PROJECTION THEORY NOTES

Given a set or measure in FEuclidean space, we consider its projection onto many
different subspaces. Informally, we study an object by looking at its shadows in many
different directions. How do the features of the object compare with the features of
the shadows? If many shadows are highly concentrated, is the original object highly
concentrated too? This type of question connects geometry and harmonic analysis
and combinatorics.

Understanding this type of question has applications in number theory, homoge-
neous dynamics and harmonic analysis. Some of these connections were just found
recently. Seeing all the connections between projection theory and other areas was
one motivation to teach this class.

One of the fundamental problems in the subject is called the exceptional set prob-
lem. It is a quantitative version of the question from the first paragraph: If many
shadows are highly concentrated, is the original object highly concentrated too? This
question was introduced in the 1960s. It was fully answered in 2024 by Orponen-
Shmerkin-Ren-Wang. This breakthrough was a second motivation to teach this class.

The full proof of Orponen-Shmerkin-Ren-Wang is quite complex, and we won't
study every detail, but we will introduce the background and describe the main new
ideas.

In the class, we will introduce projection theory, learn some classical methods,
explore how it connects to other areas, and study some recent developments.

Acknowledgements. Thanks to Pablo Shmerkin, who visited for a month dur-
ing this class, shared his insights on many topics, and guest taught several lectures.
Thanks to everyone in the class for helping write the notes and for many helpful
questions. Thanks to Jacob Reznikov for making the beautiful figures in these notes.
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1. INTRODUCTION AND OVERVIEW

Tuesday Feb 4

In 18.156 this spring, we will study projection theory. Projection theory studies
how a set X behaves under different orthogonal projections. Questions of this type
aren’t usually emphaisized in the graduate analysis curriculum, but they come up in
many areas of math, including harmonic analysis, analytic number theory, additive
combinatorics, and homogeneous dynamics. It is an especially good time to study
projection theory, because there have been some striking recent applications, and
because one of the central problems of the field was very recently solved. At the
same time, there are many interesting open problems which I am excited to discuss
and reflect on.

The goals of the course are:

e Learn the classical techniques and results of projection theory (with full de-
tails).

e Learn about applications in several areas.

e Learn about open questions.

e Learn some of the main ideas in the recent work in the field. Level of detail
will depend on everyone’s interest.

1.1. What is projection theory? Suppose that we have a set X C R"”. For any
subspace V' C R", let my : R® — V denote the orthogonal projection. Projection
theory studies the relationship between the properties of the set X and the properties
of the projections 7y (X) as V' varies among k-dimensional subspaces. Informally,
we are looking at X from many different points of view and trying to coordinate the
different information.

The most basic question concerns the cardinality of X and the cardinality of 7y (X))
for different sets V. Suppose that X is a finite subset of R?, and write |X| for the
cardinality of a finite set. For almost every line L, |7 (X)| = |X|, but there could
be some special lines L where |77,(X)| < |X]|. For any number S < |X|, let Eg(X)
be the set of lines L with |7, (X)| < S. The first question of projection theory is:

Question 1. Suppose X C R? is a finite set and S < |X|. Given |X| and S, what
is the mazimum possible size of Eg(X)?

A key example, suggested by Erdds, is when X is an integer grid. In this case,
when the slope of L is a rational number of small height, |7 (X)| is small. Erdos
conjectured that this example is the worst possible up to a constant factor, and in
the early 1980s, Szemeredi and Trotter proved this conjecture.

Theorem 1.1. (Szemeredi-Trotter 1982) If X is a finite subset of R?, and S < 1|X|,
then



4 PROJECTION THEORY NOTES

|Es(X)| < CSHX|™ + 1.

The proof of the Szemeredi-Trotter theorem uses topology, and it started an in-
teresting interaction between combinatorial geometry questions and topology.

There are many variations of this question. For finite sets X, we can consider
higher dimensions R™. Or we can consider other fields, like X C Fy where F, is a
finite field with ¢ elements. Many of these questions are open.

We can also consider infinite sets X. This angle was taken in geometric measure
theory, where the size of an infinite set is measured using Hausdorff dimension. We
write HD(X) for the Hausdorff dimension of X. The question was first considered
by Marstrand in the 1950s. He proved the following theorem.

Theorem 1.2. (Marstrand, 1954) Is X C R? is a compact set, then for almost every
line L,

HD(r(X)) = min(HD(X), 1).

The lines L where HD(7,(X)) < min(HD(X), 1) are called exceptional directions.
Our second main question is to estimate the size of the set of exceptional directions.
We let E5(X) be the set of lines L where HD(7., (X)) < s.

Question 2. Suppose X C R? and s < HD(X). Given HD(X) and s, what is the
mazimum possible Hausdorff dimension of Es(X)?

This second main question is called the exceptional set problem (for Hausdorff
dimension). It is a geometric measure theory analogue of the first main question
above, where size is measured by Hausdorff dimension instead of cardinality. In
the 60s and 70s Kaufman and Falconer studied this question. Kaufman proved
some results using a double counting argument, greatly simplifying the proof of
Marstrand’s theorem. And Kaufman and Falconer proved other results using Fourier
analysis. These are the first fundamental results in the field. They are interesting
and useful, but they don’t give the full answer to Question 2. Nevertheless, no one
improved on these results for about twenty years.

Furstenberg introduced a generalization of the exceptional set problem, which is
called the Furstenberg set conjecture. Furstenberg was motivated by a question
related to ergodic theory. Later Tom Wolff studied the exceptoinal set problem and
the Furstenberg set conjecture. Wolff was motivated by the Kakeya conjecture and
by other problems in geometric measure theory. Wolff studied the proof of Theorem
1.1 and tried to adapt the topological methods there to Question 2. He was able
to prove some interesting estimates and he even applied them to prove some new
estimates for the wave equation. But he was not able to prove any new estimates for
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Question 2 itself. Wolff identified a key obstacle to addressing the exceptional set
problem: the answer is different over C? compared to R?, but most methods do not
distinguish these two problems. Similarly, the projection problem in Fg is different
depending on whether ¢ is prime or not prime.

Around 2000, Bourgain proved the first estimates in projection theory that dis-
tinguish between R? and C2. However, Bourgain’s proof improves the previous ex-
ponents only by a tiny number e¢. For the next twenty years, the bounds in the
exceptional set problem were only tiny improvments of the old bounds of Kaufman
and Falconer. But very recently, Question 2 was answered completely by Orponen,
Shmerkin, Ren, and Wang.

Theorem 1.3. (Orponen-Shmerkin-Ren-Wang) If X C R?, and s < HD(X), then

HD(E (X)) < max(2s — HD(X),0).

The bound here is the natural analogue of the Szemeredi-Trotter theorem in the
setting of Hausdorff dimension. There are many variations on this question too, and
many of them are open. The field is developing rapidly.

1.2. Applications of projection theory. We will survey several applications of
projection theory. For each topic, we will introduce and motivate the topic and see
how it connects with projection theory. We will prove something about each topic
but not necessarily the strongest results.

Sieve theory. Projection theory is closely parallel to some topics in sieve theory.
Suppose now that X C Z. For any integer ¢, let m, : Z — Z/qZ be the quotient map,
which takes an integer n and outputs n mod ¢. Sieve theory studies the relationship
between the properties of the set X and properties of 7 ,(X) for different g.

Here is a sample result in sieve theory. One interesting example in sieve theory
is the set of square numbers, which we denote as S. For every prime p, |m,(5)| =
22l ~ B, Linnik proved that if X C {1,..., N} and |m,(X)| < 2! for every prime p,
then | X| < N2, The set of square numbers up to N shows that Linnik’s theorem is
tight. The only known tight examples are close cousins of the square numbers, and
it is an important open problem to understand whether there are other examples.

Another important direction in sieve theory is to understand how prime numbers
are distributed modulo ¢ for different q. Let P, denote the set of prime numbers up
to x. Dirichlet proved in the early 1800s that if ¢ is fixed and z — oo, then P, is
evenly distributed modulo ¢ among the residue classes that are relatively prime to
q. Dirichlet’s method only works when ¢ is far smaller than x — the exact statement
is messy but g needs to be smaller than z¢ for any ¢ > 0. On the other hand,
it is conjectured that for every ¢ < x'7¢, the prime numbers are evenly distributed
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modulo g. The generalized Riemann hypothesis would imply that the prime numbers
are evenly distributed modulo ¢ for every ¢ < z'/27¢.

Sieve theory leads to equidistribution results that hold for most ¢q. In particular,
Bombieri-Vinogradov proved that for almost all ¢ < x'/27¢, the primes are evenly
distributed modulo ¢. The point of sieve theory here is that we consider 7, (P,) for
many different ¢ and how these different “projections” are related to each other.

One important problem in this area is to try to understand the distribution of P,
mod ¢ for most ¢ when ¢ > x'/2. Yitang Zhang proved the first results of this kind
in his proof of bounded gaps between primes. We will introduce this problem and
some of the issues that make it difficult.

There is a close analogy between classical methods in projection theory and clas-
sical methods in sieve theory. Orthogonal projections my : R™ — V' and reduction
modulo ¢, m, : Z — Z/qZ are both homomorphisms of Abelian groups. Much of
projection theory only really depends on this homomorphism structure and so there
are closely parallel results in the two settings. In particular, Falconer’s work in pro-
jection theory (based on Fourier analysis) is closely analagous to the ‘large sieve’
method developed by Linnik and used by Bombieri-Vinogradov. And Kaufman’s
work in projection theory (based on double counting) is closely analogous to the
‘larger sieve’ method developed by Gallagher.

Sum-product problems. Suppose that A is a finite set of a field F, such as
R or F,. We write A + A for the set of sums {a; + a2 : a1,a2 € A} and we write
A - A for the set of products {ajas : a1,a9 € A}. Erdos raised the question whether
max(|A + A|,|A - A|) must be much bigger than |A|. He conjectured that for any
set A C R, max(|A + Al,|]A - A|) 2 |A]*™¢, and Erdos and Szemeredi proved that
there is some ¢ > 0 so that max(|A+ A|,|A- A|) = |A|**. Elekes connected the sum
product problem to the Szemeredi-Trotter theorem and used the latter to prove a
bound with a much better exponent: max(|A + A|,|A - A]) > |A|>/4.

Ever since Elekes’s work, there has been a close connection between sum product
problems and projection theory. This connection has been a two way street. Initially,
Elekes used ideas from projection theory to prove new bounds in sum product theory.
But the work of Bourgain and the recent work of Orponen-Shmerkin-Ren-Wang goes
in the other direction, proving results in sum product theory first and then applying
the results to projection theory in general.

Bourgain and Gamburd went on to apply these ideas in sum product theory to
questions about random walks on finite groups such as SLo(F,). Suppose that
g1, ..., gr are a set of generators of SLy(F,) where we imagine that £ = O(1) and
p is large. This set of generators determines a random walk on the group SLs(F),).
Bourgain and Gamburd showed that, under fairly mild conditions on the generators,
this random walk mixes very fast.
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Homogeneous dynamics. The setting of homogeneous dynamics is a homoge-
nous space such as SL,(R)/SL,(Z). This homogeneous space can be viewed as
the space of lattices in R”. It comes up in many problems in number theory. If
H c SL,(R) is a Lie subgroup, and z € SL,(R)/SL,(Z), then we can consider the
orbit Hx C SL,(R)/SL,(Z), and we can ask how this orbit is distributed. If H is a
unipotent subgroup, then there is a very rigid classification theorem due to Ratner,
building on special cases proven by Dani and Margulis. Ratner’s theorem says that
either the orbit Hx is dense and evenly distributed, or else there is a very specific
algebraic structure that describes the orbit.

Recently, Lindenstrauss and Mohammadi returned to this question and worked on
proving good quantitative bounds in Ratner’s theorem. So far, they were able to do
so in some special cases. One of their key new ideas is to connect these problems in
homogeneous dynamics with projection theory.

We will introduce this area, motivate the question, and learn how projection theory
enters the story.

Those are all the applications that we had time to discuss in the class, but in this
introduction, we briefly mention a couple of others.

Imaging. Projection theory also comes up in different imaging technologies, from
CAT scans to Cryo-electron-microscopy. In these settings, one tries to reconstruct a
set X or function f from some information about its projections. Some of the math
involved involved in imaging technology is related to the math in this course. In
particular, imaging technology makes use of the close connection between projection
theory and Fourier analysis.

Fourier analysis. Projection theory has a close connection with Fourier analysis.
Philosophically, projection theory is closely related to additive structure: the key
feature of a projection 7y : R®™ — V is that it is a group homomorphism of abelian
groups. Fourier analysis is also closely related to the additive structure of R™: in
Fourier analysis we study the characters of an abelian group. This leads to nice
formulas relating projections and Fourier transforms. We will use Fourier analysis
in our study of projection theory.

Recent work in Fourier analysis, especially related to decoupling theory, is closely
related to projection theory, and ideas have gone in both directions.
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2. FUNDAMENTAL METHODS OF PROJECTION THEORY

Thursday Feb 6

In this lecture, we introduce two fundamental methods for proving estimates in
projection theory: the double counting method and the Fourier method.

These methods are cleanest in the setting of finite fields, so we begin with that
case.

We write I, for the finite field with ¢ elements. Our projections will be a set of
linear maps Fg — IF,. For each 0 € F,, we define 7 : Fg — F, by

(1) 7T9($1,l‘2) = x1 + Oz

Consider the following setup.
Setup.

2
X CF,
D C F, (set of directions)
S = S(X, D) :=max |m(X)].
0eD

The first example of a set which has many small directions is an integer grid.

Example 1. (Integer grid example) For simplicity suppose that ¢ = p is prime.
Write [N] for {1,..., N}. For some N < p, define

X = {(.Tl,xg) T T1,T € [N]}
For some A < p, define

D ={ai/as : ay,ay € [A]}
If 0 € D, and (x1,25) € X, we have

aoT1 + A1T2

7T0(51717-732) = a
2

Therefore, |mp(X)| S AN. So we get

S(X, D) ~ max(AN,p).

The configuration is interesting when S < p/2. In this case, we have S ~ AN and
SO
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SQ
(2) D] ~ =
| X
This example generalizes to any finite field F, (or any field). But when ¢ = p"
with r > 1, there is also a more dramatic example based on the subfields of F,. We

illustrate this in the case ¢ = p?.

Example 2. (Subfield example) Suppose that ¢ = p? with p prime. Define
_ w2 2
X =F CPF

D=F,CF,
If 0 € D, and (z1,22) € X, then we have my(z1,x2) = 21 +6z2 € F,. So |mp(X)| < p.
So |X|=p?=¢q, |D|=p=4q"/% and S = S(X,D) = p = ¢'/2
Comparing with Example 1, we see that |D| is much larger than %
Over F,, there is no known example more dramatic than the integer grid example.
In fact, all known examples with many small projections are small variations of the
integer grid example. This leads to the following conjecture.

Conjecture 2.1. Suppose X C IFJQD, D C F,, and S = maxgep |mo(X)|. If S < p/2,
then
2
DS >
| X|
Here we need S < p/2 because for any sets X, D, we always have S < p. If S = p,
then we cannot get any information about |D|,|X|. For fields F,, I have not seen
a conjecture written down anywhere, but informally it is expected that the extreme
examples are minor variations on Examples 1 and 2.
We will prove two fundamental estimates about projection theory in Fg. The
proofs of these results introduce two main techniques that we will use repeatedly:
double counting and the orthogonality / Fourier method.

Theorem 2.2. (Double counting) Suppose X C ]Fg, D CF,, and S = maxgep |m(X)|.
If S <|X]/2, then
DI <SS

Theorem 2.3. (Orthogonality/ Fourier) Suppose X C F., D C Fy, and S =
maxgep |7o(X)|. If S < q/2, then
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Sq
| X]

Remark. When S = ¢/2, or when S ~ ¢, Theorem 2.3 matches the grid example
and it is sharp. Theorem 2.3 is also sharp for the subfield example. If ¢ = p, then
whenever S is much less than ¢, Theorem 2.3 does not appear to be sharp. And even
if ¢ = p?, there are many values of S, | X| where Theorem 2.3 does not appear to be
sharp.

These theorems give interesting bounds but they don’t give a complete picture
of projection theory over IFZ. In part, this is because the techniques that we study
today don’t distinguish prime fields from non-prime fields, but the optimal projection
estimates do depend on whether the field is prime. It is fairly difficult to prove bounds
going beyond these two theorems, and we will return to that later in the course.

IDI'S

2.1. Double Counting.
Proof of Theorem 1. We will apply double counting to the set

(%) :={0 € D,z #x2 € X : mp(x1) = mp(22)}

(Note on notation: here z, s are points in X, not components of a vector.)

We call () the set of coincidences. The idea of the proof is as follows. If there are
many directions 6 where my(X) is small, then there must be a lot of coincidences.
But for any z; # x5 € X, there is only one direction 6 so that my(z1) = mg(x2), and
so there can’t be that many coincidences.

If 0 € D, then we have |mp(X)| < S < |X|/2. Therefore, using Cauchy-Schwarz,
we get

Sl £ a9 € X mo(a1) = mo(a2)} = 8 (%')2 .

(Details of this argument are on the first problem set.). And so
() 2 |X[*S7HD.

On the other hand, for each z; # x5 € X, there is only one direction 6 so that
mo(21) = mp(22), and so

() < X[
All together we have

[ X[PSTHDI < (%) S X
and so |D| < S. O
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2.2. Orthogonality / Fourier method.

Proof of Theorem 2.3. The fibers of the map 7y are parallel lines in F2. So if |m(X)| <
S, then we can cover X using at most L lines coming from fibers of .

Recall that for each 0 € D, |mp(X)| < S. Let Ly be a set of S fibers of my which
covers X. Let L. = Ugeplly. Note that

IL| = |D|S.
If L is a line in 2, we write L(z) for the characteristic function of L. We define

f(2) =3 L)

LeL
Notice that for each z € X,

f(z) =1DI.
We will estimate the function f using orthogonality. To do that, we first break up
each function L as a constant function plus a mean zero part:

1 1
(3) Lix) = — +L(x) - -
\q/" d

Lo(x) Lp(z)

Here Lo(xz) = 1/q is the mean value of L(x), and so L;(z) has mean zero. (The
mean value of a function g : F¢ — C is qid erwg g(x).) We can break up f in a

similar way:

(4) fm:Zum=%+zum
LelL ~— Lell

S A

The constant function fy is very simple to understand. Since |L| = SD, and since
we assumed S < ¢/2, we have fy(z) < |D|/2. Now for every x € X, f(z) = |D|, and
SO

|fu(z)| > |D|/2 for all z € X

The key point is that the functions Lj(z) are essentially orthogonal, and we can
use this to estimate the function f;. We state the orthogonality as a lemma.
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Lemma 2.4. If L, Ly are two different lines in FQ then

ZLlh )L p(x) < 0.

z€lF2

Using Lemma 2.4, we can bound the L? norm of fj,:

Do@P= Y Y Lun(@)lon(z) <D Y [La(@)?

z€lF2 Ly,La€L xelF?2 LeL zeF2
For each line L, we can compute Y. _p |Lp(2)]? by hand. It is slightly smaller
q
than ) _w L(x) = ¢. So all together we get the L? bound
q

(5) > fl@)]” < |Llg

z€lF2

Combining everything we have done so far, we see that

(XIIDP < Y Iful@)* < [Llg = [D]Sq

z€lF2

Rearranging gives |D| < 7‘1‘

O

Before we prove Lemma 2.4, we make some comments about the proof. Our
bounds here are interesting when |L| is much larger than ¢q. The key input is the L?
estimate for f; in (5. When |L| is much bigger than ¢, then this estimate shows that
erng | fo(x)]? is much bigger than erng |fn(x)2. So f(x) is equal to a constant
function fy plus a perturbation fj,, and for most x, |f,(z)| is much smaller than
| fo(z)]. Informally, we could say that the function f(z) is almost constant.

