RAD,proj(δ) = max R(E, T). 
(E, T) satisfy hypotheses, E is AD-reg, (E, T) projective 

Then clearly RAD,proj(δ) ≤ RAD(δ). 
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√ 
Notice that from the proof of the submultiplicative lemma, if we let δ1 = δ2 = δ, 

then the small ball problems are all projective: We can only distinguish the angles√ √ 
of tubes for the small ball up to ∼ δ, so they are the angles of the larger δ-tubes. 
So 

RAD(δ)  RAD(δ
1/2)RAD,proj(δ

1/2) 

 RAD(δ
1/4)RAD,proj(δ

1/4)RAD,proj(δ
1/2) 

 . . . 

So to prove the theorem, it suffices to check the projective case. 
We also note that the proof of the submultiplicative lemma applies to the projective 

case giving 

Lemma 23.6 (Submultiplicative Lemma, projective version). If δ = δ1δ2, δ1, δ2 < 1, 
then 

RAD,proj (δ)  RAD,proj (δ1)RAD,proj (δ2). 

23.3. Sketch of the proof for the AD regular case. When Pablo Shmerkin 
was visiting me, he described to me the philosophy of the proof in a way that has 
stuck with me. He said, “The goal of the proof is get an -improvement to the 
submultiplicative lemma.” 
Let us state this in a precise way. Let us write RHS(δ) for the right-hand side of  

Theorem 23.3, so RHS(δ) = max 1, δ− 
2 
t 
δ 2 

s 
, δ1−t . 

Lemma 23.7 (-improvement to submultiplicative lemma). Fix s, t. For every α > 0 
there is some  > 0 so that either 

RAD,proj (δ
1/2)  δ−αRHS, 

or 

RAD,proj (δ)  δRAD,proj(δ
1/2)2 . 

Given this lemma, a simple iteration argument shows that RAD,proj (δ)  RHS. 
To prove the lemma, we have to examine the situation when the submultiplicative 

lemma is almost sharp in the sense that 

RAD,proj (δ)  δRAD,proj(δ
1/2)2 . 

So what does it mean for the submultiplicative lemma to be (almost) sharp? Let’s 
recall a little bit of the setup of the submultiplication lemma. We have E a set of δ 
balls and T a set of δ-tubes, and we want to estimate R(E, T), they typical number 
of δ-balls of E in a δ-tube T ∈ T. We let T1 be the set of δ1/2-tubes formed by 
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Figure 21. Top: Submultiplicative Lemma is Not Sharp, Bottom: 
Submultiplicative Lemma is sharp 

thickening tubes of T, and we let E1 be the set of δ1/2-balls formed by thickening 
balls of E. Given the spacing conditions of E and of Tx, we see that each tube of 
T intersects  RAD,proj (δ

1/2) thick balls of E1. And we see that the restriction of T 
to a ball of radius δ1/2 intersects at most RAD,proj (δ

1/2) δ-balls of E. This gives the 
submultiplicative bound RAD,proj (δ)  RAD,proj (δ

1/2)2 . If the argument is tight, then 
each step must be tight. In particular, for a typical tube T that intersects a typical 

˜ball B ∈ E1, we must have |T ∩ B̃ ∩ E|δ ∼ RAD,proj (δ
1/2 . 

So in the two pictures below, E must resemble the bottom picture in the following 
figure. 
In this picture, you may see a hint of a product structure. We’re going to make 

this precise. Let T1 ∈ T1 be a δ1/2 tube. We are going to study E ∩ T1. Choose 
< δ1/2coordinates so that T1 is described by 0 < x2 , 0 < x1 < 1. Let A be the 

projection of E ∩ T1 on the x2 axis and let B be the projection of E1 ∩ T1 on the x1 

axis. Now we see that E ∩ T1 ⊂ A × B. 
The set A × B is a union of horizontal rectangles of dimensions δ1/2 × δ. When 

the submultiplicative lemma is sharp, then a fraction  1 of these rectangles contain 
≈ RAD,proj(δ

1/2) δ-balls of E. Let X ⊂ A × B be the union of rectangles that do 
contain ≈ RAD,proj (δ

1/2) δ-balls of E. 
Now we study the projection of E ∩ T1 onto almost vertical lines. Suppose that 

|c| ≤ δ1/2 , and let c be the line at angle c from the x2 axis. Let πc : R2 → c be 
orthogonal projection. Notice that since |c| ≤ δ1/2 , we have 

