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24. SHARP PROJECTION THEOREMS III: COMBINING DIFFERENT SCALES

May 13. Transcribed by Jacob Reznikov. Used with permission.

Last lecture, we discussed some of the ideas in the proof of the AD regular case of
the Furstenberg conjecture by Orponen-Shmerkin.

Building on their work, Ren and Wang proved the full Furstenberg conjecture.
They used the AD regular case as a black box. The rest of the proof depends on two
ideas, which we will explore in this lecture.

e Using a Fourier method in the well-spaced case.
e Combining different scales.

24.1. Well spaced case. For the well-spaced case, we want to have some sort of
Geometric Measure Theory version of the SzemerediTrotter (theorem ?7?). Let us
remind ourselves what the classic theorem looks like in our setting.

Theorem 24.1. If E C R? is a set of N points and Lr(FE) the set of R-rich lines,
then ,
N N
Lo(E)| < — 4+ —
La(B) S 5 + 5
Guth-Solomon-Wang proved an analogue of this theorem in the well spaced case.

Theorem 24.2 (GSW). Let E C R? be a set of N 0-balls with E C By which is
well-spaced, in the sense that |E'N By-12]s < 1.
Let Tgr(E) be a set of 0-tubes which are essentially distinct with |T N E|s > R.

Assume also that R > §~<0|E|;. Then
Tr(E)| = 55

When we compare the two theorems two things stand out to us.

e Iirst we no longer have a % term. In Szemeredi-Trotter, the N/R term
dominates only when R > v/N which isn’t possible in the well-spaced case
since each line intersects roughly v/ N squares.

e The second difference is that we do need to assume some lower bound on R.
To see why this is necessary, let us consider a random d-tube 7', then the
expected number of balls on the line is

E[|T N El5] ~ 6|E]s.

If R is equal to |E|s, then an average tube will be R-rich, and so |Tr(E)|
can be comparable to the total number of essentially distinct §-tubes (about
572). In this regime, the theorem is not true. But if we increase R slightly,
then we get the sharp bound in the theorem. It is quite remarkable that
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there is such a sharp phase transition once we increase R past the richness of
a random tube.

Proof sketch. We will now sketch the proof of this theorem, the tools we will need
are the Fourier Method, Double Counting, and Playing with different scales.

Using the Fourier method as in Lecture 4, you can prove that under the hypothesis
of the theorem, we get that

ITr(E)| £ 07 |ElsR™> =0"'NR™.

(This is a good exercise on the techniques we have studied in the class.)

Now in the special case where R = 6 “6|E|s then 6! ~ & so
N?
1A P2 _
0 "NR* = ﬁ,

which exactly matches the theorem. This special case is when R takes the smallest
value allowed by our hypotheses. Unfortunately, this breaks down when we increase
R. However, this bound gets better as we increase ¢, that is if we increase the width
of our tubes.
Recall that |E|; = N. We know § °0|E|s = 66N < R < NY2. We set the scale
parameter p such that p- N ~ R. This way
R )
0<p= N < N2
We are going to study E,, the p-neighborhood of £. Now we want to understand

N—1/2 © . a3

FIGURE 22. An example of a well spaced set with N points, along
with its £, neighborhood in red

0-tubes that hit a lot of balls, but now that we have thickened our set, it makes sense
to study thickened tubes intersecting our set. We define

T4H(E,) = {p-tubes T, : |T, N E,|, > R}.
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Now we can again apply the Fourier method, and we get the bounds
N2
R-R?
where we importantly used the fact that |E|, = |E|s = N because our set is well-
spaced. In particular, if we pick R = R then

IT(E,)| S ptE[R? =

N2

T(E)| S -

Now one might think that we are now done, but this isn’t quite the case. Recall that
originally we want to count thin d-tubes, where as this rescaling result gives us a
bound for thick p-tubes. While each d-tube can be expanded to give a single p-tube,
each p-tube can contain many J-tubes and so we are not quite done yet. So we need
to estimate the number of R-rich d-tubes contained in a R-rich p-tube.

For a given tube p-tube T),, we define

Tr(E,T,) = {0 —tubesT : [TNE|; > R,T CT,}.

By using an inductive argument, we can reduce to the case that for each J-tube
T € T the 6-balls in ENT are not concentrated on one side. The tubes in the picture
below obey this two ends condition.

Here is the rough idea of the inductive argument. If the balls in a typical T' concen-
trate in a much shorter tube Ty,,+ C T, then we study those shorter tubes and use
an induction on scale.

Using the two ends condition, we can bound the number of thin tubes in each fat
tube as follows.