Looking back at the proof of our L? estimate (5), the argument applies to any
set of lines L. The crux of the matter is that if |L| is much bigger than ¢, and if
f(x) = >, L(z), then f = fo + fn where f is a constant function, and f, has
small L? norm.

The key to the L? estimate is the orthogonality in Lemma 2.4. Now we discuss
the proof of Lemma 2.4. One simple proof is just to compute erFg Ly p(z) Lo ().
Recall that

)1-1/q ze L,
Ll’h(gj)_{—l/q ¢ Ly

We can now compute ) g L1x(2) Lo (7). With a little algebra, we find
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=0 if Ly, Ly are not parallel
Y Lun(@)Lop(x) .
2EF2 <0 if Ly, Ly are parallel

The main case is when L;, Ly are not parallel. In this case something interesting
is happening that causes the sum to be zero, and we should look for a conceptual
explanation. One explanation comes from independence. After a change of coordi-
nates, we can assume that L; is the vertical axis and L is the horizontal axis. In
these coordinates, L; j, only depends on z; and Ly} only depends on x5, and so L;y,
and Ly, are independent. Therefore,

2
> Lin()Lop(x ZLM) > Lou(x) | =0-0=0.

z€lf2 z€Fq z€Fy

Another conceptual explanation comes from Fourier analysis. We now pause to
review the Fourier transform over finite fields, and then we use Fourier analysis to
explain why L, and Ly are orthogonal when L, Ly are not parallel.

Suppose that e : F, — C* is a non-trivial homomorphism from the group ]F;; to
2mi 2

the group C*. If ¢ = p is prime, then we can take e(x) =™ '».
Ifx €e ]Fg, we define the dot product z - £ by

Z - g = 35151 + ...+ xdfd.
If f: Fg — C, then we define its Fourier transform f : Fg — C by

(6) F©) =>" flx)e(—

z€Fd

With this setup, we can write down the two fundamental theorems in Fourier
analysis: Fourier inversion and Plancherel.

Theorem 2.5. If f: Fg — C, then

= Y Al = S0+ 3 Fe)e

¢eFd \,,_/ o &0

fol=) In@)

Theorem 2.6. If f,g:F} — C, then

> fl@)gle) = —

zeFd
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Let us now revisit how we broke up a function f as fy + f,. Starting with Fourier
inversion, we can write f as

i oY e = i > fe
§GIFd R/—/ £#0
Jot@) fu(a)

Since f(0) = quFg f(z), we see that fy is just the mean value of f(x). So this
decomposition is the same one we used above in the proof of Theorem 2.3. We
can think of fy as the contribution of the zero frequency, and we think of f, as the
contribution of the non-zero frequencies. The letter h stands for ‘high’, and we think
of f5, as the ‘high-frequency’ part of f. In general, for any function f, we can define
frn as above, and we have

GRS FAE

The Fourier transform interacts in a nice way with lines, and more generally with
affine subspaces. Suppose that P C Fg is an affine k-plane. We write P(x) for the

. {f(s) £40

characteristic function of P. We define Pt as

T ={¢€F: (11 —x2)- £ =0 for all 21,25 € P}

(Here the vector x; — x5 is tangent to P, and so P~ is the set of vectors perpendic-
ular to P. Note that P is affine, so it may not contain 0, whereas P* is a subspace,
and it does contain 0.)

Lemma 2.7. If P(x) is the characteristic function of an affine k-plane in Fd then

s Jd" cePt

The proof of Lemma 2.7 is on the first problem set. The main point is that when
P is an affine plane, then P(£) = Y wepe(—x-&) is a geometric series, and so we can
sum it exactly. For most £, the geometric series sums to zero because of symmetry.

Using Fourier analysis, we can now give another proof that when L, Ly are not
parallel, then L, and Ly, are orthogonal. By Plancherel, we have

Y Lup(@)Lon(x ZLM Zm

z€F? £€F2 §#0
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But by Lemma 2.7, the support of L; is L{ and the support of Lo is Ly . Since
the two supports intersect only at & = 0, our last sum is zero.

To summarize, ﬁlyh and I:Q’h have disjoint supports, and so L;; and Lyj are
orthogonal.

Remark. We don’t necessarily need Fourier analysis to prove Theorem 2.3, but in
some further developments the Fourier analysis is helpful. For instance, if we want
to generalize Theorem 2.3 to higher dimensions, the Fourier analysis point of view
is important. You will explore this on the first problem set.

2.3. Projection theory for balls in Euclidean space. Next we will start to
study projection theory in Euclidean space. We will consider the projections of a set
of unit balls in Euclidean space, and we will adapt our two fundamental methods to
that setting. There is a new issue that appears for balls in Euclidean space, which
has to do with how the balls are clustered. In this lecture, we start to set up our
problems in the context of balls in Euclidean space, and we see how the clustering
comes into play.

In this section, for a set X C R%, we write | X| for the d-dimensional measure of
X.

Setup

Suppose that X is a set of disjoint unit balls in Br C R

Suppose that D is a finite set in S', which is 1/R-separated.

Define S(X, D) = maxgep |m(X)|, the maximal 1-dimensional measure of my(X).

Here we suppose that the directions in D are 1/R-separated because otherwise the
projections would be essentially equivalent.

Next we can consider some examples. There is an integer grid example which is
analogous to the one we mentioned in finite fields.

Example 1. (Widely spaced integer grid example)

We let X be an N x N grid of unit balls in BE, spaced as widely as possible. The
centers of the balls lie on the lattice %Z X %.

We choose a parameter A < R, and we let D be the set of directions with slope
in the set {a1/ay : a1, as € [A]}.

By a similar analysis to the one in finite fields, we see that

S(X,D) ~ max(AN, R).

The configuration is interesting when S < R/2. In this case, we have S ~ AN
and so
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(7) 1Dl ~ =7

Notice that the numerology of Example 1 in the setting of balls exactly matches
the numerology for the integer grid in F2.

We recall that for projection theory in Fg, there were interesting examples related
to subfields of F,. The field R does have subfields, such as the field of rational
numbers. However, these subfields do not lead to interesting sets of unit balls in Bg.
I think that the issue is that Q is not closed. To get a set of unit balls, we might
take the 1-neighborhood of Q x Q, but that is all of R2.

But there is a new phenomenon for projection theory of balls in Euclidean space
which has to do with clustering. As a second example, we consider a tightly clustered
set of balls.

Example 2. (Clustered example)

For some N < R, we let X be a set of ~ N? disjoint unit balls in By C Br. We
have |X| ~ N?

Now for every direction 6, we have |mp(X)| < N.

So we can let D be a maximal set of 1/R separated directions, so |D| ~ R, and
we can take S = 2.

Plugging in, we find that |D| is much larger than |572 ~ 1. And so this example is
more extreme than Example 1.

The new theme in this setting is that projection estimates depend on how much X
is clustered. It turns out that it is important to consider both how X is clustered and
how D is clustered. We can quantify the clustering of X and D with the following
definitions.

We write B(c,r) for the ball with center ¢ and radius r. For any 1 <r < R, we
define

(8) Nx(r) = max |X N B(c,7)|

CEBR

We write 7 for an arc of S', and || for its length. For any p € [1/R, 1], we define

(9) NMMIQg#wﬂW

Our goal will be to prove projection estimates that depend on the functions Nx(r)

and Np(p).
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In the next lecture we will work out analogues of Theorem 2.2 and Theorem 2.3
for balls in R2. The main idea will be to adapt the methods we used today in order
to take account of clustering information from Nx (r) and Np(p).
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3. PROJECTION THEORY FOR BALLS IN EUCLIDEAN SPACE

Tuesday February 11

In this lecture, we develop the tools from the last lecture in the more geometric
setting of Euclidean space.

We first introduced our main tools in the setting of finite fields, where the technical
details are simple. Now we adapt these tools to Euclidean space. Euclidean space
has many different scales. We have to take into account many different scales in
order to even ask good questions in Euclidean space. Paying attention to multiple
scales will go on to be one of the key ideas in the subject.

We suppose that X is a set of disjoint balls in Euclidean space, and study the
orthogonal projections of X in different directions. Here is the precise setup.

SETUP
Let X be a set of disjoint unit balls in By C R% Let D C S! be a set of 1/R
separated directions.

5 = S(X, D) = max|m(X)|.

Nx(r) = max|X N B(e, ).
ND(p): max |DNoal.

oeS’arc
lo|=p

Double Counting

Theorem 3.1. (Double Counting Real Version)
If SETUP, then

\N’ > Nx(r)Np(1/r).

1<7"<R

Proof.
x = #{B1, By unit balls € X, 0 € D : 7y(By) Nme(Bs) # 0}.

Lower bound: * 2 |D| <|X|> S. It basically follows from the same argument as in

the finite field setting.
Upper bound: Fix By, By with dist(By, By) ~ 1, let ¢(By), ¢(B2) be the center of By
and By. Write

c(By) — c(B1)

(B
|¢(Ba) — ¢(By)]
to be the angle from B; to By. (see Figure 1) If my(By) N me(By) # 0, then
angle(0,~) < 1/r. Thus,

#{0 : mp(B1) Nme(B2)} < Np(1/r).

v =



PROJECTION THEORY NOTES

By

FIGURE 1. Angle between two balls

#{Bl,BQ c X : diSt(Bl,BQ> 5 7“} S |X‘Nx(7")

Thus,
«S ) |X[Nx(r)Np(1/r)
r dyadic
1<r<R
SO

IXPSTD <« S > IX[INx(r)Np(1/r).

r dyadic
1<r<R

Example 3.2. For Nx(r),
(1) X neighborhood of a curve. (see Figure 2a)
Nx(r) ~r
(2) Well-spaced N x B grid. (see Figure 2b)

NX(T):{1 r < R/N

7“2%—3 r > R/N

(3) A cluster of N* unit balls (see Figure 2c)
r? r<N

N ~ -
x(r) {N2 r>N

Pictures of How N,.(X) depends on r (see Figure 3)
Normalize N = R'/?.

19
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O30 O
N O
Ox0O
o o o 39 $N R
Br O O O
(A) A neighborhood of a (B) A well-spaced grid. (¢) A cluster of balls.

curve.

FIGURE 2. Examples for Nx(r).

Figure 5
1 -

0.8 |
06| ©/ A
0.4 |

0.2+

logp Nx(r)

0 : : : : |
0 02 04 06 08 1
logpr

FIGURE 3. Plots of N,(X) vs r.

Straight Line Case

| X| =R Nx(r) ~r®
We call this regular o dim spacing.
Below Straight Line Case

| X| = R% Nx(r) S r°
We call this a dim spacing.

Definition 3.3. We say that X has Hausdorff spacing if it has o dimension spacing
for some o.. Another way to say this is that

Nps(X) S |X|°
forany 0 < g < 1.
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Corollary 3.4. (Double Counting Real Version)
If SETUP X, D has Hausdorff spacing then

D S log R(|S|+ 57 [DP]) = (S ~ X or [D] S 5).

5]
[X]
Proof. Let’s calculate Ny (r)Np(1/r). Suppose r = R’ the Hausdorff condition
implies

Nx(R*)Np(R™") < |X|°|D|'™"
Thus, by theorem 3.1,

S S
|D| < NlogRu max | X|?|D|"? < log R(|S| + 151

X025 x)1P!

Recall the theorem in the finite field case.
Theorem 3.5. If X CF?, D CF,, S = maxgep |m9(X)| then S ~ |X| or |D| < S.

Note that in the R setting if we impose the Hausdorff spacing condition, then we
get basically the same result as in the finite field case.
Now let’s compare result in projection theory in IFZ vs unit balls in B% with Hausdorff
spacing.

Theorem 3.6. (Fourier Method Finite Field) If F,-SETUP and S < q/2, then
Sq
[x]
Corollary 3.7. If R-SETUP and X, D has Hausdorff spacing. Then, |D| < |X|

IDI'S 571

Conjecture 3.8. If p primes, F, SETUP and S < 1 min(q, |X|) then

|2
X
Conjecture 3.9. (Furstenberg) If SETUP, X and D has Hausdorff spacing and

S < R “min(R, |z|),

IDI'S

then
2
< ISP

1Dl 5
R

The above conjecture is proven in 2024 by (Orponen, Shmerkin, Ren and Wang)
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3.1. Fourier Method.
Lemma 3.10. (Main lemma in finite field)

If L is a Sfit of lines in Fy. Write f =37, 1(x). Then, f = fo+ f1 s0 suppfo =
{0}, suppfn, = {0}°. Then, fy is a constant function. Then, ||fol|3 = [LI, ||fnl3 =

IL|g.

Now, let’s look at the R setting. Let T be a set of 1 x R in R2. Let ¢ be a smooth

approximation of 1.

Lemma 3.11. (Main lemma in real)
Let T be a set of 1 x R rectangles in R?. Let f =Y . qp ér(z). Then,

1<r<R
dyadic

such that suppf, € B(1/r) and || f,]|2 < Np(r)|T|r 'R where
Np(r):= max #{T eT:TcT})
T:2rx2Rrect

Proof. (proof sketch of main lemma)

suppgr C T* where T* := {€ € R? : |(x1 — a2) - &| < 1, any @y, x5 € T}

Figure 4)

T T*

R W '\%
X %/ §

FIGURE 4. The dual of a rectangle.

Littlewood-Paley decomposition
Write 1 = > 1<r<rn-(§) with n, > 0 such that

dyadic
1 1
suppn, C Ann(—— < [§| < -),1<r <R
10r r

(see
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~

and suppng C B(1/R) and suppm C {£ : || > 1/10}. Define f,. = (n,f)" so
suppf, C B(1/r). In particular, we can write Oy = (méT)v.

Visual of 7, and ¢r,

We have 7,(§) ~ 1 on Ann(1/r) and

()] ~ {1/r2 on |z| Sr

" rapidly decay if |x| > r.

(see Figure 5) where 7j.(z) = [e™n.(&)dé. Note that [1.(x)dz = n.(0). As

()

FI1GURE 5. Visual of radial component of 1,.

[ 1n-(z)|dz = n.(0), we have that f  |rj,(z)| ~ Average of f on B(x,r). As
¢T,7" - QbT * ﬁly we have |¢T,r (X)| ~ rillr neighborhood of T'- (See Figure 6)

r neighborhood of T’

FIGURE 6. A tube T and its r neighborhood.
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Lemma 3.12. (Orthogonality) i
If Ty, Ty are 1 X R tubes then |(¢r, r, o1, )| S R0 unless there exists T, a Rr x
R'Y™¢ rectangle such that Ty, T, € T.

Proof. (proof sketch) If angle(11,Ts) 2 R°%, then supquT;R N SuppgﬁT;,R = 0. If
N,(T}) and N, (T3) are disjoint, then

/(le T¢T2 T /¢T1 * 77V¢T1 * 777" Sj R_IOOO

as ¢p, * 1, and ¢, * 1, have essentially disjoint support. 0

L2 estimates

(10) 105 = 11D drall3
TET
(11) - Z <¢T1,'m ¢T2,r>
Ty, T
(12) = ) (61 b1s) + neglible
T~ T
(13) < > Ndrall3 + o3
Ti~rTo
(14) < NA(T) Y llrrll3
TET
(15) = N’JI‘(T)ZHCbTmHg
TET
(16) = N¢(r)|T]r R

where 72 is the amplitude and rR is the area.
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4. THE FOURIER METHOD IN EUCLIDEAN SPACE

Thursday February 13.

In this lecture, we finishing developing the Fourier method for projection estimates
in Euclidean space.

Before we dive into the Fourier method in Euclidean space, let us overview the
result in the case of finite fields. The main lemma used in the finite case is the
following.

Lemma 4.1 (Main Lemma 2F). If L is a collection of lines in F;, and L(x) is the
characteristic function for L € 1L, then we can decompose

flz) =) L(x)

as f = fo+ fn, where fy = %', fo 1s orthogonal to fn, and

1follZ2 S LI, [1fullz> S ILlg-

Now one can use this lemma to get L? bounds on f quite easily, we immediately
get [[f1172 S | follzz + | fal] 22, however, there are easier ways to get this same bound.

Lemma 4.2 (Elementary L? bounds on f). We have ||f]|7. < |L|g + [LJ*.

Y

Proof. We can directly compute

T [zmr -3 [ 5 s

:Zq Z Ly (x)Ly(2) Z Ll(w)Lz(ﬂf)D
Li#Lo€ll

z€lf2 Li=L2€elL

+

Now different lines always meet at exactly one point, so ) g Li(x)Lo(z) = 1 for
q
Ly # Ly. Thus we have

1f17 < ) ([ZLQ(SE)

z€lF?2 Lel

>+ S 1< Lig+LP

L1#L2€L
]

One could then ask, isn’t the Fourier method then useless if we can arrive at the
same norm bound in an easier way? And in some regimes, it is, if || ~ ¢ then the
Main Lemma does not give us any extra information. However, in the case where
L] > ¢ we not only get the L? bounds, but we also get the extra piece of information
the constant part, the zeroth frequency, of f, dominates the contributions to the
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norm. We can interpret this information as asserting that f is in some sense ’almost
constant’. The usefulness of this will become clear in the Euclidean case.
We now recall the setup for the Fourier Method in Eu-

clidean Space. 2r
Setup 7
Suppose that T is a set of 1 x R rectangles. T, To 13
Suppose that for each rectangle T" € T, v, is a smooth [
approximation for 1. )
Let f = > crtr and Np(r) = max; [{T € T: T C T} 2R

where T" ranges across all 2r x 2R rectangles, as can be seen
in the diagram on the right.
Lemma 4.3 (Main Lemma 2R). If the setup holds then we
can decompose f as

f = Z fr

1<r<R
r dyadic

with f, (nearly) orthogonal to each other, and for each r,
. R
fr € B(/r) and ||f[[z2 S |T|Ne(r)—

Now again we can use this lemma to arrive at a quick L? bound, simply adding up
over r we get || f[|72 S Do, qyadic IT|Nr(r)£. But once again, there are easier ways to
get this bound, which we will now show.

For two tubes 17, Ty we will write r(77,T5) to be the -
minimal r such that T} and T, are both contained

in a 2r X 2R rectangle. ~1
A simple look at the geometry of the rectangles )
gives us the following lemma

Lemma 4.4. For any two tubes T1, Ty we have

R

In a similar way to the elementary bound in the finite case we can compute directly,
we will use the previous lemma, and group the terms in the sum by r

/f2= Z /Tl(x)Tg(x)dm: Z Z §

Ty, ToeT r dyadic T1,T2€T
reor(T1,T2)
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Now fix 7, for the first tube we have |T| choices and for the second we have at most
Nr(r) choices. This gives us

DD DEESD SN NACES

r dyadic T1,T2€T r dyadic
reor(Th,T2)
Once again we get the same L? bound as from the Main Lemma.

Thus we again find that the important part of the Lemma, isn’t just the L? bound,
its the extra information we get about the frequency structure of the function. We
will want to think about this information in a particular way, which we will call the
"locally constant intuition’.

Intuition If suppg C B/, then g ~ constant on each B,. This intuitively should
make sense, if suppg C By, then g is a combination of waves with frequency at
most 1/r, since each wave is then approximately constant on any given B, then it is
plausible that their combination is as well.

Now to use this intuition in our setup let us consider the following diagrams

S,V

N

—

PEN

The left diagram shows us what happens in a setup where our f is dominated by
some f,. with r large, our function then is dominated by the scale » and we can see as
expected by our intuition, that for most balls of radius r, our function is relatively
constant. Furthermore, the locations where f is large will all look like the blob we
have drawn in red, and they will have more geometric structure to exploit there.

