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PROJECTION THEORY NOTES 

24. Sharp Projection Theorems III: Combining different scales

May 13.  Transcribed by Jacob Reznikov. Used with permission.

Last lecture, we discussed some of the ideas in the proof of the AD regular case of 
the Furstenberg conjecture by Orponen-Shmerkin. 
Building on their work, Ren and Wang proved the full Furstenberg conjecture. 

They used the AD regular case as a black box. The rest of the proof depends on two 
ideas, which we will explore in this lecture. 

• Using a Fourier method in the well-spaced case.
• Combining different scales.

24.1. Well spaced case. For the well-spaced case, we want to have some sort of 
Geometric Measure Theory version of the SzemerediTrotter (theorem ??). Let us 
remind ourselves what the classic theorem looks like in our setting. 

Theorem 24.1. If E ⊂ R2 is a set of N points and LR(E) the set of R-rich lines, 
then 

N2 N |LR(E)|  + 
R3 R 

Guth-Solomon-Wang proved an analogue of this theorem in the well spaced case. 

Theorem 24.2 (GSW). Let E ⊂ R2 be a set of N δ-balls with E ⊂ B1 which is 
well-spaced, in the sense that |E ∩ BN−1/2 |δ  1.
Let TR(E) be a set of δ-tubes which are essentially distinct with |T ∩ E|δ ≥ R. 
Assume also that R > δ−εδ|̇E|δ. Then 

N2 

|TR(E)|  .
R3 

When we compare the two theorems two things stand out to us. 

• First we no longer have a √ 
N
R term. In Szemeredi-Trotter, the N/R term 

dominates only when R > N which isn’t possible in the well-spaced case√ 
since each line intersects roughly N squares. 

• The second difference is that we do need to assume some lower bound on R.
To see why this is necessary, let us consider a random δ-tube T , then the
expected number of balls on the line is

E[|T ∩ E|δ] ∼ δ|E|δ. 
If R is equal to δ|E|δ, then an average tube will be R-rich, and so |TR(E)|
can be comparable to the total number of essentially distinct δ-tubes (about 
δ−2). In this regime, the theorem is not true. But if we increase R slightly, 
then we get the sharp bound in the theorem. It is quite remarkable that 



    

               
   

                
           

               
      

      

              
             

  

   
 

 
 

              
            

                 
   

                   
           

 
 
 

 

               

 

 

             
      

                  
         

         

134 PROJECTION THEORY NOTES 

there is such a sharp phase transition once we increase R past the richness of 
a random tube. 

Proof sketch. We will now sketch the proof of this theorem, the tools we will need 
are the Fourier Method, Double Counting, and Playing with different scales. 
Using the Fourier method as in Lecture 4, you can prove that under the hypothesis 

of the theorem, we get that 

|TR(E)|  δ−1|E|δR−2 = δ−1NR−2 . 

(This is a good exercise on the techniques we have studied in the class.) 
Now in the special case where R = δ−εδ|E|δ then δ−1 ≈ N so

R 

N2 

δ−1NR−2 = ,
R3 

which exactly matches the theorem. This special case is when R takes the smallest 
value allowed by our hypotheses. Unfortunately, this breaks down when we increase 
R. However, this bound gets better as we increase δ, that is if we increase the width 
of our tubes. 
Recall that |E|δ = N . We know δ−εδ|E|δ = δ−δN ≤ R ≤ N1/2 . We set the scale 

parameter ρ such that ρ · N ∼ R. This way 
R 
< N− 1 

δ < ρ = 2 

N 
We are going to study Eρ, the ρ-neighborhood of E. Now we want to understand 

1 

N−1/2 

Figure 22. An example of a well spaced set with N points, along 
with its Eρ neighborhood in red 

δ-tubes that hit a lot of balls, but now that we have thickened our set, it makes sense 
to study thickened tubes intersecting our set. We define 

T ̃  (Eρ) = {ρ-tubes Tρ : |Tρ ∩ Eρ|ρ ≥ R̃}.R 



    

             

    
  

 

   
 

                
          

  
 

 
 

                 
               

               
                 

            
        

             

               
                   

      

 
 

                
                 

    
                

   

                  
                     

                   
   