πc(E) ∩ Bδ1/2 = πc(E ∩ T1) = πc(X). 
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We are studying the projective case of the Furstenberg set problem. So let D ⊂ S1 

be the set of directions in which we are projecting. Let C ⊂ D be the subset of D 
corresponding to projections onto lines c with |c| ≤ δ1/2 as above. 
When we choose the tube T1, we can arrange that A = π0(X) has typical size, and 

therefore we get 

|πc(X)|δ  |A|δ for all c ∈ C. 
Because we are assuming that the submultiplicative lemma, the set X is almost 

a product set. Using a cousin of the Balog-Szemeredi-Gowers theorem called the 
asymmetric BSG theorem, it is possible to reduce to the case that X is a product 
set, X = A × B. Now we have 

|A + cB|δ  |A|δ for all c ∈ C. 
At this point, we can use Plunnecke-Ruzsa to get stronger inequalities of the form 

|A + c1B + c2B + c3B|δ  |A|δ for all c ∈ C. 
The full details of this argument are somewhat complicated, and we do not give 

them here. First one needs to determine the spacing properties of A, B, C. To 
discuss this, it is convenient to first change coordinates. The set A is a set of δ-
intervals inside of B(δ1/2). It is natural to rescale A to a set of δ1/2 intervals inside 
[0, 1]. Similarly, we can rescale C to a set of δ1/2-intervals inside [0, 1]. Let us set 
ρ = δ1/2 . After rescaling, we have that |A + cB|ρ  |A|ρ for all c ∈ C. 
The spacing properties of A, B, C fall into different cases. The most interesting 

case is when 
• A is a (ρ, a)-set with |A| ∼ ρ−a . 
• B is a (ρ, b)-set with |B| ∼ ρ−b . 
• C is a (ρ, c)-set with |C| ∼ ρ−c . 
• For any c ∈ C, |A + cB|ρ  |A|ρ. 

Orponen-Shmerkin formulated and proved a projection estimate called the ABC 
sum product estimate. 

Theorem 23.8. (ABC sum product theorem, Orponen-Shmerkin) 
Under the hypotheses in the bullet points above, a ≥ b + c. 

This theorem is sharp: if a = b + c there is a natural example that satisfies the 
hypotheses above, given by 

A = [0, 1] ∩ δaZ, 

B = [0, 1] ∩ δbZ, 
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C = [0, 1] ∩ δcZ. 
Using the ABC sum product theorem and some computation, Orponen-Shmerkin 

check that E, T must obey the conclusion of the Furstenberg set conjecture. 
We will not prove the ABC sum product theorem here, but we make a few com-

ments about it. 
The proof of the ABC sum product theorem is based on two key inputs. One key 

input is the continuum Beck theorem from the last lecture. The ABC sum product 
theorem would be false over C. Orponen-Shmerkin reduce it to continuum Beck 
theorem, our first example of a sharp projection theorem distinguishing R from C. 
The second key input is from additive combinatorics. The setup of the ABC sum 
product theorem involves sum sets, and so Plunnecke-Ruzsa and other tools from 
additive combinatorics naturally come into play, as we hinted above. These tools 
give us a lot of leverage, and they allow the reduction from ABC sum product to 
continuum Beck. 
The ABC sum product theorem can be considered as a special case of the Fursten-

berg set conjecture. (The Furstenberg set conjecture directly implies the ABC sum 
product theorem.) But it is a special case with extra structure, especially the prod-
uct structure, which makes it more accessible to tools from additive combinatorics. 
The ABC sum product theorem has an analogue over prime fields, and the finite field 
analogue has a short proof using additive combinatorics, even though the analogue 
of the Furstenberg set conjecture over prime fields remains open. 
To finish, let us summarize the ideas we have discussed about the AD regular case. 
• In the AD regular case, we have the submultiplicative lemma. 
• The submultiplicative lemma allows us to reduce to the AD regular projection 
case. 

• In a worst case example, the submultiplicative lemma must be sharp, and 
this forces E to have some product structure. 

• This product structure lets us use tools from additive combinatorics like 
Plunnecke-Ruzsa. 

• With these tools, Orponen-Shmerkin reduce the problem to the continuum 
Beck theorem. 

• As we discussed in the last lecture, the continuum Beck theorem reduces 
to the Orponen-Shmerkin projection theorem, an -improvement on a simple 
double counting argument. And this theorem in turn reduces to the Bourgain 
projection theorem. 



 

 

MIT OpenCourseWare
https://ocw.mit.edu 

18.156 Projection Theory 
Spring 2025 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

https://ocw.mit.edu/terms
https://ocw.mit.edu

	Blank Page