On the other hand when f is dominated by fi, it is dominated by high frequencies
and it might look like the diagram on the right, here we have less points where f is
large but they are more scattered and have less structure.

Now let us formalize this intuition before using it with our main lemma. Consider
a function g with suppg C B/, what can we say about it? Well in analysis there
is often a specific way we deal with supports we know, and that is using a bump
function. That is, let n be a compactly supported smooth function with n = 1 on
B(1,7), then we have § = ¢ -7 and so applying inverse Fourier to this equation we
get g = g x 1. We will need three important properties of of 7.
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e |5(x)] < r72, which comes from simple triangle inequality applied to the
integral defining 7.

o n(z)] S 7"_2(@)_1000, which comes from integration by parts.

e If 7 is radial, then 7 is also radial, which we will assume to be the case
henceforth.

Now we can use these two facts to get information about g. We define ¢, := || and
derive the following.

Lemma 4.5. If suppg C By, then |g(x)| < |g| * 1.

Proof. We compute

9(@)| = (g % 7) ()] = ‘/g(y)ﬁ(x —y>\ < [l lite =)l = lol = v:

Lemma 4.6. If suppg C By, then |g(x)|* < |g|* * .

Proof. We again compute

Schwarz to get
< [toite —9)"? [t =2y

= [swrate =y [aa-v)

S (gl vr)(1)

' [ syt~

O

Back to our setup, we can now apply all these computations to improve our L?
bound and derive the Euclidean version of theorem 2F. We recall our setup.

Setup. X is a set of unit balls in B C R2.

D C S'is a set of directions, which is 1/ R-separated.

S = maXgpep |7T9(X)|

Nx(r) = max.eg2 |X N B(c,r)| and Np(p) = max,cq |D N o|.

lo|=p
We will use < to mean g(R,z) < Clog(R)f(R,x) for some constant C.
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Theorem 4.7. If our setup holds then
Nx(r)N R
|ID| £ @max x(r)Np(r/ )
~ X v r?

Proof. First for all 6 € D we define Ty to be the set of S different 1 x R tubes T at
angle 6 that cover X. We then set

T=JTs fl&)=) vr(x).

0eD TeT

Then for any € X we have |f(z)| > |D| so we get the simple lower bound

DPIX|< [ 157
X

Now the upper bound will be a bit trickier, let us think again about the picture
we had before, and notice that if our X set is quite spread apart, that is when Np(r)
is small, then estimating [ |f,|* by || f+]|7. will be quite a lossy comparison, we can

do better.
/
(@]
(@]
(@]
T

First we will use the fact that supp fr C By, to get

[0 = [rdsbis < [re- 0P oite= [ [ L@l Pw e - o

Now let us assume that 1 and hence v, are radial, then they are also symmetric, so
this entire expression is symmetric with respect to swapping x and y. Hence we have

J 158 = (1P [ 1e@ta = nduds = [ 1P @) 05 0o

Now morally 9, is approximately 215, ,, 50 we have that 1x %), < r~2Nx(r). This

then gives us
- R|T|Ny(r)Nx(r)
[ s s 108 D)

r

fr
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Now let us estimate Nrp(r), for any fixed § we know that the number of rectangles
of size 1 x R that can fit inside a rectangle of size 2r x 2R is < r since no more can
fit. The maximum angle (with respect to the large rectangle) that can fit is going to
be < /R, so as many as Np(r/R) different 6 can count, hence we have a bound of

Nr(r) S rNp(r/R). We thus have
/ |fr|2 < R|T|ND(T/R)NX( )

We also have |T| = S|D] so putting it all together we have

xipP s 3 [ inpssipir Y ARCHA

7«2
1<r<R 1<r<R
r dyadic r dyadic
Np(r/R)Nx(r
< S|D|Rlog R max nlr/ 2) x(r)
1<r<R r
r dyadic
which we can rewrite into
SR N R)N
|D| < 22 max D(T/ ) X(T)
~ | X| 1<r<Rr r?
r dyadic

O

Now this result looks a little ugly, so let us see what it looks like with the Hausdorff
assumption we discussed last class. Recall that we say X has Hausdorff spacing if
Nx(RP) < |X|P for all 0 < B < 1. If then X and D both have Hausdorff spacing
then we have

o Mo/ RN XD
1<r<R 72 R?
r dyadic
Corollary 4.8. If the setup holds and X, D both have Hausdorff spacing then
| < 2F SR S|D|
|X X

In particular either R S S or |D| S 2 ‘X|

We will end off this section with a little bit of history about the Fourier and double
counting method.
Fourier Method History

e 1940s - First use of Fourier method by Linnik in Sieve Theory.

e 1970s - Fourier method use by Rot for the Heilbronn triangle problem.

e 1980s - Falconer uses the method for geometric measure theory (what we are
currently doing).
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e Recently - Vinh used the Fourier method in the finite field setting.
Double Counting Method History

e 60s - Kaufmann uses double counting method for geometric measure theory.
e 60s - Gallagher uses double counting method for Sieve theory.

4.1. Sieve Theory. We will now move on to the study of Sieve theory, which as we
will see is very similar to what we have done so far.

We will be interested in studying the maps n, : Z — Z, := Z/qZ given by
mg(x) =2 mod ¢q. These will play the role of our projections, in the sense that they
are also group homomorphisms of Abelian groups.

We will use [N] to denote the set {1,..., N} and we will study the projections of
subsets of [N].

Example Consider the set X = {n?:1 < n < NY2} C [N], we know from basic
algebra that |m,(X)| = 25+ for all primes p. This should seem unusual since we could
have an extremely large set and yet all of its projections miss half of their co-domain.
The natural next question is, how large can a set S be and still have this property?

Theorem 4.9 (Linnik). If X C [N], m,(X) < 2L for all prime p then | X| < NV2.

The only known sharp families for this theorem are square numbers and their close
relatives, namely images of specific quadratic polynomials.
Let us now begin analyzing this problem using the double counting method.

Theorem 4.10 (1S). If X C [N], D a set of primes less than N and for all p € D
we have that |m,(X)| < S, then either | X| < 2S or |D| 5 S.

Proof. We start as usual by considering the set of coincidences
(%) ={x1,20 € X,pe€ D :my(x) = mp(z2)}

by the same argument as usual we have the lower bound

1 = 101 (551) = xpiois

For the upper bound fix x; and x5 and count the number of p’s for which the
condition can hold, if m,(x1) = my(x2) then we have p|rs — x;. We now have two
cases

If 2y = x5 then any p works, this gives us a |X||D] term.

If 21 # x5 then only the prime divisors of x1 — x5 work of which there are at most
log N, so this gives us an |X|*log N term.

Together we get

[ XPIDIS™ < [(+)] < |X[ID| + | X [*log N
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which we can rewrite as

S|D|
|D| < — + Slog N
| X]
so either the first term dominates and we have S < 2| X| or the second term dominates
and we get |D| < S. O

As an example if |m,(X)| < N%3 for any p € D with |D| = O(log N)N?3 then
X| < N2/,
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5. THE LARGE SIEVE

Thursday Feb 20.

Sieve theory is a classical topic in number theory. With hindsight, it is closely
parallel to projection theory. In particular, the large sieve, developed by Linnik in
the 1940s, is closely parallel to the Fourier method in projection theory, developed
by Kaufman and Falconer in the 1960s and 70s.

5.1. The Large Sieve. Let [N] = {1,2,...,N} and f : [N] - C. We define a
projection of f for many different p as follows: let m,f : Z, — C be defined as

mfla)=Y_ f(n)

n=a mod p

It’s often helpful to separate a function into its constant part and mean zero part:

1 X
fo= {5 22 Fm)]1m
n=1
fu = f — fo and we have ZfH(n) =0

We do the same thing with the projections:

(mpf)o = ! Z mpf(a) = constant fn

p a€lyp
(Wpf>H = 7Tpf - (Wpf)o
Remark. We have

o (mpf)un = Tpfu
o (mpf)o=mpfo

so the order of those operations does not matter.

The main theme of the large sieve is that for an almost arbitrary function, if we
take many different projections 7, f, then for most p, the oscillating high-frequency
part of 7, f is smaller than the constant part. We make this precise in the following
theorem.

Let Py = {p prime, % <p< M}

Theorem 5.1 (Linnik). If f: [N] — C and M < N'/? then
N
o hallfe S i > 1 fuln)?

pEPM n
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Remark. Background result from analytic number theory: |Py| ~ logLM ~ M

Corollary 5.2.
N
Avgyep, (T Hullze S e > | fun)?

Let us first see an application of this result before we move on to the proof. Last
time we gave the example of square numbers, which have the interesting property
that they leave only ’%1 different residues mod p (that is, the quadratic residues)
for any prime p. So let us think about such a set, i.e. a set where if you project it
via mod p you get significantly less than all p residue classes. We ask the question
”"What does that tell us about the set?”

Corollary 5.3. If A C [N], |m,A| < (.99)p for any p € P2 then |A| S NY/2.
Proof. Let f =14. Assume p € Py1/2, we get
AN? B
S inf@Pz (B p o lapy
a€ly p

by Cauchy-Schwarz. Now, let’s analyze the high-frequency part. Because supp(m,f) C
mp(A), [supp(m,f)| < .99p. Hence

S I u@l ~ 3 Imf @F 2 AN
a€lyp a€Zy

where we are using the following lemma:
Lemma 5.4. If g : Z, — C and |supp(g)| < .99p then ||gu||2. ~ ||g||3-.

Proof. Recall that g = go + gi and we know go L gi. So [|g|22 = ||gol|32 + ||gm||2-.
If |go||72 < 3|9][32 then we are done, so assume the contrary. Let S = (supp(g)),
by the given condition we have |S| > .01p. On S we have gy = —go and thus

S| 1
lonllte = 3 lon(@l = Y loo* = = 3 laol® = oIl

acsS acsS a€ly
This gives [|gn[72 ~ ||g][72, as desired. O
Now we go back to our proof of the Corollary 5. We know that the L? norm of

the high-frequency part of 7, f is comparable to the L? norm of 7, f itself. But we
can upper bound the former by our Theorem:

N
Avg,ep 1M )l S N2 > e S 14

In conclusion, |A|2N~Y2 < |A] and thus |A| N2 O



PROJECTION THEORY NOTES 35

It is interesting that this result matches the example of square numbers. In that
sense, the bound proven above is sharp. However, it would be helpful to look at
more examples. For that purpose, we look at the following.

Reference point. Random set: take a subset A C [N] randomly by choosing n
in A with probability 1/2 independently. Then we see
mpla(a) = #{n € [N],n =amod p,n € A}

and thus

1 1N
Eampla(a) = 5#{71 € [N],n = amod p} ~ 25

However, we don’t expect it to always be %% So we consider the variance, which is

the square root of %% Hence

N N
with high probability |m,14(a) — om S on
In particular, if p € Py1/2 then for all a € Z,
N
w.h.p [m,1a(a) — % SNV

Now, let us compare this with what our theorem says about an arbitrary set.

Corollary 5.5. If A C [N] then

~
~

Al
Avgpele/QAvgaezp mpla(a) — ? < N1/4

Proof. We plug in Corollary 4 and get
2

A
AVngPN1/2 Z mpla(a) ——| SIAISN
a€ly
Since the size of p is around N'/? we find that
|A| ? < arl/2
AVngPN1/2 AVganp mpla(a) — — <N

Replace the average of the squares by the square of the average (by using Cauchy-
Schwartz):

Avg,Avg,

A
mpla(a) — %‘ S NVA
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So the large sieve tells us that if you take an arbitrary set A and look at a random
residue class {n € A : n = a mod p} with a random p and a random a, the size of
the intersection is similar to what occurs for random sets A.

One cute application of this idea is to count the number of primes in an arithmetic
progression. Specifically, if we take A as the set of primes up to N, then m,14(a) is
the number of primes < N and congruent to a modulo p. So, the question is ”How
evenly distributed are the primes among those arithmetic progressions?”. One might
conjecture that for every p and every a # 0 the following holds:

_ A

7Tp1A(CL) é N1/4

The above corollary makes some progress towards this conjecture, since it implies
that the conjecture is true for most residue classes. However, it is somewhat silly
to call this a progress towards counting primes in arithmetic progressions, since the
proof uses nothing about the prime numbers and only uses the fact that the primes
are a set of numbers. That being said, this line of reasoning is still important, and
in the next class we will come back to this question. We will discuss the Bombieri-
Vinogradov theorem, which uses those ideas in a crucial way.

Lastly, we mention the following before we move onto the proof of the large sieve
inequality. Imagine that the set A had cardinality N/2. Then 7,14 would have size
around N/p and since p € Pyi2 we have that N/p ~ N2 Also |A|/p has size
~ N2 as well, and we know the error (on average) is around N'/%. In particu-
lar this means (m,14)o is much higher than (m,14)y at most of the points. Hence,
when we take a set A of size N/2 look at all the projections, a typical projection
looks almost constant - it’s a constant function plus something much smaller. So
the projection process takes something with no structure and produces something
that’s almost constant. People often describe this as “the projections get smoother.
” In the next lecture, we will work out analogous ideas for orthogonal projections
in R?, and we will see that the word “smoother” is just the right word in that context.

5.2. Proof of Linnik’s Large Sieve inequality. The main idea of the proof is to
study f and m,f by taking their Fourier transforms. So, let us first state how the
Fourier transform of the functions f : Z — C and 7, f : Z, — C are defined.

First, for the function f : Z — C with suppf C [N] we define f : R/Z — C as
&) =2 fmyesmen
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~

and we can check that f(§) is 1-periodic, showing that it is well-defined. Also the
two main theorems of Fourier analysis of functions over the reals hold in our case as
well:

(i) Fourier Inversion:

1 -~ .
o) = [ Feremneas
(ii) Plancherel:

S ) = / o)

Secondly, for a function ¢ : Z, — C we define the Fourier transform g : Z, — C as
gla) =Y gla)e ™
a€lyp

Similarly, if we plug in a+p-t for integer ¢ into the definition we get that g(a+p-t) =
g(a). Hence the Fourier transform g is a well defined function on the cosets a + pZ
and thus is well defined on Z,. Simiarly, the Fourier Inversion and Plancharel hold
as well:

(i) Fourier Inversion:

(ii) Plancherel:
Sl = >3 [t

Now we introduce a lemma that connects the Fourier transforms of f and m,f.
We call this the Dictionary between the integer world and the modp world.

Lemma 5.6 (Dictionary). 7?137(04) = f(%)
Proof. The proof is clear if we unwind all the definitions:

mpf(a) =3 mfla)e ™%

a€Zy

:Z( > f(n)>62m:f

a€Zp ~n=a mod p

2mia s —2min<

Notice that n = a mod p implies e “"“» = ¢ ». Thus we get

ml(0) =3 Fme 5 = F(7)
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m )|

Lemma 5.7 (previous). |[(m,f)ul|2: = D acz,
a#0

Remark. Since Lemma 5.2 applies to any function, we also have 7r/pf\H(oz) =

fu(a/p).
Now let us write the left hand side of the Linnik’s inequality using the Dictionary
lemma:

LHS of Thm. = Y |[(m,f)ul[7-

PEPNM
1 —_— 2
=2 -2 |mlul@)
pEPMp a#0
aElyp
(17 IS
M H P
pEP) 047520
oty

Let’s now visualize this set of points Qy; = {% :p € Pyand 0 < o < p—1}. Note
that |Qu| =~ M2

Lemma 5.8. If 21,92 € Qy are not equal, then |% — %] > 15
Proof.
— 1 1
Q. Qy :‘a1p2 QioP1 > 2_2
P11 D2 D1D2 pipe - M

Remark. If % = Z—; in @y, then p; = py and oy = as.

In Figure 7 below, we have the interval [0, 1] with the points of Qs on it. @, is not
perfectly evenly spaced out but is very close to perfect. In orange is the graph of the

function | fx|? and we have highlighted the value of | fz|? on the set Q,;. What we are
interested in is taking the sum of this function |fz|* on the set Q. This reminds us
of Riemann integration. Indeed, we will compare this to the integral f[o 1 | frr (w)]?dw.

Notice that there is a way for this sum to be way bigger than the integral: if
|fl\{\2 has narrow peaks on Qj;. This way, the sum will be big while the peaks don’t
contribute much to the integral [, | (w)|?dw. So it is important to understand
how wide the peaks are. The following heuristics helps for this task:



PROJECTION THEORY NOTES 39

FI1GURE 7. Picture.

Heuristic: |fz|? is roughly constant on intervals of size %

This can be seen from the fact that f is supported on [0, N]. We will make this
notion precise in a moment, but it means that each peak should be % wide. Since we

are given M < N %, this guarantees that the spacing between two consecutive points
of Qs is bigger than the width %

We will now follow this heuristic and obtain our desired inequality (we shall come
back and prove more rigorously later). Heuristic implies

S Fa©P s N / ()2

£€Q

This is because for each £ € Qy:

FaOP SN [ |Fa(w)dw

Ie

where ¢ is a length % interval around £. Then we can see that the intervals I, for
& € @)y doesn’t overlap, so we can bound the sum over £ € @), by the integral over
the domain [0, 1].
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The rest is just algebra: recall (17) and we get

1 T2
LHS of Thm. ~ M&ZQ: | fu (&)

N [t~ ) N )
<3 ), P = 3 S 1snto)
as desired.

Remark. We have this theme that if you take one function and project it modp
for many different primes, most of them look nearly constant. So why is the zero
frequency special in this story? It’s because for primes p the sets {% 0<a<p-1}
all intersect at 0 but all the other points appear only once. Hence the zero frequency
is being counted very differently than all the other frequencies. If f is large on a
small interval I that does not contain zero, then this part of f will contribute to m, f
for only a few primes p. But if f is large on a small interval I around zero, then this
part of f will contribute to 7, f for every p.

Lastly, we will rigorously prove our heuristic. We will take a function ¥ : Z — C
such that
Yn(n) =1 for n € [N] and ¢ smooth, rapidly decaying
The Fourier Transform of 95 behaves like this:

- ~ N if |€] < L
(18) 7”@:{5Nwmwm s

Refer to the figure below for a visualization of |1Z]\V|

Audience Question: What does smoothness mean for a function on Z? An-
swer: You can think of 1)y as a smooth function on the real line being restricted to Z.

This function is helpful because
f = fyn if suppf C [N]

By taking the Fourier Transform, we get f: f* QZ]\V By the triangle inequality we
obtain |f| < |f] * ¢N‘. Noting that

[W@@msl

(NI
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FIGURE 8. Graph of |22;\

we can show by Cauchy-Schwartz that
T2 S 171 o

Audience Question: The Fourier Transform of functions on Z and R are not
the same. Which one do you mean when you say ¢y 7

Answer: So we mean that we first take a function ¥)yr : R = C smooth with
nr = 1 on [N, N] and rapidly decaying outside. Then we define ¥y zz as the
restriction of ¥y to Z. To analyze the Fourier transform of these functions, we
start with ¢y r. By standard integration by parts, we get: for £ € R

~N if €] <
S NVIEN i [¢] >

e

(19) [ong(E)] = {

Now @b/NTZ is related to % by the equation below, which boils down to Poisson
summation:

Inz(€) = g€ +2)

2€EZ

for ¢ € R/Z. Now the bounds for |@EV\R| in (19) combined with this equation give
the desired bounds for |1y 7| in (18).