Lemma 24.3. Suppose that E is a well spaced set in B' C R? in the sense that
|E| ~ N and |E N B(x, N"Y2| < 1. Suppose that 6 < p < N~Y2. Suppose T, is a
p-tube with |T,N E|, ~ R, and suppose that each §-tube T € Tr(E, T,) obeys the two
ends condition. Then
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R2?

Ta(E,T))| S
Proof. We apply double counting to the set

{(T,x1,22) € Tr(E,T,) x E X E : x1,x9 € T near opposite ends }

For each T € Tg(E,T,) we have > R? choices of x1,xs, so the cardinality is at
least |Tr(E,T,)|R?. On the other hand, given zy, x5 there is < 1 choice of T, and so

the cardinality is < R2. O

Now to solve our original problem, we can dyadically sum over R and apply Lemma
24.3. This gives us

Ta(E)l < ) |Ta(E,)| - [Ta(E,T,)
R>R, dyadic

2 D2
Y pmwE
~ R-R? R?

R>R, dyadic

O

It can be instructive to check where we used each hypothesis of the result.

e The well-spaced hypothesis was only used to control the rescaled size |E|, of
E, and a slightly weaker version was used for the Fourier analysis.

e The lower bound on R was necessary for the Fourier analysis part. It was nec-
essary to assume because otherwise the lower frequencies of the characteristic
functions of the tubes dominate and we get a bad bound.

Another thing that is interesting is that it seems oddly coincidental that the lower
bound given by simple examples matches the upper bound given by this argument.
There are several proofs of Szemeredi-Trotter, but in each case it feels like something
of a coincidence that the upper bounds match examples and are therefore sharp.
There are many cousin problems to Szemeredi-Trotter where lines are replaced by
circles or parabolas or other curves, and in most of those problems the upper and
lower bounds are far from matching.

24.2. Combining scales. So far, we have discussed proofs for two special cases of
the Furstenberg conjecture: the AD regular case and the well spaced case. Ren and
Wang realized that the general conjecture can be proven by dividing the range of
scales [, 1] into pieces, and using one of these two techniques on each piece. This
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multiscale argument is short and elegant and it may have other applications. It builds
on multiscale arguments developed by Keleti-Shmerkin and Orponen-Shmerkin.
Before we describe it, let’s recall the main theorem.

Theorem 24.4 (OSRW). Let E be a (6,t) set in By C R* and |E| = §.
For every x € E let T, be a (9, s) set of tubes passing through x with |T,| = 0~°. Set

T=U,cp Ta-
Let R = |ENT|s be the size of a typical intersection between the tubes and E.

Then R < max(_ 1 975673 6.
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FIGURE 23. The 3 regimes of the OSRW theorem, A - unrelated balls
with many tubes through each, B - an integer grid of balls, C' - ran-
domly picked tubes

[The picture C isn’t quite what would be perfect. There should be many J-balls
in the picture, so many that every tube hits many J-balls. |

We have already used many tools and techniques to prove this theorem for specific
cases and regimes. Let us quickly document these.

(1) In the case where A dominates, i.e. s > ¢, this is true by D.C.
(2) In the case where C' dominates, i.e. s+t > 2, this is true by the Fourier
method.
(3) In the case where B dominates we have s <t < 2 —s. In this case we do not
yet know if the theorem holds. However, we proved it for two special cases:
e If F is AD-regular, we proved this last class (theorem 23.3).
o If F is well-spaced, which we just showed.
The last idea of the proof which comes from Ren and Wang, comes in two steps.
First they relax the well-spaced condition in the result we proved to a semi-well-
spaced set, which we will define in a moment. Secondly they put together the known
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regimes by using a multiscale approach and a variant of the submultiplicative lemma
we used for the AD-regular case.

Let p be a scale parameter with 0 < p < 1. Let us assume now that E is a general
uniform set. So F, is a collection of p-balls, and £ contains about the same number

of ¢-balls in each p-ball of E,.

F1GURE 24. Multiscale argument

Now R(Ej5, Ts) is the number of d-balls of Ej that are in T5. From the diagram we
can compute this by first calculating the number of p-balls contained in 7T}, which
we will denote R(E,,T,). Then if we call one of these balls B, then for each such
ball we take all the short segments of d-tubes and see how many d-balls each of them
hits, we will call this R(Ep, Tg). We thus have

R(E(;, Té) é R(Epa Tp) ’ R<EBa TB)
But now we can rescale B to By, so we will assume from now on that Eg is a set of
9_balls, and Tp is a set of %—tubes.