135 PROJECTION THEORY NOTES 

Now we can again apply the Fourier method, and we get the bounds 

N2 

R̃−2|T ̃ (Eρ)|  ρ−1|E|δ = .R 
R̃2R · 

where we importantly used the fact that |E|ρ = |E|δ = N because our set is well-
spaced. In particular, if we pick R̃ = R then 

N2 

|TR(Eρ)|  . 
R3 

Now one might think that we are now done, but this isn’t quite the case. Recall that 
originally we want to count thin δ-tubes, where as this rescaling result gives us a 
bound for thick ρ-tubes. While each δ-tube can be expanded to give a single ρ-tube, 
each ρ-tube can contain many δ-tubes and so we are not quite done yet. So we need 

˜to estimate the number of R-rich δ-tubes contained in a R-rich ρ-tube. 
For a given tube ρ-tube Tρ, we define 

TR(E, Tρ) = {δ − tubesT : |T ∩ E|δ ≥ R, T ⊂ Tρ}. 
By using an inductive argument, we can reduce to the case that for each δ-tube 

T ∈ T the δ-balls in E ∩T are not concentrated on one side. The tubes in the picture 
below obey this two ends condition. 

ρ 
δ 

Here is the rough idea of the inductive argument. If the balls in a typical T concen-
trate in a much shorter tube Tshort ⊂ T , then we study those shorter tubes and use 
an induction on scale. 
Using the two ends condition, we can bound the number of thin tubes in each fat 

tube as follows. 

Lemma 24.3. Suppose that E is a well spaced set in B1 ⊂ R2 in the sense that 
|E| ∼ N and |E ∩ B(x, N−1/2|  1. Suppose that δ ≤ ρ ≤ N−1/2 . Suppose Tρ is a 
ρ-tube with |Tρ ∩ E|ρ ∼ R̃, and suppose that each δ-tube T ∈ TR(E, Tρ) obeys the two 
ends condition. Then 



    

  
 

 
 

        

               

                 
                  

       

               
    

  
 

  

    

 
 

  

 

  
 

 

 

 
 

 

 

              

              
            

              
           

           

              
             
              

             
            
               

      

              
              

              
               

136 PROJECTION THEORY NOTES 

R̃2 

|TR(E, Tρ)|  . 
R2 

Proof. We apply double counting to the set 

{(T, x1, x2) ∈ TR(E, Tρ) × E × E : x1, x2 ∈ T near opposite ends } 

For each T ∈ TR(E, Tρ) we have  R2 choices of x1, x2, so the cardinality is at 
least |TR(E, Tρ)|R2 . On the other hand, given x1, x2 there is  1 choice of T , and so 
the cardinality is  R̃2 .  

˜Now to solve our original problem, we can dyadically sum over R and apply Lemma 
24.3. This gives us  

|TR(Eδ)| ≤ |T ̃ (Eρ)| · |TR(E, Tρ)|R 

R̃>R, dyadic  N2 R̃2 

 · 
R̃2 R2R · 

R̃>R, dyadic 

N2 

 
R3 

 

It can be instructive to check where we used each hypothesis of the result. 

• The well-spaced hypothesis was only used to control the rescaled size |E|ρ of 
E, and a slightly weaker version was used for the Fourier analysis. 

• The lower bound on R was necessary for the Fourier analysis part. It was nec-
essary to assume because otherwise the lower frequencies of the characteristic 
functions of the tubes dominate and we get a bad bound. 

Another thing that is interesting is that it seems oddly coincidental that the lower 
bound given by simple examples matches the upper bound given by this argument. 
There are several proofs of Szemeredi-Trotter, but in each case it feels like something 
of a coincidence that the upper bounds match examples and are therefore sharp. 
There are many cousin problems to Szemeredi-Trotter where lines are replaced by 
circles or parabolas or other curves, and in most of those problems the upper and 
lower bounds are far from matching. 

24.2. Combining scales. So far, we have discussed proofs for two special cases of 
the Furstenberg conjecture: the AD regular case and the well spaced case. Ren and 
Wang realized that the general conjecture can be proven by dividing the range of 
scales [δ, 1] into pieces, and using one of these two techniques on each piece. This 



    

              
        

         

                  
                     

  
 

  
                 

     
 

  

   
 

  
 

 

 

   

           
            

   

              
            

              
        

               
                  

 
                  

              
            
         

                
             

               

137 PROJECTION THEORY NOTES 

multiscale argument is short and elegant and it may have other applications. It builds 
on multiscale arguments developed by Keleti-Shmerkin and Orponen-Shmerkin. 
Before we describe it, let’s recall the main theorem. 