Now let’s do a slightly more rigorous proof of the Linnik’s large sieve inequality.
Recall the statement:
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Theorem 5.9 (Linnik). If f : [N] — C and M < NY/? then

S lim) H||L2NMZ\fH

PEPN
Proof. Remember that
1 T 2
LHS ~ i Z | fu ()
§€QM

To relate this sum to an integral, we use the fact that |ﬁ;|2 S |]/“I;|2 * 7@\\7’ This fact

encodes the locally constant property of |ﬂ2 We get

%ZL?II( Z/RZ|fH |2‘1/1N§ UJ‘

£eQ §€QM

1
:MR/ZUH (ZWJNf W)

§€Qum
We claim that this sum is bounded by < N:

ST w(E-w)| SN

§EQ M

This is because the function g(§) = \1@\\;(5 — w)| has a peak around w with height
N and width 1/N and is extremely small away from this peak. The distance between
any two distinct points in @y is 2 M > L ~» and so at most O(1) points of Qy lie
under the peak of g(§). Hence, we - find that

3 2 @ S 3 [Vt = 3 Lol

5€QM
finishing the proof of Linnik’s large sieve. U

In the last five minutes of the class, we want to give a quick teaser on how these
ideas come up in the setting of projection theory over R. We have this theme
that functions on [1,2,..., N] look almost constant after projecting modp for most
primes p. And there is a totally analogous phenomenon for functions on R?. Specif-
ically, if you project those functions onto lower subspaces, almost all of them look
smoother than the original function. We have mentioned on the first day that if you
are in a high enough dimension, even L? functions that are nowhere continuous has
the property that its projection on a typical line are C* are even C?.
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So here is a setup that is analogous to the large sieve. Let f : R — C and V C R¢
be a subspace. Then we have the projection my f : V — C.

Remark. For any function g : V' — C on a vector space V', the Fourier Transform
g :V — C is also defined on V.

We also have the Dictionary lemma:

Lemma 5.10 (Dictionary). We have 7;\/7 = ﬂv" Notice that 7T/V\f is a function on
V' while f is a function on RY.

Pouyter
Space

FiGure 9. Picture.

In the figure, we see two subspaces Vi and V, (among others) of R%. Notice that
the origin lies in every subspace V. On the other hand, a non-zero frequency w € R?
only lies in a small fraction of subspaces V. Therefore, if f is large on a small ball B
far away from zero, then this contributes to my f for only a small fraction of subspaces
V. On the other hand, if f is large on a small B around zero, then this contributes to
my f for every subspace V. If we compare f with a typical 7y f, the high-frequency
parts of the Fourier transform are “damped” in myf compared to f. This causes
my f to be smoother than f. We will explore these ideas more fully next class.
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6. PROJECTIONS AND SMOOTHING

Tues Feb 25

The projection of a rough function at a typical angle is usually smoother than
the original function. This fundamental observation is one of the core principles of
projection theory. It is also closely related to the large sieve.

We first set up what it means to project a function and then state the result
precisely. The proof is closely analogous to the proof of the large sieve.

Setup
Let f: RY — C be a L? function. For V C R a subspace, we define

mvf(y)= [ [fly+z)dvoly.(z),VyeV.

v4
In particular, for § € S™! we write myf = Tpan(8).f -

The following theorem states that the projection of a high dimensional function
onto a typical direction is fairly smooth.

Theorem 6.1. If f € L*(R?), supp(f) C By, then provided that % > %—1— k, it
holds

L Wred s a0 S 171

The following lemma builds a connection between the Fourier transform of f and
that of its projection.

Lemma 6.2 (Dictionary). For any subspace V C R? and any £ €V, 7T/v\f(§) _ o).
Proof. By definition we have
7T/V\f<€) = / f(@@_m5 dz = / f(x +y)dvoly . (y)e_””‘g dx
v vJvi
= / flz +y)e "V dvoly. (y) da
vJvi

= f(x)e ™ de = f(x). O
Rd

Now we prove Theorem 6.1.
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Proof. Using the dictionary lemma, we now relate || f||z with 7y f. By Plancherel’s
theorem and the polar coordinate transform, we have

2 112, = FEV2d
1 = 17152 = [ 1F(@)Pae

_ / / Fr0)2r dr a6
Sd-1 Jo

1 S —_—
== mof (r)*rdtdrde.
2
S4-1 J —o00

Recall the Sobolev norms || - ||z, and || - ||g,: for f:V — C,

||f| ?’{s = / |f(§)|2|5|28 d¢, Hf| %{S = / |f(§)|2(1 ) |§’)28 d§.
174 VvV
The above estimate shows that

L TrudEyags 00 S 171

By the Sobolev embedding theorem, if s > 1 +k, then |7 f|lcx < ||7T9f||H 1. We

4t
have

[ mfltados [ Amslanaos [ [ mrmpa e aras
gd—1 Sd—1 H2 sd—1 J _oo
S+ [ [ VeoEaras S I+ 1

Finally, since f supports on By, we have ||f||z1 < || f||z2, the proof is completed. [

Connection to probability theory. Let Xi,..., Xy be independent random
variables Uni([—1/2,1/2]). The joint density of Xi,..., Xy is given by f(x) =
1_1/2,1/2)7(x). According to central limit theorem,

\/—1N(X1—|-X2+---—|-XN) = N(0,1/6).
This suggests that the projection of f onto the direction (\/—%, ceey \/LN) approximates
a Gaussian, which is a much smoother function than 1_;/5 /9.

Indeed, the central limit theorem says something more: provided the direction is
not “close” to any coordinate axis, then the projection will approximate Gaussian.
Similar results can be generalized from high dimensional cube to high dimensional
convex bodies. This shows again the point that projecting onto a typical direction
smoothens high dimensional functions.
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7. APPLICATIONS OF THE LARGE SIEVE TO NUMBER THEORY

Linnik initially used the large sieve to study the distribution of quadratic residues.
We will see that work on Problem set 4.

Perhaps the most important application of the large sieve in number theory con-
cerns the distribution of primes mod gq.

7.1. Distribution of primes mod ¢. Let 7(N) denote the number of primes less
than or equal to N. Let m(N, ¢,a) be the number of primes p satisfying p < N and
p=a mod g. We want to focus on a € Z, since if a and ¢ are not relatively prime,

m(N,q,a) is at most one. So let ¢(q) = |Z;|. If the primes were evenly distributed
T(N)

mod ¢, then 7(V, q,a) would be close to )

. To quantify how badly this fails, we
introduce the function

Ay(N) = max (N, q,a) — 7;5(];7))

Here are some results on A,(N):

Theorem 7.1 (Dirichlet). For all g,
A
AN
N—o00 N/q
Theorem 7.2 (Siegel-Walfisz). For any A, there is some c4 such that
A (N) < caN(log N)™.

This is the best result that applies to all g. If one assumes the generalized Riemann
hypothesis, then it is true that

A, (N) < (C.N)NV?

for any € > 0. Montgomery conjectured that for any € > 0, there is a constant C,
1/2

such that A, (N) < (C.N°) <%> :

Instead of trying to understand what happens for all ¢, we will be concerned with
the typical behavior of A, (N). The theorem we will discuss is

Theorem 7.3 (Renyi, Bombiere—Vinogradov). For all € > 0 and all A,
D AN) < Ce, A)N(log N) .
qSNl/Q—e

This says that for most ¢ < NY/27¢ A (N) < %(log N < %. So the primes
are close to equidistributed mod ¢ for most ¢ up to N%/?~¢,
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We will not give the complete proof, which is somewhat messy, but we will discuss
most of the main ideas. In particular, we will explain how the large sieve and
projection theory enter the story.

7.2. Multiplicative Convolution and Primes. To prove this, we will use the
multiplicative convolution, which interacts nicely with prime numbers and pro-
jections.

Definition 7.4. If f,g : N — C, then their multiplicative convolution is the
function

[ g(n) = Z f(n1)g(na).

ni,nz,nin2=n

This is related to the prime numbers through the sieve. Sieving is the process of
obtaining prime numbers by crossing off all the multiples of 2, then all the multiples
of 3, and so on, until only the primes are left. If you try to write this down with a
formula, the multiplicative convolution will appear. Let 1 = 1y and define

1 n=1,
Dp(”): —1 n=p,
0 n#1,p.

Then we can calculate
In*p Do = 1y — 1oy = Loqa.

Similarly, 1y *ps Do %5 D3 is the indicator function for n relatively prime to 2 and 3.
For a set of primes S, define

wr= {0
Note that if S = Pyi/2 and NY/2 < n < N, then RPs(n) = P(n).
Lemma 7.5. If S = {p1,...,p,}, then

RPs(n) = 1%y Dy, *pr ... %01 Dy,

7.3. Multiplicative Convolution and Projections. Now we will examine the
relationship between multiplicative convolution and projection. Multiplicative con-
volution interacts nicely with the projection Z — Z, because this projection is a ring
homomorphism.

Lemma 7.6 (Lemma 1). If f,g: N — C, then 7 (f *a g) = 7o f *am me9.
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To be extra careful, we should say what we mean by multiplicative convolution in
Lg:

FryGla)= Y Fla)G(a)

a1,a2€%q,a102=a

for functions I, G : Z, — C.
Proof. Write
f = Zén1f<n1)7 g = Zénzg(nz)

Then
f *M g = Z 5n1n2f(n1)g(n2)'

ni,n2
1 n=

m . Then

Here 4, is the delta function §,,(m) =
0 else

qu(a) = Z 5n1 mod q(a)f<n1)a

7qu *M qu(a) = Z Onina mod qf(nl)g(HQ)

ni,n2

= 7q(f a1 9)(a).
U

For our final result, we want L bounds, but our theory is geared toward L?
bounds. Here’s how we can get L* bounds:

Lemma 7.7 (Lemma 2). If f,g: N — C, then
1f #1 glloe(zg) < I f1le2llgllze-

Proof. Yor a € Z;, f*pg(a) = Ebezg f()g(ab™) < || fllz2]lgllz2 by Cauchy-Schwarz.
OJ
There is also the minor technical annoyance of switching between Z, and Z;. If
[ Zy— C,let f*: Z; — C be the restriction. Then we can write f = fo + fu
and f* = f§ + fy, where the starred functions are defined on Z; and the unstarred
functions are defined on Z,, the subscript zero indicates a constant function, and the
subscript A indicates an average zero function.
Lemma 7.8 (Lemma 3).
1 fall2@z) < Il fallz2czy)-

Finally, taking the high frequency part commutes with multiplicative convolution:
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Lemma 7.9 (Lemma 4). If f*,g* : Z} — C, then
(f* *r 9*)h = f;: *M QZ'
If we combine all of these, we get the following proposition:

Proposition 7.10.
(7o (f a1 9Dl < ([ f)nllz2 || (7qg)nll 22

Proof. By Lemma 1 then Lemma 4,
(g (f *ar 9))1, = (g f *a1 mqg))i, = (Tgf )} *m1 (T49)3-

Then using Lemma 2 and Lemma 3, we get

(g (f a0 @)L < (7o )Rl [ (mag)h 2
< (g fnll 21 (meg)nll 22
[l

7.4. Large Sieve and Multiplicative Convolution. Our goal is to prove that
P(n) is evenly distributed mod ¢ for most ¢ of a given size. We will focus on the case
that ¢ is prime, which avoids technical issues but still shows the main proof ideas.
We have seen that for a large range of n, P(n) is equal to RPg(n), where S =
Py1s2. The key property of RPg(n) is that it is a multiplicative convolution. Our
next theorem shows that most projections of a multiplicative convolution are nearly
constant — it is the main analytic ingredient in the proof of Bombieri-Vinogradov.

Theorem 7.11. If f : [N1] — C and g : [No] — C, then f xp g : [N] — C, where
N = N1Ny, and

S 1w il 5 ( (w00 (2 0) ) i1t

pEPM

Proof. We apply the proposition, Cauchy-Schwarz, and then the large sieve:

D M (f +ar g)illEe < D W fnlle Nl (mpg)nll e

PpEP); pPEPNM
1/2 1/2
< (Z ||(7Tpf)h||%2> (Z ||(7Tpg)h||%2)
PEPNM pEPyr

N, N, 1/2
<((F+a) (F+01)) Ibislolie
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For the main theorem, we have |f(n)|,|g(n)| < 1, s0 || f]|3. £ N and ||g|3.  No,
S0

S Wrof #as 9illie £ 37 + VRN + VNN + MV,

pEPN
This will be good if M < N'/2=¢ and N;, Ny < N. We cannot have N; or N, close
to IV, because in that case the other factor will be close to 1 and the multiplicative
convolution will not result in a more evenly spread function. And the first condition
must be true for the projection theory methods to be able to say anything.

Finally, we give a rough outline the proof of the Bombieri-Vinogradov theorem for
q prime.

[ am actually not sure whether the full BV theorem can be proven following this
outline. The proof in books is based on a different way of finding multiplicative
convolution structure in the primes, which is called Vaughn’s identity. Vaughn’s
identity is more efficient and leads to fewer terms, but I found it a little harder to

motivate.
Let S = P_yi2. If NY2 <n < N, RPs(n) = P(n). Also

RPs(N) = [1xp Dy, ] *ar [ - %01 Dy

=f*uyg
I]_ 12
= > fly % gl
1,12

Here I, and I, are intervals that are narrower than dyadic intervals. Let N; = min [;
and Ny = min I,. Forn < N,

RPs(n)= > fly *u gl
I1,I2,N1-N2<N

We can then apply the theorem above for each pair of intervals. This works when 1 <
Ny, Ny < N. Otherwise, we must group the convolutions for RPs(N) differently. It
is a possible course project to think this through carefully and see what bounds it
gives.
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8. THE SZEMEREDI-TROTTER THEOREM

Tues March 4

The Szemeredi-Trotter theorem gives the sharp answer to a natural discrete pro-
jection problem in the plane. It was proven in the early 1980s. The proof of the
theorem is based on topology, and it is completely different from the proofs we have
explored earlier. Tom Wolff noticed the connection between the Szemeredi-Trotter

theorem and problems in geometric measure theory like the exceptional set problem
and the Furstenberg set problem.

8.1. The Szemeredi-Trotter projection theorem.

Theorem 8.1. Let X be a set of points in R? and D a set of directions in S*. Then
we define

(20) S(X, D) = max |my(X)|
Then
SQ
21) DI<—+1
( D)< %

Now for the general theorem, let X be a set of points in R? and L a set of lines in
R2. Then we define

I(X,L) =#{re X,le Lz el}
Note that

I(X,L) =) [nX|
(L
Then the SzemerdiTrotter (ST) theorem states that

Theorem 8.2.
(22) I(X,L) < |X|+|L| + | X]P?|L]?

Example 8.3 (Example 1 for ST Theorem). The ST theorem is sharp with the | X|
bound when the number of lines is small and each point lies on a single line.

Example 8.4 (Example 2 for ST Theorem). The ST theorem is sharp with the |L|
bound when the number of lines is large and each line lies on a single point.
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F1GURE 10. Example of setup where | X| term dominates and I ~ | X|

FIGURE 11. Example of setup where |L| term dominates and I ~ |L].

Example 8.5 (Example 3 for ST Theorem). We let X be an N x N grid, and define
Qu = {3 :a,b € [M]}. Define L to be the set of lines with slopes in Qn; that pass
through points in X. Then |Qus| ~ M? (the double counting when ged(a,b) > 1 only
affects the magnitude of |Qnr| up to a constant factor). Every point in X has a line
passing through it for each slope in Qn;. Then

(23) I(X, L) = |X||Qu| ~ N*M?

We now define projection operators for each s € Qu as

(24) Ts(T1, ) = xo = —ST1

The fibers of ms are lines of slope s, and the number of lines in L with direction s
is |ms(X)|. We now prove the following lemma:

Lemma 8.6. For all s € Qyy, |7s(X)| S MN
Proof. Take xy, 25 € [N] and s = ¢. Then

o5 (@1 ) = g — Ly = P2 0T
’ b b

Since a,b < M and z1,x9 < N, |bxy — azx1| < MN. Since brs — ar; must be an
integer, there are at most M N distinct values in m4(X). O
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Then since L has at most NM lines for every element of Qpr. |L < |Qu|NM ~
M3N. Then

(26) I(X,L) ~ N*M* Z (M®N - N*)*3 > | X [*/3|L]*/*

Therefore the grid is a sharp example of the SzemerdiTrotter theorem where the
| X|?/3|L|*/® term dominates. Note that the SzemerdiTrotter theorem implies the ST
projection theorem, which is a special case when L is the set of lines with directions
i D passing through points in X.

8.2. Question: Are there other sharp examples for the SzemerdiTrotter
theorem? Another example is grids over number fields. Let R be a number field,
(for example Z[v/2]). Then define

Ry = {ay + asV2 : ay, a3 € Z, |ay|, |as| < N}

QRM:{%:a,beRM}

Then define X := Ry X Ry and L as the set of lines with slopes in QR,; that
pass through a point in X. This is similar to the grid example.

8.3. Proof of the Szemeredi-Trotter theorem. We begin the proof of the Szemeredi-
Trotter theorem with a lemma.

Lemma 8.7.
I(X,L) < |X||L|"? + |L]

Proof. We start with expanding (X, L) and applying Cauchy Schwartz to get

1/2
I(X,L)=) [tnX|< (|Ly > len X|2>

Lel el
This is advantageous because [ N X|* < (W;XD + 1. Then

0n X
Sienxp i+ 3 (1)

el el
Since for every pair of points x1,xs € X, there is at most one line ¢ that contains
21 and x,, every pair of points in X can be counted at most once. Then

(0N < () <

lel
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This gives the final conclusion

1/2
I(X, L) S (ILI(X P+ [LD) ™ < [X||LIY2 + |1
0

Note that this proof uses only the very general fact that any two points define a
line. Therefore it holds over spaces such as finite fields. However, the SzemerdiTrotter
theorem does not hold over finite fields. To see this take X =2 (as the whole space)
and L as all lines in F,. Then for every ¢, [{ N X| = ¢, so I(X,L) = ¢°. However,
| X|?B|L1>? = ¢*3 < I(X,L). Therefore, the SzemerdiTrotter theorem requires
properties of the topology of R? to work. In particular, it uses a cell decomposition
lemma, which allows cutting the plane into pieces.

Lemma 8.8 (Cell decomposition lemma). Let X be a set of points in R* and pick
an integer s > 1. Then the plane can be disjointly partitioned into a set of open sets
O; and a closed set W such that

R* =W Ul JO;
and additionally,
NW|<s
and for every i,
X
x|noy s 2
s

This lemma essentially states that the plane can be split into cells that each contain
only a small subset of X, and that the walls don’t intersect any line too many times.
As an example of this theorem, let X be a ”roughly” square grid. That is C [N]?
and fir every ball Bi(c) of radius 1 (where ¢ is an arbitrary point in the plane),
|X N Bi(c)| < 1. The below example shows the grid for s = 2.

Each line can only intersect 2s lines in W, so [ N W| < 2s. Since X is roughly
grid shaped, and each cell is a square of side length N/s, | X N O;| < |X|/s? which
satisfies the requirements.