We started with one scale 9, and using this multi-scale argument we broke it up
into two similar problems with scales p and %. We can choose p freely. And we can
then keep doing this splitting, breaking the problem into many subproblems. We
hope to arrange that we can solve each of these subproblems with the tools we have.
At that point we will also hope that we can multiply the bounds together to get a
sharp bound for the original problem.



PROJECTION THEORY NOTES 139

Now to discuss these scaling argument we will use the language of the branch-
ing function of a uniform set. Because we are concerned with scaling we will
reparametrize the function by setting f : logs(p) — log1 |E,|, with domain [0, 1].
What do we know about f7

(1) f is trivially increasing, since |E| = 6~" we have that f(0) =0 and f(1) = ¢.

(2) Because E is a (9,t) set we know that f(z) > ¢-x for all z € [0, 1].

(3) Because we are in 2 dimensional Euclidean space, we can always cover a
Cp ball with C? smaller p balls and so our function satisfies f(z + Azx) <
f(x) 4+ 2Ax, i.e. is 2-Lipschitz.

All of these properties give us a range of ’admissable’ branching functions, which we
can represent in the following graph.
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FIGURE 25. An example of a branching function (blue). The two
known cases of an AD-regular set and a Well-spaced set bound an
admissible region in which the function can lie (red). The semi-well-
spaced case corresponds to any function lying above the green dashed
line.

Using this language we can define what a semi-well-spaced set is. A well spaced
set is formed on the graph with two lines of slope 2 and 0 which meet in the middle.
We then slightly weaken this to have two lines of slope 2 — s and s. Any branching
function above this new graph corresponds to a semi-well-spaced set. Ren and Wang
adapted the Fourier method to prove the Furstenberg conjecture in the semi-well-
spaced case.
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Now how does our multiscale argument interact with this branching function?
The branching function of E, corresponds to the branching function of £ on scales
[0,logs(p)]. Similarly, if B is a ball of radius p, then the branching function of
Ep corresponds to the branching function of E restricted to [logs(p), 1]. In essence
the multiscale argument splits our branching function into two pieces which we can
analyze separately.

In our graph this looks like splitting the graph into a left and a right part. The
left part corresponds to the branching function of F, and the right describes the
branching function of Eg. Because the branching function of Es can be recovered
from the two pieces by placing them side by side, we will call this the Concatenation
method. Let us work out an explicit example.

t,, -

log% | Ep|

logs p

Consider a branching function as above, by splitting at p corresponding to where
the two lines meet, we get

5\ "
0" = |Es| = |E,||Eg| = p~" - (E)

Now let us try to estimate R(FEs, Ty) using this splitting. We already know that
R(Es,Ts) < R(E,,T,)R(Ep,Tp),
Now we have two scenarios that can happen depending on the values ¢, t5.

® 5 <1,y <2—s. In this case we can estimate both R(E,,T,) and R(Eg, Tp)
by the B bound in the theorem. This gives us

c o n 8\ [0\ P . .
R(E,, T))R(Ep, Tp) < p2p~> (;) (;) = 02072,
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where we used the equation for 6! we had above. This is exactly the bound
we want when t is in the B regime.

e 2— 5 <t and ty < s. Now when we bound R(E,, T,) we get the C' bound
of the theorem, and when we bound R(Eg, Tg) we get the A bound of the
theorem. This gives us

R(E,, T,)R(Eg,Tg) < p'™ 1> 62673,

Unfortunately, in this regime, we do not get the desired bound.

What can we learn from this? We can assume from the start that s <t <2 — s, so
that we are in scenario B. When we split our branching function in pieces, we want
each piece to be in scenario B, and we want to be able to analyze each piece. So we
want each piece to be in scenario B, and we want each piece to be either AD regular
or semi-well-spaced.

The last argument of the theorem is then to show that such a decomposition is
always possible.

Lemma 24.5. If f :[0,1] — R is 2-Lip, increasing with f(1) =t, f(x) >t -z and
s<t<2—s.

Then there is a decomposition [0,1] = | |I (plus some tiny leftovers) where on each
interval I either

e f is almost linear with slope t;, s <t; <2 — s.
o f is semi-well-spaced.

We do not show the full proof here, but an interesting tool used here is the
Radamacher theorem. Because our function is 2-Lipschitz our function must be
differentiable almost everywhere. Thus as we split into smaller and smaller pieces,
our pieces will look more and more like constant slope functions, i.e. the AD-regular
case. We then use the semi-well-spaced case to get rid of the slopes that are outside
our range.

This lemma was the last tool in our outline and finishes our sketch of the proof of
the Furstenberg conjecture.
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