Theorem 24.4 (OSRW). Let E be a (δ, t) set in B1 ⊂ R2 and |E| = δ−t . 
For every x ∈ E let Tx be a (δ, s) set of tubes passing through x with |Tx| = δ−s . Set 
T = x∈E Tx. 
Let R = |E ∩ T |δ be the size of a typical intersection between the tubes and E. 
Then R  max( 1 , δ−sδ− t 

, δ1−t ).   2  
A B C 

A B C 

Figure 23. The 3 regimes of the OSRW theorem, A - unrelated balls 
with many tubes through each, B - an integer grid of balls, C - ran-
domly picked tubes 

[The picture C isn’t quite what would be perfect. There should be many δ-balls 
in the picture, so many that every tube hits many δ-balls. ] 
We have already used many tools and techniques to prove this theorem for specific 

cases and regimes. Let us quickly document these. 
(1) In the case where A dominates, i.e. s ≥ t, this is true by D.C. 
(2) In the case where C dominates, i.e. s + t ≥ 2, this is true by the Fourier 

method. 
(3) In the case where B dominates we have s < t < 2 − s. In this case we do not 

yet know if the theorem holds. However, we proved it for two special cases: 
• If E is AD-regular, we proved this last class (theorem 23.3). 
• If E is well-spaced, which we just showed. 

The last idea of the proof which comes from Ren and Wang, comes in two steps. 
First they relax the well-spaced condition in the result we proved to a semi-well-
spaced set, which we will define in a moment. Secondly they put together the known 



    

             
      

               
               

       

 

  

    

                 
              

                 
                 
         

     

                     
          

               
                
            
                

                 
      

138 PROJECTION THEORY NOTES 

regimes by using a multiscale approach and a variant of the submultiplicative lemma 
we used for the AD-regular case. 
Let ρ be a scale parameter with δ < ρ < 1. Let us assume now that E is a general 

uniform set. So Eρ is a collection of ρ-balls, and E contains about the same number 
of δ-balls in each ρ-ball of Eρ. 

B 

Multiscale argument 

Tρ 

Tδ 

Figure 24. 

Now R(Eδ, Tδ) is the number of δ-balls of Eδ that are in Tδ. From the diagram we 
can compute this by first calculating the number of ρ-balls contained in Tρ, which 
we will denote R(Eρ, Tρ). Then if we call one of these balls B, then for each such 
ball we take all the short segments of δ-tubes and see how many δ-balls each of them 
hits, we will call this R(EB, TB ). We thus have 

R(Eδ, Tδ)  R(Eρ, Tρ) · R(EB, TB) 

But now we can rescale B to B1, so we will assume from now on that EB is a set of 

ρ
δ -balls, and TB is a set of ρ

δ -tubes. 
We started with one scale δ, and using this multi-scale argument we broke it up 

into two similar problems with scales ρ and 
ρ
δ . We can choose ρ freely. And we can 

then keep doing this splitting, breaking the problem into many subproblems. We 
hope to arrange that we can solve each of these subproblems with the tools we have. 
At that point we will also hope that we can multiply the bounds together to get a 
sharp bound for the original problem. 
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Now to discuss these scaling argument we will use the language of the branch-
ing function of a uniform set. Because we are concerned with scaling we will 
reparametrize the function by setting f : logδ(ρ) → log 1 |Eρ|, with domain [0, 1].

δ 

What do we know about f? 

(1) f is trivially increasing, since |E| = δ−t we have that f(0) = 0 and f(1) = t. 
(2) Because E is a (δ, t) set we know that f(x) ≥ t · x for all x ∈ [0, 1]. 
(3) Because we are in 2 dimensional Euclidean space, we can always cover a 

Cρ ball with C2 smaller ρ balls and so our function satisfies f(x + Δx) ≤ 
f(x) + 2Δx, i.e. is 2-Lipschitz. 

All of these properties give us a range of ’admissable’ branching functions, which we 
can represent in the following graph. 

t 

log 1 |Eρ|
δ 

0 

logδ ρ 
0 1 
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Figure 25. An example of a branching function (blue). The two 
known cases of an AD-regular set and a Well-spaced set bound an 
admissible region in which the function can lie (red). The semi-well-
spaced case corresponds to any function lying above the green dashed 
line. 