We now proceed to the proof of the SzemerdiTrotter theorem. It hinges on the
fact that lemma 8.7 is sharp when the number of lines is either small (bounded by
a constant) or much larger than the number of points (|L| > |X|?). We can use this
by using the cell decomposition lemma to pick cells where one of these conditions

holds.
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F1GURE 12. The points show the points in X. The dashed lines indi-
cate the "rough grid” shape of X. The solid lines show W, which is

the set dividing X

55

Proof. Given X and L, and arbitrary s. Then using the cell decomposition lemma,
define X; = X N O;. Then |X;| <|X|/s* and

Define

Z|Xi|§|X|

Li={leL:tn0O,#0}

From the cell decomposition lemma

Z|Lz| < s|Lj|

Then as every intersection of a point and a line is either on a cell boundary or

within a cell. Then

I(X,L) <) I(X;, L) + I(X "W, L)

Applying lemma 8.7 to the first term, and the |[¢ N W| < s bound to the second

term,
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I(X,L) S Z(!XiHLi\l/Q + |Li|) + s|L]|
1/2
< (z PSS m) 2L

|X| 1/2
S (Z ?|Xi|> (s|L])"/* + 2s|L]

SsTV2 XL + sl

We then choose s to minimize this quantity. This is effectively choosing s so that
both terms are equal. Then

sV X|| L]V =s|L|
X2 2 =
s :’X‘Z/:}’Lyfl/:ﬁ
Plugging s back into the inequality gives

I(X,L) S |XPPPILP?
which gives the desired bound. U

Note that in the above argument s must be an integer, so this can only be done
when | X|?> > |L|. When |X|* < |L| then setting s = 1 gives the the bound (X, L) <
|L|. Additionally, s? can be at most |X|. Then when | X| < |X|[*3|L|7%3,|X]| > |L|?,
so setting s = | X|'/2 gives the bound I(X, L) < |X]|

We now prove the cell decomposition lemma. However, several prelimary theorems
must be shown first.

Theorem 8.9 (Borsuk Ulam Theorem). Let f : S™ — R" be a continuous function
that is antipodal, ie for every 0 € S™, f(0) = —f(—0). Then 0 is in the image of f.

Corollary 8.10 (Ham Sandwich Theorem). Let Oy, Os, ..., O, C R™ be bounded open
subsets. Then there exists a hyperplane H that bisects every O;.

Proof. An upper half (hyper)plane can be described as the set {x : a-x > b}, for
some vector a and b a real number. As scaling a and b by a positive real number
preserves this hyperplane, the tuple (a,b), can be identified with an element of S™.
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Then for an element 6 € S, corresponding to (a,b), we let ¢y be the affine operator
defined by cy(x) = a - x + b. We then define the vector valued function f by

fi(0) = Vol(O; N{z : cy(x) > 0}) — Vol(O; N {x : cp(z) < 0})
f is antipodal, so it has a zero. This zero corresponds to each set being bisected,
which proves the theorem O

The Ham Sandwich theorem works when there are up to n subsets of R™. This is
roughly because n degrees of freedom are needed to bisect the n sets. We can then
use polynomials to increase the number of degrees of freedom, and so the number of
sets that can be bisected.

Theorem 8.11 (Polynomial Ham Sandwich Theorem). We use the same setup as
the ham sandwich theorem, except that there can be up to N sets O;. Then there
exists a polynomial zero set that bisects every O;

Proof. First define the space

Poly(R") = {p € Rlz1,...,z,] : degp < D}

Poly,(R™) is then a vector space of degree D™. We claim that if N < D", then
there is a nonzero element of Poly,(R™) that satisfies the claim. We define the vector
valued function f by

fi(p) = Vol(O; N {z : p(x) > 0}) — Vol(O; N {z : p(x) < 0})
Since scaling each nonzero p by a positive real does not change f, f is a function

from SP" -1 to R™. Additionally, f is antipodal. Then by the Borsuk Ulam theorem
the conclusion follows. U

The Ham Sandwich theorems allow open subsets of Euclidean space to be subdi-
vided, but the cell decomposition lemma requires dividing sets of points. This is a
technical detail that follows from the Polynomial Ham Sandwich Theorem.

Lemma 8.12 (Ham Sandwich theorem for finite sets). Let sy, Sg, ..., sy be a set of
finite sets in R™. Then there exists a polynomial level set such that for every s;,

I3l
2
|3i|
2

As individual points cannot be bisected, this lemma instead guarantees that excess
points will lie on the level set.

lsi N {z:p(x) >0} <

5,1 {a < pla) < 0}] <
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Proof. Take some € > 0 and for each i define N,(s;) to be the set of balls of radius
e centered at the points on s;. Then by the Polynomial Ham Sandwich theorem the
N,(s;) can all bisected by the zero set of a polynomial of degree D™ > n. Then
taking € to 0 we get a sequence of polynomials p. that each bisect the N.(s;). Since
the sphere S™ is compact, there must a convergent subsequence to some polynomial
p. To show that this polynomial p satisfies the conclusion, for contradiction assume
that there exists ¢ such that

1
|si N {x: p(x) >0} > §|sl\

Since every point in s; N {x : p(z) > 0} is some nonzero distance from the set
{z : p(x) = 0}, there is some € > 0 such that modifying p by € and enlarging s; by €
gives

[Ne(s) 0 {2 pula) > 0}] > 5IN.(s)] =

a contradiction. Note that this step requires the boundedness of s; to take a
perturbation of p continuous. [l

We will now prove the cell decomposition lemma.
Proof. We begin with step £k = 1. Then define p; to be the degree 1 polynomial that
splits X into two parts. Then X;; := {z € X : pi(z) > 0} and X5 :={z € X :
pi(z) < 0}

Then at stek k + 1, define pj;, to be the polynomial of degree D), with D? ~ 2 such
that py bisects all Xj 1, ..., Xj 0. Then Dy ~ 28/2.

Then pick kfing such that 2ksmat ~, 2. Then let O; be the sets defined by {z :
+pi(z) > 0}N...0{x : £pg,,,,., (¥) > 0} for all choices of +. Define W = {z : pi(z) =

0} U...U{ : pry,0 () = 0}
X has been bisected ki, times, so then

|kainul77:| 5 |‘)(|/S2
A line can intersect a polynomial of degree D at most D times, so then

AW <14+244+ ..+ 2krmal2 g
Then each line can intersect W at most ~ s times. ]
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9. REFLECTIONS ON THE SZEMEREDI-TROTTER THEOREM

Thur March 6

There is an important analogy between the Szemeredi-Trotter theorem and the
exceptional set problem in projection theory. The Szemeredi-Trotter theorem can be
viewed as the sharp projection theorem for finite sets of points in R%. The exceptional
set problem concerns the projection theory of a finite set of balls in R? subject to
a natural spacing condition. The sharp answers to both problems are essentially
the same — based on integer grids. This analogy was noticed by Tom Wolff in the
late 1990s. He adapted proof methods from combinatorial geometry to problems
in geometric measure theory and harmonic analysis, with striking results. He tried
hard to adapt the proof of Szemeredi-Trotter to the exceptional set problem and the
Furstenberg set conjecture, but he was not able to prove sharp results.

The proof of Szemeredi-Trotter using topological methods is elegant and impor-
tant, but there are several important questions that it does not address. In this class
we will discuss them.

First let’s recall the statement of Szemerédi-Trotter theorem. Let X be a set of
points, L be a set of lines (both in R?), we use I(X, L) to denote the set of incidences
between them:

I(X,L)={(p,l) e X xL:peL}.
Szemerédi-Trotter claims that
[1(X, D) S 1X]+ L]+ [X 2L,

All the current proofs of this theorem, like the cell decomposition method we
discussed in the previous lectures, used the topology of Euclidean plane. This is not
surprising, as the conclusion of this theorem is indeed related to the structure of the
base field. If we replace R? by ]FIQ), Szemerédi-Trotter bound will fail as one can see
by taking L to be all the lines in F?.

On the other hand, the current methods provide little information on some closely
related problems, such as:

1. Projection theory over finite fields.

2. Structure of sharp examples for Szemerédi-Trotter.

3. Projection theory of unit balls, instead of points, in R? with spacing conditions
(lots of attempts by Wolff).

Structure of Sharp Examples. Let’s stare at the Szemerédi-Trotter bound:
[1(X, D) SIXT+ L]+ [XPPLP2.

There are three terms on the RHS. The first two terms are given by double counting
which generalizes to other fields. They dominate when there are too many points or
lines, in which case the structure of the sharp examples example is not very rigid,
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giving us many degrees of freedom. To be more specific, when the first dominates we
have | X| > |L|?, which means that the number of points has already exceeded the
total number of intersections among the lines. In this case, the upper bound is tight
if each point has a line passing through it. The typical sharp example looks like some
chains of beads. Similarly, when the second term dominates the sharp examples look
like a bunch of stars, where each line doesn’t have much chance to pass through too
many points.

The case where the third term dominates is the most interesting one. The known
sharp examples are integer grids and their variation R-grids, where R is the integer
rings of number fields. We expect that the sharp examples in this case are highly
structured. To see what information about the sharp examples the proof of Sze-
merédi-Trotter theorem tells us, let’s briefly review the cell decomposition proof:
Divide R? into s* cells. In each cell there are | X|/s? points and (in average) |L|/s
lines. By choosing s to be large enough we will have |L|/s = (]X|/s?)? and then
apply the double counting bound. The proof doesn’t tell us much information on the
structure of the sharp example unless we can figure out the way our cells interact.
Unfortunately the proof of cell decomposition is not very constructive and based on
existence theorems from topology.

Remark 9.1. In the projective plane PR? there is something called point-line duality.
It preserves the incidence relationship between points and lines. In fact, the statement
that a point with coordinates [ag, ay, as] lies on a line with coefficients [bg, by, bs] simply
means agby + a1by + asby = 0, where the roles of a; and b; are interchangeable. The
chain example and the star examples are mapped to each other via the point-line
duality, while the grid ezample will be mapped to something different.

There are also some interesting variations of this problem. For example, one may
ask about the structure of X which maximizes the projections for some particular D.
Define Sp(NN) = min|x|—n S(X, D). For an arbitrary D, what can we tell about the
structure of X achieving this maximum? All the known examples are for direction
sets with special structures.

Denote the directions in R? by elements of RU{oo} with corresponding projections
mi(x) = w1 +tag for t € R, moo(x) = 2. Since we can use a projective transformation
to map any three directions to any three specified directions without changing the
incidence structure, let’s begin with |D| = 4. Without of loss of generality we
may assume D = {0,1,¢,00}. When ¢ is rational with small denominator the grid
example still works. Things become more interesting when ¢ is transcendental. For
example, we may take Py, = {ag + ait + -+ ap1t" 1 1 a; € 2,0 < a; < 5 — 1}
be a set of polynomials in ¢ and let X = P, X Py, Then | X| = 5%k We have
To(X) = Too(X) = Prs, m(X) C Pras, m(X) C Pypq2s. Since t is transcendental,
S(X,D) ~ |m(X)| ~ 2k X|Y/2*|X|/2. Choose k = (log,(]X])/2'/? to maximize
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the RHS, we obtain that is this case Sp(X) ~ e“telXDY?|X1/2 It would also be
interesting to analyze S(X, D) for other D’s, like D = {0,1, 00,1, ...,t;} where ;s
are algebraic independent over Q.

Projection Theory over Finite Fields. We have seen that projection theory over
finite fields may be different from that over the reals. Let X be a set of points, D be
a set of directions. Let S = maxgep mg(X). Our conjecture is that for |[S| < p/2,

S| 2 |DI'2|X |2,

It would be attempting to investigate the structure of sharp examples for this bound,
and one may conjecture they are essentially grids.

Remark 9.2. Let’s give an example showing that the original version of Szemerédi-
Trotter bound fails over complex field. Again, let X be a set of unit balls in B%Q c C?,
D c BY c C be an R™*-separated set of directions. Fort € D, let m; : C2 — C
be the map (z1,22) — 21 + tzo. For our example, choose X to be a mazimal set of
R~-separated unit balls with centers in R?, and D to be a maximal R™'-separated
subset of RN BS. Then |X| ~ R?, |D| ~ R satisfy the Hausdor{f spacing condition,
while S(X, D) ~ R < | X|Y2|D|'/2.

Projection Theory of Unit Balls. Let X be a set of unit balls in B, D be a
set of 1/R-separated directions. Define Nx(r) = max.cp, |X N B(c,7)|, Np(p) =
Max,cst |4|=p |D N 7y]. We will assume that X has Hausdorff spacing, which means
there exists 0 < a < 1 such that |X| ~ R* Nx(r) < r*. Similarly we will also
assume that |D| ~ R?, Np(r/R) < 1. The following conjecture by Furstenberg was
recently proved by Orponen, Shmerkin, Ren and Wang:

Theorem 9.3. Under the above assumption, we have
<
D] = |S]?/|X]
i 1D S R~ min(R, | X|).

We will discuss briefly why cell decomposition doesn’t work in this case. Suppose
that we have divided Bp into s? cells. There is no guarantee on the shape of each
cell O;, but in one important scenario, most cells are roughly balls of some radius r
so that it is possible for us to apply induction hypothesis. (At first one might think
r = R/s, but this may not be the case. It may be that most of the balls of radius
r cover only a fractal subset of Bg which contains our set X.) The problem is, the
R~ '-separated directions may look indistinguishable at smaller scales. In each cell
we have to choose an r-separated subset D; C D. By the Hausdorff assumption, in a
typical cell we will have | X;| ~ r®, |D;| ~ %, So we can not force | X;|? to be smaller
than |L;| by simply passing to smaller balls.
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10. SUM-PRODUCT THEORY

Tues March 18

The best bounds in projection theory are different in different fields. The best
bounds for projections of balls in C? are different than in R2. The best bounds for
projections in IF;Q are different than for IFI%. Most of the recent work in projection
theory is concerned with understanding these differences, and they are important for
many applications.

The key example is simplest in the finite field setting. It goes as follows.

Example 10.1. Let p be a prime, q = p*, X = ]17}27 C Fg, D=F,CF,. Fortcl,
let 7 : Fg — F, be defined by mo(x1,x2) = 21 + Ox9. Then set S = maxgep |mo(X)].
We have mo(X) = F, for all § € D, so S = p. Then we have |X| = p* = ¢, S =
|D| =p=q'>

So the sizes of the projections of X can be small even when X is large. However,
the same cannot happen over F,:

Theorem 10.2 (Bourgain-Katz-Tao). Let X C F with |X|=p® for 0 < s < 2. Let
D C F, with |D| = p* for 0 <t < 1. Then S = maxgep |me(X)| > p*/2T<) where
€(s,t) > 0.

There is an example in C? which is analogous to Example 10.1. In this example
X = R? C C% And there is a theorem called the Bourgain projection theorem
which says that no set in R? can behave similarly to this example. We will dicuss
the Bourgain projection theorem in detail in a few lectures. We begin with the finite
field setting which is somewhat cleaner. The setting of balls in R? is analogous with
some additional issues.

Note that the key difference between I, and I, that allows an example like Exam-
ple 10.1 to exist while no such example exists over I, is the existence of a subfield
F,. A way to quantify the properties of a subfield is a set X with small sum and
product sets. As such, we should study the sizes of such sets. This study is called
sum-product theory.

Sum-product theory uses tools from additive combinatorics. The set of tools that
go into the proof of Theorem 10.2 is very different from the tools that we have studied
in projection theory so far. In this lecture, we introduce sum-product theory and
some of the key tools from additive combinatorics. This is the first of four lectures
on this area. Over the four lectures we will flesh out the different tools from the area
and use them to prove the BK'T projection theorem.

10.1. Sum-product theory.
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Notation 10.3. For A C F,, let
A+A:{a1+a2:ai€A}, A-A:{alag:aieA}.
Also, let A" = A+ A+4---+ A

n

If A is an arithmetic progression, then its sumset is only a little bigger than A.
If A is a geometric progression, then its product set is only a little bigger than A.
Erdos and Szemeredi conjectured that for any set of numbers A, either the sumset
or the product set is much bigger than A. This principle has turned out to be crucial
for modern developments in projection theory. We introduce this subject, including
a whole different set of tools from combinatorial number theory building on work of
Plunnecke, Ruzsa and Edgar-Miller.

Lemma 10.4. If A C I, then either

(1) 3_3 = Fp;

(2) M > AP

or

Remark. Some version of this trick goes back to the work of Edgar-Miller, and it
was adapted by Bourgain—Katz—Tao and Garaev.

Proof. First, note that if ¢ then |A + cA| = |A]%. Indeed, if this was not the

A A’
case then there would be some ay, as, a},ay € A with a; + cay = @} + caly. But this
1 al A A
implies ¢ = S

Next, note that if =4 A—4 71 7 I, then there is some b € A w1th b+1¢4 T Indeed
we can set b+ 1 to be the smallest element of [F), \ 4-4 T A, Wthh would 1mply be A A
Now, if 2‘_‘2 # I, then we have

A—A
> 2
A+<A_A+1>A‘_|A|,

which implies 2 after putting the LHS over a common denominator. 0]

10.2. Freiman-Ruzsa theorem. One question to ask in sum-product theory is
when the set A + A is small.

Example 10.5. (1) If A =[L], then |A+ A| < 2|A|.
(2) More generally, if A is an arithmetic progression A = {a + nd}ncyr), then
|A+ A] <2]A|.
(3) Even more generally, we can consider A = {a+nidi+- - -+n,dy }n,c,)- Then
A+ A C{2a+mdy + -+ n.d Yocn,<or,, so |A+ Al < 27|Al. In this case
we call A a generalized arithmetic progression (GAP) of dimension r
and volume Ly --- L,.
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Theorem 10.6 (Freiman-Ruzsa). If A C Z and |A+A| < K|A|, then A is contained
in a GAP of dimension r(K) and vol < V(K) - |A|.

This is a deep theorem that we will not prove, and the quantitative bounds on
r(K) and V(K) are weak. In the original paper, the bounds were of the form
r(K) = exp(K°¢),V(K) = exp(exp(K°)), so the theorem is only meaningful if K is
small.

Conjecture 10.7. There is a meaningful bound if K = |A[]° for some & > 0.
10.3. Ruzsa triangle inequality.

Theorem 10.8 (Ruzsa). Let Z be an abelian group and A, B,C C Z. Then |A||B —
Cl<|A-Bl[A-C]

Corollary 10.9. If |A+ A] < K|A|, then |A — A| < K?|A|.
Proof. Use Ruzsa’s triangle inequality with A = A, B,C' = —A. Then we have
B-Cl=(-4) - (-4)[=[A-A], [A-B|=[A-C|=|A-(-4)[=]A+4]

So Ruzsa’s triangle inequality tells us that |A||A — A| < |A + A|?, which implies the
corollary. ([l

Proof of Ruzsa triangle inequality. We will construct an injective map ¢ : A x (B —
C) = (A-=B)x (A-=C). Forall d € B— C, fix some b(d) € B,c(d) € C with
d = b(d) — ¢(d). Then set ¢(a,d) = (a — b(d),a — c¢(d)). We need to show that ¢
is injective. Suppose ¢(a,d) = (z,y). Then we will recover a,d from z,y and the
choices of b(d), c(d). Note that we have y — x = b(d) — ¢(d) = d, so we can recover
d. Then from d we know b(d), so we can recover a = x + b(d). O

10.4. Plunnecke inequality.

Theorem 10.10 (Plunnecke). Let Z be an abelian group and A, B C Z with |A +
B| < K|A|. Then |B¥™ — B®"| < K™t A].

Corollary 10.11. If |A+ A| < K|A| then |A — A| < K?|A|, |[A+ A+ A| < K3|A].
Corollary 10.12. If |A — A| < K|A| then |A + A| < K?|A].
Proof. Use Plunnecke’s inequality with B = —A. O

Lemma 10.13. If A C F,,|A| = p® for 0 < s < 1, then |A3 — A3| > p**<() for some
e(s) > 0.

Proof. Let B = (A%)® — (4%)%3,C' = A — A. Then by Lemma 10.4 we have }g‘ >
p*t7) for some v > 0. Now, assume for contradiction that |A% — A% < K|A| where
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K 5 1. Then we have |A3| < K|AJ, and since |A] < |A3|, we have |A? — A3| < K|A3].
Then Plunnecke’s inequality implies
|(A3)69m _ (A3)69n| < Km+n‘A3| < Km+n+1|A‘.

In particular, this implies |B-C|, |A- B|,|A-C| < K°M|A|. Then the Ruzsa triangle
inequality (on F, as a multiplicative set) implies
A

B
e <|A-BJ|A-C| < KD |AP,

so we have p*™7 < }g‘ < K9W|A] = K°Wp#, which contradicts K < 1. O
In fact, there is actually a stronger statement:

Theorem 10.14 (Bourgain-Katz-Tao). If A C F, with |A| = p°, then max(|A -
Al JA+ A]) > po+e®.

Notation 10.15. We define Poly ;- (A) = (AF)PK — (AK)®K,

Corollary 10.16. If0 < s < t < 1, then there exists a K = K(s,t) such that for
all A C F, with |A| = p°, we have |Poly x(A)| > p'.

Proof. Apply Lemma 10.13 many times. U
The following proof is due to Petridis.
Proof of Plunnecke’s inequality. The proof depends on a key lemma.

Lemma 10.17. If |A + B| < K|A|, then there exists a X C A such that for all

C C Z we have
I X+C+ B

— < K.
X+Cl
Proof. Choose X C A to minimize the value |X|;|B|. Then set |X|;|B| =K < K. We
will show by induction on |C| that pﬁ;iéf' < KforallC C Z.
For the base case, when |C| = 1 we have |X|;iz|3| = ‘)T;IB‘ = K. For the inductive
step, let C" = C'U {c}, and assume that 'ﬁ;igf‘ < K. Then set

Y={reX:2+c+BCX+C+B}.

Note that by construction we have Y + {c¢} + B € X + C' + B. Now, let us bound
|X + C"+ B and |X + C'|. First, we have

IX+C' +B|=|X+C+B|+|(X+{c}+B)\ (X +C+ B)]
<|X+C+B|+ (X +{c}+ B\ (Y +{c} + B|
=|X+C+B|+|X+B|-|Y+B|.
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Next, we have
IX+CN=|X+Cl+{reX 2+cg X+ C}

=|X+Cl+|X|-{reX :z+ce X+ C}

> | X +Cl+ | X|-|Y].
Recall that we have | X +C + B| < K|X + C| and |X + B| = K|X]|, and we also
have |Y + B| > K|Y| by the definition of X. So we have
| X+C'+B| < |X+C+B|+|X+B|-|Y+B| < K| X+C|+K|X|-K|Y| < K|X+('],
completing the proof. O

Now, let us return to the proof of Plunnecke’s inequality. By the key lemma, there
is some X C A such that | X + C + B| < K|X + C|. Plugging in C' = {c} yields
| X + B| < K|X]|. Then plugging in C' = B gives | X + B+ B| < K|X + B| < K?|X|.
Continuing in this fashion, we get | X + B®™"| < K™|X]|.

Now, Ruzsa’s triangle inequality implies

|X’|B@m—8@n| S ‘X—FB@mHX—i—BEBn’ S Km+n|X‘2,

so we get
|B¥™ — B¥1| < K™ X| < K™ Al
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11. CONTAGIOUS STRUCTURE IN PROJECTION THEORY

Thur March 20

Suppose that X C F,. Recall that the exceptional directions are directions 8 so
that my(X) is very small. In this class we explore the algebraic structure of the set
of exceptional directions. A basic example is that X is a square grid. In this case,
the exceptional directions are rational numbers with small numerator / denominator.
(The smaller the height of the rational number, the smaller |my(X)| is. Notice that
this set of exceptional directions has a lot of algebraic structure: the sum or product
of two exceptional directions is also (pretty) exceptional. We call this contagious
structure. Using combinatorial number theory, we show that for any set X, the
set of exceptional directions has contagious structure. This idea builds on work of
Edgar-Miller and was developed by Bourgain-Katz-Tao.

This technique will play an important role in the proof of the Bourgain-Katz-Tao
projection theorem.

11.1. Contagious Structure Lemma.
Lemma 11.1. If Z is an abelian group and A C Z, and

|A —tA| < K|A| and |A — t,A] < K|A],
then |A — (t; - t2) Al < K?A.

Proof. Note that |A — toA| < K|A| implies that [t1A — t1t,A| < K|A|. Let B = A,
C =t1ts A, A = A in Rusza’s inequality, so

[t A||A — tita A] < [t A — Al|t) — tita Al
Thus, |A||A — tit, A| < K?|A. O
Lemma 11.2. If |A+ tA| < K|A| then |A —tA| < K?|A|.

Proof. By Rusza’s inequality, |A||A —tA| < |A + A||A + tA|. By Plunnecke’s in-
equality, |A + A| < K?|A|. Thus, |A||A —tA| < K3|A|. O

Lemma 11.3. If |[A+ t1A| < |A| and |A + t2A| < K|A|, then
|A+ (t +t2)A| < K°|A.

Proof. Note that |A+ (t; +1t2)A| < |A+t1 A+t A|. By the main lemma, there exists
X1 C A so for any C, we have | X; + C' + t1 A| < |X; + C| and there exists Xy C A
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so for any C, we have | Xy + C + 14| < | Xy + C/.

A+t A+t Al |21 + 22 + A+ 11 A + 1A
K|z + 29 + A+t A
K?|z, + 29 + A
K?|A+ A+ A
K|A]

VAN VAN VAN VAN VAN

Our goal today is to prove the following theorem.

Theorem 11.4. If A C F,, |A| =p°4, D CF,, |D| =p°?, 0 < 54,5, < 1. Then,
there exists €(sa,sp) > 0, max(sa,sp) > 0, max(|A + tA]) > psatelsasp),

Corollary 11.5. [A+ A - A| > psate,
Now, let’s recall double counting result.
Lemma 11.6. (Double Counting)
Suppose X CF2, and D CF,, then
>
max |m,(X)| Z min(|X], | DI).

Note that if sp > s4, then double counting implies theorem 11.4, so the hard cases
are the cases in which 0 < sp < s4. Let’s also recall a corollary from the previous
section.

Lemma 11.7. If0 < s <t < 1, then there exists k = k(s,t) so if ACF,, |A| =p°
then |polyx(A)| > pt.

The proof idea is to use lemma 11.7 to increase sp to be bigger than s by taking
sums and products and then use the contagious structure.

Proof. By lemma 11.7, there exists K(sa,sp) so |polyx(D)| > p*4*". By double
counting there exists u € polyy(D) so |A + uA| > p*4*". But if maxep |A + tA] <
K|A], then the contagious structure says that
max |A 4 ud| < KW|A| = KGas0)|A] = Kp°.
u€polyy (D)
However, this would imply that K¢ > p” which would imply that p’/¢ = p¢ a contra-
diction. 0

The above theorem 11.4 is a special case of the following theorem when we put

X =AxA.
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Theorem 11.8. (BKT)
If X C FIZ,, | X| = p** with0 < sx <2, and D CF, with |D| = p*" such that 0 < sp.

> €
max 7, (X)) > p°|X]
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12. PROOF OF BOURGAIN-KATZ-TAO PROJECTION THEOREM

Tues Apr 1

In this section, we introduce the Balog-Szemeredi-Gowers theorem and use it to
finish the proof of the Bourgain-Katz-Tao projection theorem.

The Balog-Szemeredi-Gowers theorem is an important result from additive com-
binatorics which has many applications.

12.1. Proof of BKT. Recall the Bourgain-Katz-Tao theorem for F,:

Theorem 12.1 (BKT). Let X C F2 be a subset with size | X| = p™, 0 < sx < 2
and D C F), be a set of direction with |D| = p*", sp > 0. Then

X)| > eXl/Q
max [, (X)| Z p°|X]
for e = €e(sx,sp) > 0.

The same statement fails for nonprime field F,, as one can see by taking (X, D)
to be (F3,F,) where ¢ = p“.

Our proof will be based on Theorem 12.1 in previous lectures, which we state here
for reader’s convenience.

Theorem 12.2. Let A, D be subsets of F,, with |A| = p*4, 0 < s4 <1 and |D| = p*?,
sp > 0. Then
max [ A+ £4] > 5 |4]

for €, = €1(sa4,Sp)-

It can be viewed as a special case of BKT where X takes the special form A x A.
Let’s try to prove BKT by contradiction using this theorem. Assume that Sp(X) <
p°|X|/2 for € > 0 to be determined. Since the size of projections are invariant under
projective transformations, we may assume 0,00 € D without loss of generality.

Let A = mpXUmoX. Then X C Ax A. By Theorem 12.1, we have max;ep |m (A X
A)| Z pA x Al > p9|X|V? with ¢ = €(sx/2,5p). We will win if the size of
projections of A x A does not differ too much from that of X. But this is not always
the case.

Consider the following enemy scenario. Here the red plots are points of X and the
blue plots are some random elements we added to form A x A. One can easily see
that even if the size of X is comparable to the size of A x A, some of their projections
may still be quite different.

To be more precise, let X be the grid example X = [N] x [N]. Then it has
small projections along rational directions. Now choose A = [N] U A to be the
projection of X plus some unstructured ”garbage” A with |/~1| = N. For a generic
choice of A it will cause large projections along most directions. To avoid this kind
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A x A\X

FIGURE 13. Enemy scenario

of difficulties, it is necessary to remove the ”garbage” part of A. Fortunately, the
BalogSzemerédiGowers theorem says this is always possible.

Theorem 12.3 (BSG). Let X, A, B be subsets of an abelian group (G,+). Fort € G,
let my : G x G — G denote the projection operator (g1, ge) — g1 + tga. Assume that
|A|,|B] < N, X C Ax B and |X| > K 'N?, |;;X| < KN for somet € G. Then
exists A' C A, B' C B such that |X'| 2 K°ON? 7,(A" x B') < KON where
X' =Xn(A xB).

Assumeing this theorem, it is easy to prove BKT:

Proof. (of BKT assuming BSG) Assume Sp(X) < p|X| with € > 0 t.b.d., {0,00} C
D. Let A =7y X Uy X. By our previous discussion, maxep |m (A X A)| 2 p|A x
Al > p|X|Y? with €; depending only on sa, sp. Write |A] = N > |X|"/2. Then
by assumption we have N? < p*|X|. Fix some t; € D\ {0,000} and apply BSG, we
obtain A’, B’ C A, X' = XN(A’'x B') such that | X'| > p~©ON2 |A'+t,B'| < p°N.

Since X’ C A’ x B’ has small projection along one direction, we expect it to be
highly structured and hence has small projections along many other directions. This
is done by the following argument. Let ¢ € GG. Consider the map

i (A’ < ;—1,4') X X' = (A= A) x (A =, B') x m(Y)

1

given by

1
(a1 — t—ag, (a,b)) — (a1 —a,as + tlb,(l + tb)
1
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This map is clearly injective. Hence
-1 |A" — A'||A" + t, B'||m (X)] N?
A x —— A < < O(e) =V
“( h )— X R
where we used Pliinnecke-Ruzsa to bound |A" — A’|. Therefore,
‘ /

X
(4 x A)] 2 100 x|

(X1,

X/ > —O(E)
e Im O =7 g

by Theorem 12.1. A contradiction if € is sufficiently small w.r.t. €;. U

12.2. Additive energy and robust estimates. Le A, B be finite subsets of an
abelian group (G, +). Define the energy

E(A, B) = |{a1,a2 c A, bl,bg c B: aq + b1 = ay + b2}|

There is a close relation between F(A, B) and the size of the sumset A+ B. Basically
the energy counts the number of additive relations between A and B. Thus E(A, B)
must be large if |A 4+ B] is small. One may see this from the following proposition.

Proposition 12.4. We have
|AP*|B|* < |A+ B|E(A, B)

Proof. For z € G, write ra g(z) = [{(a,b) € AXx B:a+b==z}. Then E(A,B) =
> aip5748(2)%. By Cauchy-Schwarz,

|A+ B|E(A, B) > (ZmB >=(|A||B|)2-

A+B
0]

However, the converse if not true. Even if there are many additive relations be-
tween the elements of A, B, these subsets may still contain garbage with size com-
parable to the size of themselves which forces |A + B| to be very large. One may
exhibit this by taking A = B C Z to be [N]U (some random subset of Z with size
N). Instead, we have the BSG theorem for energy below.

Our previous results like Theorem 12.1 and BSG, BKT can also be formulated in
terms of energy instead of cardinality. Let’s record some results here without proof.
The proofs use variations of the ideas we have presented. First we recall the BKT
theorem that we have proven.

Theorem 12.5. [BKT] Let A, D be subsets of F, with |A| = p*4, 0 < s4 <1 and
|D| = p°P, sp > 0. Then there exists t € D so that

[ A+ tA] = [m(A x A)| = py|Al,

for €3 = €3(sa,sp) > 0.
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Theorem 12.6 (BSG var). Let A, B be subsets of (G,+) with |A|,|B| = N and
E(A,B) > K~'N3. There exists A' C A, B' C B with |A'|,|B'| > K~°ON such
that |A' + B'| < KCWN,

Theorem 12.7. [BKT 2] With the same setting of BKT, there exists t € D such
that for any subset Y C X with |Y| > p~¢|X|, we have |m,(Y)| > p¢| X |Y/2.

Theorem 12.7 is a more robust version of Theorem 12.5. Proving more robust
versions of this kind is important for applications in projection theory.

Let’s remark that there are both advantages and disadvantages of working with
energy. It makes the problem behaves better when passing to large subsets. But
there is also a major drawback: Recall that P-R inequality yields the contagious
structure of |A + tA| (see Lemma 12.z with 1 < 2 < 3). This is no longer the case
for energy. Intuitively, to say that E(A, B) is large is equivalent to say that a large
part of A is "friendly” (has a lot of nontrivial additive relations) with a large part
of B. Even if for each i there is a piece of A being friendly with ¢; A, they are not
necessarily the same for each i. Consider the example A = [N]Ut,[N]Ut3[N]. Then
both E(A,t;A) and E(A,tA) are large, but E(A, (t1+t2)A) doesn’t need to be large

in general.
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13. PROOF OF THE BALOG-SZEMEREDI-GOWERS THEOREM

Thur Apr 3
In this lecture we’ll prove the BSG theorem that we used in the proof of the BKT
theorem. Here’s the statement again:

Theorem 13.1 (Balog—Szemerédi-Gowers). Let A and B be subsets of an abelian
group and suppose X C Ax B. If|A],|B| < N, |X| > K~'N?, and |m(X)| < KN,
then there are A' C A and B' C B such that |A' + B'| < K°YN and |X'| >
K=OWN2 where X' = X N (A" x B').

Here m(X)={a+b : (a,b) € X}.

Example 13.2. As subsets of Z, let A = B be the union of [N] and some garbage.
Let X be the union of any subset of [N] x [N] and a little garbage. Then m (X) is
small (S N ), while |A+ B| 2, N? is large. We can take A' = B’ = [N].

The theorem was originally proved by Balog and Szemerédi, but in the bounds

KO°W was instead F(k) and K—°W) was ﬁ, and F(K) was some function with

crazy growth. The bounds in the version stated above are due to Gowers.
We will proceed by thinking of X C A x B as a bipartite graph with A on the left,
B on the right, and an element (a,b) € X representing an edge from a to b. Let

Pk (a,b) = #{paths of length K in the graph X from a to b}.

Lemma 13.3. If A" C A and B' C B, and for any a € A, b € B', Ps(a,b) > P,
then

3
A"+ B| < _m(]i() .

Proof. A path of length 3 from a to b goes from a to some b; € B, then to some
a; € A, then to b. So (a,b1), (a1,b1), (a1,b) € X and hence

a+by, a1 +by,a+bem(X).
N e

21 29 29

We can write a + b = z; — 29 + z3. Therefore
#{(21,20,23) €Em(X)® : a+b=2 — 2+ 23} > Ps(a,b) > P.
Summing over A" + B’ we get
A"+ B P < |m(X)P.
O

From now on, everything we prove will be a statement about bipartite graphs, i.e.
we don’t need the addition law for anything that follows.



PROJECTION THEORY NOTES 75

Lemma 13.4 (Key Lemma). If X C A x B and |X| > K~ A||B|, then there are
A" C A and B' C B such that | X'| > K~°W|A||B| where X' = X N (A’ x B') and
foranyac A, be B,

Ps(a,b) > K~°W|A||B|.

The BSG theorem is proved by combining Lemma 13.3 and the Key Lemma.

13.1. Simple Bounds About Pk (a,b). In this section, we have
# edges = |X| => K '|A||B],
P, := #paths of length ¢ starting in A,
P = |X[> K~ 'A]|B|.

Definition 13.5. For a € A, the neighborhood of a is the set N(a) of points that
share an edge with a.

We can average over |A| to get
P _
Avg,cq Pi(a,-) = % > K~ '|B|.

To get an estimate for the average of P,, we use Cauchy-Schwarz to get

Py=Y INOD)P
o S IND?

B

(K AlB))*?
- |Bi
= K*|AP|B|.

Averaging this get us
AVE,, o Palar, az) > K?|B|.
As an exercise, use similar methods to prove |Ps| > K 3| A|?|B|? and
Avg,, Ps(a,b) > K~°|A||B|.
The Key Lemma says that Ps(a,b) is at least a small fraction of the average for all

ace A, beB.

Lemma 13.6 (Length 2). If X C Ax B, |X| > K'|A||B|, € > 0, then there is a
subset A C A such that |A'| > K A| and Py(a1,as) > eK~2|B| for (1 — 2¢)| A')?
choices of (a1, ay) € (A)%
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Note that we cannot always take A" = A, because there are graphs X where only
%|A\ vertices in A have an edge and there are also graphs with multiple connected
components. What we will do is let A" = N(b) for some b € B.

Definition 13.7. A pair (ay,as) is e-bad if Py(a1,ay) < eK 2| B|. Let
BP.(b) = #{(a1,a2) € N(b)* : (ay,as) is e-bad}.

Lemma 13.8 (P1).
Ey|BP.(b)| < eK %Al

Lemma 13.9 (P2).
Ey|N(b)|* > K2|AJ*.

This says there’s only about an e-fraction of bad pairs.

Proof of P2. By Cauchy-Schwarz,

(K~'A|B|)?
B | B
= K ?|A]?|B|.
Divide by |B]. O
Proof of P1.

Z |BP.(b)| = #{ay, as, b such that (a1,b), (as,b) € X and P(a1,a;) < eK 2| Bl}
b
< |A]PeK?|B].

Divide by |B|. O
Proof of Length 2. Let A" = N(b). Then by the previous two lemmas,

2 1 1 —2 2
R > )
E (\N(b)| CIBR()]) = 5K 7214

So we can pick b to satisfy
1 1
N(b)|* — —|BP. > —K2|AP)?
NP — BR8] > SK1A]
and let A’ = N(b). Then |BP.(b)] < 2¢|N(b)]?. O

By discarding some a;’s, we can upgrade this.
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Lemma 13.10 (2). If X C A x B, |X| > K YA||B|, and € > 0, then there exists
Ay C A such that |As| > 1KY A| and for every a € A,, there are at most 10e| A,
choices for ay such that (a,as) is e-bad.

We won’t prove this, but the idea is to let
Ay =A'\{a€e A : (a,a9) is e-bad for many ay € A'}.
The second part of the conclusion can be written as A = B(a)UG(a), where |B(a)| <
10€|Az| and for any ay € G(a), Pa(a,as) > eK2|B].