Using this language we can define what a semi-well-spaced set is. A well spaced 
set is formed on the graph with two lines of slope 2 and 0 which meet in the middle. 
We then slightly weaken this to have two lines of slope 2 − s and s. Any branching 
function above this new graph corresponds to a semi-well-spaced set. Ren and Wang 
adapted the Fourier method to prove the Furstenberg conjecture in the semi-well-
spaced case. 



    

           
              

               
             
             

  
                 

              
             

                
        

  
 

 

 
 

 

   

  

 
 

             
      

        

 
 
 

 

              

   

             
                

          

     

 
 
 

 
 

 
 

  

   

140 PROJECTION THEORY NOTES 

Now how does our multiscale argument interact with this branching function? 
The branching function of Eρ corresponds to the branching function of E on scales 
[0, logδ(ρ)]. Similarly, if B is a ball of radius ρ, then the branching function of 
EB corresponds to the branching function of E restricted to [logδ(ρ), 1]. In essence 
the multiscale argument splits our branching function into two pieces which we can 
analyze separately. 
In our graph this looks like splitting the graph into a left and a right part. The 

left part corresponds to the branching function of Eρ and the right describes the 
branching function of EB. Because the branching function of Eδ can be recovered 
from the two pieces by placing them side by side, we will call this the Concatenation 
method. Let us work out an explicit example. 

log 1 
δ
|Eρ| 

t 

0 
0 1 

Sl
op
e 
= 
t 1 

Slo
pe 

= t2 

2 

logδ ρ 

Consider a branching function as above, by splitting at ρ corresponding to where 
the two lines meet, we get  −t2δ 

δ−t = |Eδ| = |Eρ||EB | = ρ−t1 · 
ρ 

Now let us try to estimate R(Eδ, Tδ) using this splitting. We already know that 

R(Eδ, Tδ) ≤ R(Eρ, Tρ)R(EB , TB ), 

Now we have two scenarios that can happen depending on the values t1, t2. 
• s < t1, t2 < 2−s. In this case we can estimate both R(Eρ, Tρ) and R(EB, TB) 
by the B bound in the theorem. This gives us 

t   −s 
2δ δ 2 

ρ−
1 
2 
t ts s 

δ−R(Eρ, Tρ)R(EB, TB) ≤ ρ = δ2 2 2 ,
ρ ρ 



    

               
         

                 
              

    

         

           
                 

                
                   
                  

  
               
  

                    
 

       
 

        
   

             
    

                
           
            

              
                

  
                 

   

141 PROJECTION THEORY NOTES 

where we used the equation for δ−t we had above. This is exactly the bound 
we want when t is in the B regime. 

• 2 − s < t1 and t2 < s. Now when we bound R(Eρ, Tρ) we get the C bound 
of the theorem, and when we bound R(EB , TB ) we get the A bound of the 
theorem. This gives us 

2 δ− t 
2 .R(Eρ, Tρ)R(EB, TB) ≤ ρ1−t1 · 1  δ 

s 

Unfortunately, in this regime, we do not get the desired bound. 
What can we learn from this? We can assume from the start that s < t < 2 − s, so 
that we are in scenario B. When we split our branching function in pieces, we want 
each piece to be in scenario B, and we want to be able to analyze each piece. So we 
want each piece to be in scenario B, and we want each piece to be either AD regular 
or semi-well-spaced. 
The last argument of the theorem is then to show that such a decomposition is 

always possible. 

Lemma 24.5. If f : [0, 1] → R is 2-Lip, increasing with f(1) = t, f(x) ≥ t · x and 
s < t < 2 − s.  
Then there is a decomposition [0, 1] = I (plus some tiny leftovers) where on each 
interval I either 

• f is almost linear with slope tI , s < tI < 2 − s. 
• f is semi-well-spaced. 

We do not show the full proof here, but an interesting tool used here is the 
Radamacher theorem. Because our function is 2-Lipschitz our function must be 
differentiable almost everywhere. Thus as we split into smaller and smaller pieces, 
our pieces will look more and more like constant slope functions, i.e. the AD-regular 
case. We then use the semi-well-spaced case to get rid of the slopes that are outside 
our range. 
This lemma was the last tool in our outline and finishes our sketch of the proof of 

the Furstenberg conjecture. 
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