Proof of Key Lemma. First, let

1
Av=fae A : [N@| > KA},

v XA, B"):={(a,b) e (A xBYNX}=(AxB)nX.
Choose A" C A be the A, of Lemma 2. Let
B'={be B : |NOb)NA|> 206}
SO
|B(a)| < 10¢|A].
For any a € A’, b € B’, we have
Py(a,b) > eK?|B|(IN(b) N G(a)])

> eK7?|BI(IN(b) N A'| — |B(a)])

2 K 7°|A||B]
using |A’| = K~ A|. Now we just need to check |X (A, B")| > K-°W|X|. Since
(A =2 KYA|, A C A, N(a) > s K7'|B| for a € A, and |X(A', B)| 2 K~?|A||B|,

S0
| X (A", B\ B')| <20¢|A'|| B
< 20¢| A||B|.
Let € = 5 K%, s0 | X(A', B\ B')| < |X(A’, B)|. Hence
(X (A B)| ~ [X(A,B)| > K~°V|A||B|.
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14. BOURGAIN’S PROJECTION THEOREM OVER R, PART 1

Tues Apr 8

Over the next three lectures, we discuss Bourgain’s projection theorem over R.
Bourgain’s projection theorem is analogous to the BK'T projection theorem which
we studied in the last four lectures, but with balls in R? in place of points in IF>.
The proof ideas are analogous but there are some new issues in R?. To motivate the
statement of the theorem, we begin by recalling what we learned about the finite
field case.

14.1. Finite field case. Let us first recall the BKT projection theorem over F,,.

Theorem 14.1 (Bourgain-Katz-Tao). Let 0 < t < 2,0 < s < 1 and p be a prime.
Then there exists some € = €(s,t) > 0 such that for all X C F2 with |X| = p' and all
D C F, with |D| = p®, we have

X > t/2+6
b ImXl = p

and
max min |mgY'| > pt/*Fe,
6eD YCX,|Y [>p—|X|
We proved the first part of this theorem in a previous lecture and made some
comments about the second part.

Remark 14.2. Note that if we instead consider e = 0 and |D| > 2, then the bound
becomes trivial. Indeed, for any 01 # 05, we have an injective map X — mp, X Xmg, X,
which implies maxgep |mg X | > | X|V/2.

14.2. Real case. Now, let us consider the analogous theorem for unit balls in R2.
Let R be some positive real number and let X C Bpg be a (not necessarily disjoint)
union of unit balls. Let D C [0, 1] be a %—separated set, and set my(x1, 22) = x1 + 029
like in the [, case.

Note that without any additional assumptions, the trivial bound in Remark 14.2
does not hold in the real case. So to state Bourgain’s projection theorem we will
need additional assumptions on X, D.

Example 14.3. (1) Consider when X is a 1 x R rectangle packed with unit balls.
Then if we set D = [0, R*] then we get max |mpX| ~ R*, so if s < § then we
get max |mp X | < RY2.

(2) Let X = B(0, RY?). Then |X| ~ R and |mgX| ~ RY? for all §. So in this
case we do not get max |mpX| > RY/?Te,
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Theorem 14.4 (Bourgain). Let 0 < t < 2,0 < s < 1. Then there exist e,n > 0,
both functions of s,t, such that for all X with |X|= R', D with |D| = R*, if for all
x € Br,r < R,0 €[0,1],p € [0,1] we have

t
XN B <R (L) 1X]. IDNBE.p)| < 7D

then there exists some 0 € D such that

inf |mgY| > RY2Te,
YCX,|[Y[>R|X|

Note that this theorem does not hold over C. Indeed, if we take X = BrNR? and
D the set of real directions, then we get a similar counterexample to the F,. case.

We would like to adopt the various inequalities we used in the F, case (Ruzsa
triangle inequality, Plunnecke inequality, Balog-Szemeredi-Gowers) to the real case.

Carrying out this program, many of the steps work smoothly, but there are two
particular steps that require new ideas. In these notes, we will identify these two
steps and describe the new issue that arises and the idea to get around it.

First we introduce a new notion of size of a set.

Definition 14.5. Let X C R%. Then for any § > 0, the 6-covering number | X|s
18 the smallest number of d-balls needed to cover X.

We make a few observations about delta covering numbers:
o If X is 20-separated, then | X|s = | X]|.
e If X is a union of §-balls, then | X |5 ~4 67| X].
o Let D5 = {0k +1[0,6)%, k € Z%}. Then | X|s ~¢ |[{Q € D5, QN X # 0}].

In lieu of this last observation, we define
XO = {k: (6k+10,0)) N X # 0},

so we have | X |5 ~ | X©)].

Now, the Ruzsa triangle inequality, Plunnecke inequality, and Balog-Szemeredi-
Gowers all hold for d-covering numbers. For example, for the Ruzsa triangle inequal-
ity the statement is now

|B|;|]A—Cl|s S|A— Bls|B—C|s

for all A, B,C C R
Recall the key idea for expanding sets over F,:

Lemma 14.6. There exists a polynomial Q) such that given s € (0,1), there exists
some €(s) > 0 such that for all A C F, with |A| = p°, we have |Q(A)| > p**<.

Iterating this lemma, we could obtain all of F,, within some polynomial of A (that
depends on s). In the proof of this lemma, the key idea was to consider the set
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B = H. If B =T,, we could run an argument to imply the lemma, and if B # F,,
then there would be some x € B such that x +1 ¢ B, and we could use this x to
prove the lemma. We would like to extend these ideas to the real case.

However, there are some problems with the real case. This is the first set of issues
in dealing with the real case. First, B can be unbounded, as the denominator A — A
could be very small. Also, if A is a segment, then A + A, A - A are segments with
|A+ A|,|A- Al ~ |A|, so we have no real growth when we take a polynomial of A.
It is also not immediately clear what the equivalent of adding 1 to get from x € B
to x + 1 ¢ B is in the real case. Finally, R has subgroups of uncountable size, so we
need to be able to “escape” such a subgroup.

Definition 14.7. Let X C B%0,1),§ € (0,1),s € [0,d],C > 1. Then X is a
(0,8,C)g-set if | X N B(x,r)|s < Cré|X|s for all x and all § < r < 1.

For Bourgain’s projection theorem, we will take C' = §7".

Lemma 14.8. There exists a polynomial Q) such that given s € (0,1), there exists
some €(s) > 0 and n(s) > 0 such that for all A C [0,1] with |Als = 6%, if A a
(0,8,07")-set, then |Q(A)|s > d—*¢.

Proof idea. Pick some v € (0,1). Then set

a1 — Qg

B={ ta; € A, lag —aq| > 07} N[0, 1].

as — a4
This « will have to be chosen carefully to make the rest of the proof work, but we
omit the details here.

Lemma 14.9. Let B C [0, 1] be closed with 0,1 € B, and let p be the supremum of
the lengths of the segments in [0,1] \ B. Then there exists a b € B such that either

d(%,B) > £ ord(**, B) > £.

Proof. Let B = 2 U £ C [0,1]. Then it suffices to show there is an element of
B’ that is a distance £ away from B. Note that 3 € B’ since 0 € B, so the longest

segment in [0, 1] \ B’ has length at most £. Now, consider an interval of length p — €

in [0,1] \ B, and consider the middle £ interval inside it. By the above this middle

interval contains some point in B’. But by construction this middle interval has
distance at least £ from B, which completes the proof. 0J

Now, for p € (0, 1), we have two cases. First, if B is p-dense in [0, 1], then we have

an argument similar to the ﬁ = [F, case in the finite field version of this lemma.

Otherwise, by the above lemma there is some b € B such that either %, ”71 are far

from B, in which case we can run an argument similar to the case in the [, version
where we have x € B,x + 1 ¢ B. O
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Now we come to the second main issue in the real case. We have Lemma 14.8.
Following the finite field case, we would like to iterate this lemma. However, there
is an issue with this iteration, which is that we do not know whether Q(A) is a
(0,5 + €,0)-set, and in fact this is likely not true in general. Instead, we will use
that Q(A) contains a (9, s + €,0 ¢)-set. It takes significant extra work to prove this
fact. We will discuss the issues more next time.

15. BOURGAIN’S PROJECTION THEOREM II
April 10
Definition 15.1. A (§,s,C)g4-set is a set X C B0, 1) such that
| X N B(x,7)|s < Cre|xls.

Remark 15.2. We think of a (0,s,C) set as a set which is 'non-concentrated’ on
the scale 6 with degree s.

Using this language we can rewrite the Bourgain projection theorem as.

Theorem 15.3. Given 0 <t < 2,0 < s <1, there exist e, > 0 such that
If X € B*0,1) is a (6,t,07")9-set with | X|s =" and D C [0,1] is a (8, 5,0 ");-
set. Then there exists some 8 € D such that

: i
min [T X'| >0727°
X'CX

[X"620"1X]s

Last time we saw that there exists a polynomial () such that for every 0 < s < 1
there exists e, > 0 such that if Ais a (J,s,d");-subset of [0, 1] and |A|s = §~* then
|Q(A)|s > 07°¢. Now we cannot yet iterate this because we do not know that Q(A)
is a non-concentrated, in fact this is not true, but we can ask for QQ(A) to contain a
(0,5 +¢,07") set (though with different ¢, 7).

In these notes, we discuss some of the ideas to deal with this technical issue,
although we don’t give a complete proof.

Let us quickly confirm some properties of non-concentrated sets.

Lemma 15.4. If X is a (9, s,C)g4-set then:
(1) |X|, > Cp~* for all p € [4,1].
(2) If Y € X and |Y]s > +|X|s then Y is a (0,5, CK);-set.

Intuitively (i) tells us that if X is non-concentrated on scale § then it is large on
all scales at least 9, (ii) tells us that this concept is preserved under taking 'dense’
subsets.
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Proof. (1) If X c U“, B(zy, p) then

X5 < Z | X N B(wi, p)ls

i=1
but we know that | X N B(x;, p)ls < Cp®|X|s so
1 X|s < mCp¥|X|s = m>C p =
(2) This is even simpler since
Y N B(z,p)ls < [X N Bz, p)ls < Cp|X|s < (CK)pY]s
U

Now due to this lemma if we want Q(A) to contains a (4, s + &,0™"7) set then it
must be that |Q(A)|, > p~57° Vo € [, 1].

Now we notice two important things about the above property.

e We don’t get this for free because A need not be a (p, s,d~")-set for p € [4, 1].
e This property is necessary but not sufficient.
We can fix both of these problems with one framework, that of the 'uniform set’,
which is very useful even outside of this theory.

Assume that 0 is some negative power of 2, we will denote by Djs the set of )-mesh
cubes tiling RY. For any given set X we denote by Ds(X) the set of those cubes that
intersect X. We then define | X |} := |Ds(X)| and notice that | X[ ~ | X|s as we saw
in the last lecture.

Definition 15.5. Given A € 1/N and m € N, A set X C [0,1]¢ is (A, m)-uniform
if for any j € {0,...,m — 1} and for any cube Q € Ds(X) we have
QN X[am = B
where R; 1s independent of ().
The numbers R; are called "branching factors” of X.
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NANNNNNNRRNNNNN N\
NNNNNNNRNNNNNN NN\
NA\\\\\o NeY (o]
NNNNNNN N
NNNNNNN N\
NNNNNNN
AR N
\\b\\\\ \Ql Ri
R, =3 Ry =2 R; =1

FIGURE 14. A (1/2,2)-uniform set with its 3 branching factors
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We can see why these uniform sets are useful with the following lemma.

Lemma 15.6. Let X C [0,1]? be a (A, m)-uniform set and let § = A™.

(a) If |X|, > C71p~* for all p € {1,A, A% ...,A™}, then X is a (8,5, 0a(C))s
set.

(b) If X is a (0,s,C) set then X is also a (p,s,Oa(C)) for all p € [6,1].

If we believe this, and we know that A and Q(A) are both uniform, then that
immediately solves both our problems and lets us continue the proof. Before we
explain how to make A and Q(A) uniform let us prove this lemma.

Proof. (a) Let p = AJ and @ some cube in Da;(X). We clearly have the recursive
relation | X N Q|ai+1 = R;| X N Q|, which when iterated gives us
X NQ[am = RjRjp1- R | X N QL

but we know that | X N Q[%, = 1 precisely because @ is a A7 cube. We thus have

RoRy -+ Ryyq
XNQ|Am = ,

| |A ROR]_ . Rj_]_
Now the numerator here is precisely |X|A» and the denominator is |X|%; so by
assumption we have | X |4, 2 C~'p~* which gives us
(XN Qam S Cp°|X|am.

This shows that X is a (d, s, C')s set at scales 1, A, ..., A™. For the scales in between
we can sandwich them between two powers of A, this loses us an extra factor of at
most Oa(C).

(b) Again let p = A% then for any j with 0 < j < jo, let Q be some square in
Dai(X) then we have again

Ry~ Rj, 1 _ | XT,
Ro---Rjy X[},
where in the last step we applied the previous lemma for (4, s, C') sets. Again the
sandwiching gives us an extra factor of Oa(C). O

|X N Q|AJ’0 =

N CpS|X|p

Now we learn an important tool, which is the method to make any set uniform.

Lemma 15.7 (Uniformization). Let § = A™, X C [0,1]%, and let u be an arbitrary
sub-additive set function (eg. w(B) = |B|s). Then there exists a subset Y C X such
that Y is (A, m)-uniform and

)= [2am (5 )| w0 = 57onc0

In(2ln L
where o = ( 1A)
Inx
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Note that as A — 0 we have ¢ — 0 so we can make this power arbitrarily small
by picking A at the end.

Proof. We will construct a uniform subset by thinking of X as a tree, and pruning
it from the leaves to make it uniform. We will do this step by step, first we set
X, = X, then at each step, from X; we construct X;_; by removing enough mass
from level j to make it uniform.

To do this let X; 1, = {Q € Dai—1(X) : QN X[, € [2° 27!} where ¢ ranges
between 0 and dln %. This splits X into dln% different pieces across which we
have similar magnitude branching on level j. Then because we have a sub-additive
function

so we can pick the 'largest’ piece and lost at most a factor of dIn1A. Assume that
X_1, 1s that piece, we set X;_; to be the X;_; , where at level j we removed enough
of the set to get the branching factor to be exactly 2¢. Since the branching factors
are all within a factor of 2 away from 2¢ this loses us at most half of the 'measure’
of X,;_1, so that

1 1
2dIn Zp(Xj1) 2 dlnZp(Xjo10) 2 p(X;)

iterating this process m times gives us exactly the lemma. 0
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X X
L] xio O x4 L] Xxo0 O Xou
w(Xap) =8, u(Xo1) =14 w(Xoo) =4, u(Xo1) =10
Xo

FIGURE 15. Applying uniformization with A = 1/2 and m = 2 to a set.

Now we return to our original goal. We recall that A is a (4, s, C')-set. By Lemma
14.8 from last lecture, we know that |Q(A)|s > §~*7¢, where @ is a fixed polynomial.
However, we don’t yet know whether QQ(A) contains a (d,s + ¢, C") set, and so we
cannot iterate.

Using the uniformization lemma, we can reduce to the case that A is uniform. In
this case, we know that A is a (p, s, C) set for all p > §. Now, by Lemma 14.8, we
know that |Q(A)|, > p~* ¢ for all p > §. If we knew that Q(A) was uniform, then
it would follow that Q(A) is a (d, s + €, C") set with a reasonable C'. However, just
because A is uniform, it does not tells us that Q(A) is uniform.

The main enemy here is that |Q(A)|, may be large, and |Q(A)|; may be large, but
it could still happen that there is a subset B C Q(A) so that |B|, < |Q(A)|, and
vet |Q(A)\ Bls < |Q(A)|s . (It’s a good exercise to draw a picture of this scenario.)
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This enemy scenario sounds somewhat bizarre and even unlikely, but it takes a
fair amount of work to rule it out. And it involves somewhat changing the outline of
the proof. We will discuss these somewhat technical but yet important issues next
time.
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16. BOURGAIN’S PROJECTION THEOREM III

April 15

Let us review the problem where we left off last time. Suppose that A isa (4, s, C)-
set. Lemma 14.8 tells us that there is a fixed polynomial @ so that |Q(A)|s > 0.
We would like to iterate this lemma to prove a stronger lemma, which we now state.

Lemma 16.1. For each s > 0 and each € > 0, there is a polynomial P = P, so
that, if A is a (0,s,C) set, then |P(A)|s > §—1T<.

However, we cannot prove Lemma 16.1 just by iterating Lemma 14.8, because we
don’t yet know whether QQ(A) contains a (d, s + €, C’) set.

Using the uniformization lemma, we can reduce to the case that A is uniform. In
this case, we know that A is a (p, s,C) set for all p > §. Now, by Lemma 14.8, we
know that |Q(A)|, > p~°° for all p > §. If we knew that Q(A) was uniform, then
it would follow that Q(A) is a (d,s + €, C") set with a reasonable C’. However, just
because A is uniform, it does not tells us that QQ(A) is uniform.

The main enemy here is that |(Q(A)|, may be large, and |Q(A)|; may be large, but
it could still happen that there is a subset B C Q(A) so that |B|, < |Q(A)|, and
vet |Q(A)\ Bls < |Q(A)|s . (It’s a good exercise to draw a picture of this scenario.)

Recall that the map @ is a polynomial map from R¥ to R for some k. And recall
that Q(A) is shorthand for Q(A*). In Lemma 14.8, we showed that the entire image
Q(A*) is large: |Q(A*)|; > 67°7=. To deal with this technical problem, it is very
helpful to have a more robust estimate.

Lemma 16.2. There is a polynomial Q : R¥ — R so that the following holds. If A
is a (6,5,C) set and X C A* with | X|s Z |A*|s, then |Q(X)|s > d=57°.

In Subsection 16.1, we will sketch how the robust lemma, Lemma 16.2, implies
Lemma 16.1. Then in Subsection 16.2, we will sketch the proof of Lemma 16.2.

In these sketches, we will deal with an important technical issue in the theory :
formulating theorems in a robust way. We will see that more robust estimates are
more useful — for instance because they work better in iteration. So having a more
robust estimate is really useful. But on the other hand, we will see that the more
robust estimate in Lemma 16.2 does not follow from simple tweaks to our previous
Lemma 14.8. It requires a really new input — the Balog-Szemeredi-Gowers theorem.
This part further develops the ideas from Lecture 12 where we introduced BSG.

16.1. Why robust estimates are useful. Let us begin on the positive side and
discuss how to use Lemma 16.2. Suppose that A is uniform and A is (J,s,C). We
will use Lemma 16.2 to show that Q(A) contains a (§,s + €/2,C") set. Such a result
can then be iterated to prove Lemma 16.1.
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We are going to build a (d, s + ¢/2, C') subset of Q(A). Let us recall the definition
of a (4,s,C) set. A set Sis (4,s,C) if, for every ball B(z,r) we have

SN B(x,r)|s < Cr®|S|s.
We are going to build a set which is (p, s, C) for every p € [d,1]. So for every
p € [0,1], and every ball B(z,r), out set will obey

(27) S Bla,r)], < Cr'[S],.

Consider a sequence of scales 1 > p; > ps > ... > py = §. Assume these scales are
very close together.

First consider |Q(A)|,,. Since A is uniform, we know that A is (p1,s,C) and so
|Q(A)],, > p1° . Cover Q(A) with disjoint intervals I; of length p;. We will pick
some of these intervals I; to include in B. Initially, we include all of them, but as
we continue through the construction, we will remove bad intervals.

We pick a small parameter n > 0 with n < e.

Next we consider scale p,. We know that A is (p, s,C) and so |Q(A)],, > ps° “.
Cover Q(A) with disjoint intervals I, of length p,. Now we notice how many intervals
I5 lie in each interval I;. We say that an interval [ is bad if

Q(A) NIl > o7 |Q(A) -
(Notice that a bad interval [; is a ball B(x,r) that violates (27) with p = ps. )

The number of bad intervals I; is at most p;(‘%e*”). Next define X poq C A* by

X1 paa = {(a1,...,ax) € Ak Q(aq, ..., ax) lies in a bad interval I;}.
Our robust estimate Lemma 16.2 tells us that |Xipaal, < A
uniform, this also tells us that for every p < pq,

|p,. Since A is

|X1,bad|p < |Ak|p-
Define X; = A%\ X1 paa-
Applying Lemma 16.2, we also see that

(28) QX D)|pr = p1*

(29) QX D)o, = P2

Typically, we have |Q(X1)|, ~ |Q(A)|,. We will focus on that special case in
this sketch. (If |Q(X1)|p, < |Q(A)|y,, then we redefine bad intervals and repeat the
argument above.)
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We claim that Q(X;) obeys (27)with dimension s = s + € — 7, in the special case
where r and p are either 1 or p; or py. There are three cases here. If r = 1 and
p = p1, (27) boils down to (28. If r = 1 and p = po, then (27) boils down to (29).
And if r = p; and p = po, then (27) boils down to the definition of a good interval:

|Q(X1) N Ly, = |Q(A) N L, < pi+6_n|Q(A)|pg ~ pf+€_n|Q(X1)|p2.
Now we continue by the same method working through all the scales p;. In this
way, we will find a subset X = Xy C A* so that Q(Xy) obeys (27) at all the scales

r,p of the form p;. Since these cover essentially all scales, this finishes our proof
sketch that Q(A) contains a (J,s + €/2,C") set.

16.2. How to prove robust estimates. In this Subsection, we will outline the
proof of Lemma 16.2.

We first encountered the issue of robust estimates in the proof of the Bourgain-
Katz-Tao projection theorem in Lecture 12. Recall that in the previous lecture, we
had proven that if A C F, with |A| = p*4 and D C F, with |D| = p°» with 0 <
sa,Sp < 1, then there exists t € D so that |m,(A x A)| > p*a*t€ for € = €(sa,sp) > 0.
We wanted to replace the product set A x A by a general set X C IF; and to prove
that there exists ¢ € D so that |m,(X)| > p|X|"/2. By changing variables we could
assume that our direction set D included horizontal and vertical projections, and
then we could reduce to the case that X C A; x Ay with |X| > p=2¢|A;||Az|. So we
only needed to make our previous estimates a little more robust, extending from the
case when X is an honest product A x A to the case when X is a large subset of a
product A; x As.

But we found that this extension was not straightforward. It required a signficant
new idea. The key idea to make this extension work is the Balog-Szemeredi-Gowers
theorem. The BSG theorem can be used in a similar way in the proof of Lemma
16.2.

To prove the more robust estimate Lemma 16.2, we use the BSG theorem and
follow some of the ideas from Lecture 12. We will ultimately prove Lemma 16.2 with
k = 3 and with polynomial Q(a1, as, as) = a; + asas.

We sketch the steps of this argument. Each step is similar to proofs we have done
in the last lectures. It is a good exercise to fill in the details of these arguments.

The first step is to prove that if A is a (9, s,C) set, then there is an a € A so that

(30) 1A+ adls > 675

By Lemma 14.8, we know that there is a polynomial @ so that |Q(A)|s > 6 ¢, and
it’s not hard to show that Q(A) is a (J,s,C) set. Using a careful double counting
argument, we can then show that there exists b € Q(A) so that |A + bA|s > ¢
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And then using the contagious structure argument, based on Plunnecke-Ruzsa, we
can find a € A so that |A + aA|s > 6°~¢. This argument is similar to Lecture 11.

The second step is to upgrade this estimate by proving that there is some a € A so
that if X C A x A is a large subset, then |m,(X)|s £ 6~°~°. More precisely, we would
prove that there is some 1 > 0 so that if | X|s > 07|A x Als, then |m,(X)|s L 0.
This upgrade is based on Balog-Szemeredi-Gowers and a symmetry argument, as in
Lecture 12.

With just a little more work, we can prove that almost all a € A have the good
property in the second step. To prove this upgrade, we set Ago,q C A to be the set
of a € A with the good property in the second step, and we set Apeg = A\ Agooa- If
Apaq 1s a large subset of A, then we can get a contradiction by applying our previous
results to Apgq- 3 )

All together, we see that if Q(a1,as,a3) = a1 +azas and X C A x A x Ais a large
subset, then |Q(X)|s > 6~*~¢. This finishes our proof sketch for Lemma 16.2.
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17. RANDOM WALKS ON FINITE GROUPS I
April 17

In the next several sections, we will discuss applications of projection theory to
different areas. First we will discuss random walks on finite groups. Then we will
discuss the distribution of orbits in homogeneous dynamics.

We here apply projection theory to studying the behavior of random walks on a
finite group. Let G be a finite group and p be a probability measure on G. A random
walk starting at go is defined as a sequence of random variables (g,),>0 such that
gn+1 = gng with probability u(g). Essentially, at every step, a random element is
chosen from G using p, and then the current state is right multiplied by the chosen
element. The guiding question is how evenly distributed the random walk is after
K steps. We now develop several formal definitions to phrase this question more
precisely. First, define a convolution of functions fi, fo : G — C in the standard
way:

(31) fix fa(g) = Z fi(g1) f2(92)

91,92€G:g192=9g

We now view the random walk as a Markov chain with transitions given by a linear
operator T}, defined as

(32) Tuf = fxp

When f is viewed as a probabilty distribution of a state g,, T, f gives the prob-
ability distribution of ¢,.;. When the random walk starts at a state gy, that is
equivalent to starting with initial probability distribution d,,. Then after one step
the probability distribution is 7},4,, so the probability of state goh is

(33) T go gOh Z 590 91 )
(34) = 0go(g0)pa(h) = pu(h)

After K steps, the probability distribution of the random walk position gx is
T K d4,- This leads to the first question, which is to estimate the L? norm

1
35 TES, — —||2
( ) H © 290 |G|HL

or alternatively, other L” norms. The 1/|G| term is the average value of the
distribution over all of G, so the L” norms are measures of the regularity of the
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distribution. Since T}, is a linear operator, we can approach this by examining the
singular values of 7T),. The squares of the singular values are the eigenvalues of the
matrix TE T,, where T;f is the transpose. When 7' is symmetric, the singular values
are the same as the eigenvalues, but in general they are different.

We first show the following lemma:

Lemma 17.1.

(36) T fllze < |If]lze
Proof.

(37) T,.f(g) =f = pu(g)

(38) = > flg)ulg2)

(39) = £(99, ilg2)

We then define the right multiplication operator R, so that R,f(h) = f(hg™')
Then applying the triangle inequality and the translation invariance of the L? norm,

(40) T f e =) 1lg2) Ry f1] 22

(41) <D lg2) || Ry 12
92

(42) <I[f]l2

O

Then since 7,1 = 1, 1 is the largest singular value of 7. We now define the
subspace

L*(G)o = {f € L*(G) : (£,1) = 0}
where (,) is the standard inner product with the counting measure on G. We can
then analyze the restriction of 7,

T, : L*(G)o — L*(G)o
This restriction quotients out the trivial singular value 1 and allows us to examine
the next singular value, which governs the decay rate of the L? norms. Denote o4(7),)
as the largest singular value of T}, restricted to L*(G)o. Then we can quantitatively
express the decay of the L? norm in terms of the following proposition:
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Proposition 17.2.
1
1T, 090 — 77122 < o (T)*

|G|
Proof. Note that
1
0go — —=7,1) =0
< 90 |G’7 >
SO
5, — — € L)
” oGl ’
Then T}, maps 6y — \_él to L?(G)g, so the claim follows from the fact that the
largest singular value of a linear operator is also its operator norm. U

This proposition leads to the second guiding question, which is to estimate o1(7},).
The proposition shows that an estimate on o1(7},) is sufficient to give an estiamte
on the decay of the L? norm. We additionally remark that since we are using the
counting measure, the L° norm is bounded by the L? norm, so this gives an estimate
of the L*> norm as well.

We now examine the group G = SLy(F,) where p is prime. The case where p is
the uniform measure on a subset A of G was studied by Selberg. For convenience,
define Ty = T),, to be the operator corresponding to the measure on A. In particular,
Selberg studied the particular set

S CRYRER)

which has four elements. Selberg essentially proved the following theorem about
this case:

Theorem 17.3. There exists a universal constant ¢ > 0 so that for every prime p,
then

(43) Jl(TA) § 1—c

The theorem that Selberg actually proved is about the smallest eigenvalue of the
Laplacian on a hyperbolic surface X, whose geometry is closely related to SLs(IF,)
with the generating set A above. Using modern techniques such as Cheeger’s in-
equality, it is not difficult to translate between Selberg’s eigenvalue bound and the
mixing bound in Theorem 17.3.

Before discussing the proof of Selberg’s theorem, we recall the connection between
mixing estimates and isoperimetric inequalities on graphs. For a finite group G and
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a subset A C G define a graph C(G, A) = (V, E) with set of vertices V' indexed by
G and an edge (g1, 92) € F if g7 'gs € A, or equivalently there exists a € A such that
g2 = gia. Therefore the nodes that are connected by edges are the nodes that can

be connected by a single step of the random walk. Now for two subsets S, T C V,
define

E(S,T) ={(g1,92) € SxT:(g1,92) € E}
or equivalently, E(S,T) = ENS x T. We now consider the following proposition:

Proposition 17.4. If S is a subset of G, then

Al|S||S¢
(44) 215,59/ = (1~ on(m) AL
Proof. We first prove that
(45) E(S, SC)| — |A|<TA15,]_Sc>
which follows from the following computation'
Tals(g Z ls(ga™")
aeA
<TA15(Q), 1Sc = Z Z 15 gCL ]_Sc )

gGG aeA

Note that 15(ga )1g:(g) = 1 if ga=! € S and g € S¢, which is equivalent to the
statement (ga™',g) € E(S,S¢), which shows equation 45. We then decompose 1g
into a constant and mean zero part as

=] 5] 151,
|Gl |G|
Applying this decomposition to 1g- as well gives

lg = + 1(s—

5| 151 Bl Bl
Talg, 1ge) =(T' 1lg — 1— —+4+1ge — (1 — —
< Als, S> < A<|G| + 1s |G| ) ‘G| + lg ( |G|)>

5] 11y . 18] 5|
-— 4T 1o — , 1 — lee — (1 —
=gt s —ig) g e )

This then decomposes into the inner products of the constant and the non-constant
terms. The inner product of the constant terms is
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S1,, _ 181, _ 15115
Gl (1= 12) =
el T G

The inner product of the non-constant terms is

m(u—%)u_u—%»

Applying Proposition 17.2 and Cauchy Schwartz gives the upper bound

S S SSC
ATls ~ iglliallis - (1= 20l = () S5

Then combining the terms from the constant and nonconstant parts gives

|S115]
|G|
Multiplying by A and applying equation 45 then gives the desired result:

(T'als,1se) > (1 —0(Ta))

E(S,5) > (1 - U(TA))%
O

Without loss of generality S can be chosen so that |S| < |G|/2. Then if 0(T4) <1

E(S,59 2 |5]

where the implicit constants depend on A. This property of a subset of vertices
and its complement sharing a large number of edges is known as an expander graph.
Note that when A is a subset of a proper subgroup H of GG, then the set of elements
generated by A is at most H. The distribution will therefore never become uniform
after repeatedly applying T4, which implies that o1(T4) = 1.

The original proof of Selberg’s theorem was difficult and relied on the Riemann
hypothesis for curves over a finite field. Around 1990, Sarnak and Xue gave a more
elementary proof (with slightly weaker bounds on the constants). We will discuss
some of the ideas in that proof. The first idea has to do with the representation
theory of the group SLy(FF,)/ Consider the following proposition:

Proposition 17.5. If p : SLy(F,) — U(d) is a nontrivial representation of SLy(IF,)
mapping to the unitary group with d dimensions, then d > ’%1
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Proof. This proof relies on the existence of the elements
(11
“= o1
(10
Tl

These elements generate S Ly (F,), and are tranposes of each other, so without loss
of generality we assume that p(u) # e. u and v have the property that they are
conjugate to powers of themselves. In particular:

(26 )6

The conjugates of v similarly are powers of v. Then because representations pre-
serve conjugacy classes, p(u) must be conjugate to p(u)® . Since conjugate matrices
have the same eigenvalues, then p(u) and p(u)® must have the same set of eigen-
values. p(u) has order p, so its eigenvalues must be roots of unity of order p, or
equivalently of the form e2™/? for integer n. Then the eigenvalues of p(u)®", and
equivalently of p(u), are of the form e2™@™/?_ Since this is true for arbitrary a,
a single nontrivial eigenvalue e?™/P generates all eigenvalues corresponding to a’n
mod p. p(u) is by hypothesis not the identity, so must have at least one eigenvalue

p—1

not equal to 1. Since there are ¥5= distinct nonzero quadratic residues (and 1 is

an eigenvalue of p(u)), then p(u) has at least 2! distinct eigenvalues, and so has
t L
2

and

dimension at leas . This completes the proof. 0
We now apply this proposition to prove a further proposition.

Proposition 17.6. Let i be a measure on SLy(F,). Then

p+1
o1(T,)" = < [SLa(Fy)] [fullz:

In particular, since |SLy(F,)| ~ p3, this implies

o1(T) < pllul|r2

Proof. Note that o4(T},)* is the ith eigenvalue of T, T};. Since T, T} is a right action,
its eigenspaces have a left G action L,f(h) = f(g~'h), which is nontrivial except
for the constant functions. Each action on an eigenspace induces a representation of
SLy(F,), which is unitary because
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(Lof by =Y flg~ O)h(0)

tcc

=" f(O)h(gt)
teG

:<f7 Lg*1h>

Therefore the representation must have dimension at least ’%1, so the singular
values must value multiplicity at least Z%l. Then because the Frobenius is invariant
under unitary operations, and since 7,7} is symmetric it is diagonalizable by a
unitary transformation:

4 with multiplicity

= Z |(Tu)g1,gz‘2

91,92

=> g ")
=|SLy(F,)| Y pulg)”

=|SLa(F,)| |z

Then returning to the case that y = pu, for a subset A

1 1

2
= —|A|l = —
||:uz4||L2 | q,gl | ‘ 4’

This together with proposition 17.6 implies the following corollary:
Corollary 17.7.

This bound is only nontrivial when |A| 2 p?. The bound is tight in the sense
that there are sets A with |A| ~ p? and with o,(T4) = 1. Indeed, if A is a proper
subgroup of SLy(F,), then 1(74) = 1. The subgroup of upper triangular matrices
in SLy(F,) has cardinality ~ p?.

Therefore, this estimate implies that every proper subgroup of SLy(F,) has cardi-
nality < p?. We state this result as a corollary.
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Corollary 17.8. If H is a proper subgroup of SLy(F,) then |H| < p?.

Proof. If H is a proper subgroup, then o(Ty) = 1, which implies that p?/|H| = 1.
Multiplying both sides by |H| gives the desired result. O

(Note that the order of SLs(F), is p(p — 1)(p + 1), so this corollary is not a
consequence of Lagrange’s theorem. )

To get further bounds for o1(74) we will need to take account of other features of
A besides just the cardinality of A. We will explore how to do in the next lecture.
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18. RANDOM WALKS ON FINITE GROUPS II
April 22
Setup:

e Let GG be a finite group.

e ;1 : G — R is a probability measure on G, i.e., u(g) > 0,> o pu(g) = 1.

e Starting with g9 € G, let hy € G,t = 1,2,... be sampled according to u, and
define the random walk on G by ¢, = g;—1 - he, t = 1,2, .. ..

Question: how evenly distributed is gx on G for large K?
To state our question more precisely, we introduce some definitions. For two
functions fi, fo : G — C, define

fi* fa(g) = Z filg)f2(g2), Vg eG.

91,°92=9
Define the operator T, : (*(G) — (*(G) by T,.f = f* p. It is straightforward to
check that for any K, T4y, is the distribution of gx defined as above. Our main
question is to estimate

17,2050 — 71l
for large K € N.

We start with some easy observations.

Lemma 18.1. TN]‘ = ]_, and ||Tuf||f2(G) S ||f||g2(G)7\VIf - éQ(G)

Proof. The first claim can be checked straightforwardly. For the second claim, we

define the right shift operator R, : (*(G) — ¢*(G) by

Ryf(h) = f(f-g7"), Vfel(G).gheq.
It is easy to check that R, : £*(G) — (*(G) is an isometry, and it holds that
Tuf = frp=>Y ulg)Ref, Vfel(G).
geG
Therefore, it follows from the triangle inequality that
1Tuflle <Y w@) I Rofllexe = 1 fllexo - O
geG

Denote (?(G)y as the orthogonal complement of the constant functions in ?(G).
One can verify that 7, maps ((G) to itself. Denote by o1(7},) the largest singular
value of the operator T}, : (*(G)y — (*(G)o.

Lemma 18.2. For any K € N, it holds that
1775 8gy — |—(1;|1||62(G) < o(T,)".
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Proof. Write g4, = ﬁl + (840 )1y Where (0 )p = 0gy — 21 € £2(G)o. We have for any

T al
K eN, TKo,, = \_C1¥|1 + TX (0gy )1, and thus

175000 — & tllee) < 1T Ggo)nllezey < 01(Ta) N Ggo)nllezey < 0a(T)™ . O

For a subset A of G, we denote s = ﬁlA and abbreviate T),, as Ts. Of particular
interest of us is the following concrete example: let G = SLy(FF,) where p is a large

prime and
1 +1 1 0
Aselz {(0 1 ) ) (:I:l 1)} CSLQ(FP).

We will focus on the following theorem of Selberg.

Theorem 18.3. There exists a universal constant ¢ > 0 such that, for every p,
al(TAsel) S 1—-c.

In general, for a pair (G, A) where A is a subset of the group G, we are interested
in 01(T4). This is not only because it is related to the mixing of random walks on
G with steps in A (see Lemma 18.2), but also because the spectral gap 1 — o1(74)
reflects a certain expansion property of the corresponding Cayley graph.

More precisely, for A C G that is symmetric and generates G, we define C(G, A) as
the graph with vertices corresponding to the elements of G, and with edges (g1, g2) €
E if there exists a € A such that go = g1 - a. Note that A generates GG, which implies
that C(G, A) is connected. Moreover, for a subset S C G, we denote E(S, S°) as the
set of edges (g1, ¢2) € E such that g; € S and gy € S°.

Lemma 18.4. For any S C G, it holds that
A ST]5¢]

’E(S?SC>’ > (1_01(TA)) |G‘

Proof. 1t is straightforward to check that
|E(S, S| = |A|{Tals, 1gc)
= AL ) + [ANTA (L), (Lse)n)

AllS||S¢
> % — T (Al I (Lse e
Al|S]|s¢
> (1—01<TA))%' -

Combining Lemma 18.2 with Theorem 18.3, we obtain that for any S C G =
SLy(F,) with |S| < 19 in the graph C(SLy(F,), As),

c C|‘1||S‘
> —.
E(S,S°) > 5
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For a large graph H = (V,E), we say H is an expander graph, if there exists a
universal constant ¢ > 0 such that for any S C V with S < ‘—g', E(S,S5°¢) > %
The above result indicates that C(SLy(F,), Asel) is a sparse expander graph (here
sparse means that the graph has average degree O(1)). While Selberg did not state
his theorem exactly in the form above, his work is in a sense the first proof of the
existence of sparse expander graphs. In what follows we fix a large prime number p
and let G = SLy(F,). We now discuss the proof of Theorem 18.3. We will not give
a complete proof, but we will discuss some of the ideas in the proof, following the
approach developed by Sarnak-Xue in the early 1990s.
/*-bound. We claim the following ¢*-estimate of oy (T},).

Theorem 18.5. There exists a universal constant C' > 0 such that
01(T,)* < Cp?||pllzz (e -
We begin with a lemma on non-trivial representations of G = SLy(IF,).
Lemma 18.6. Let p : G — U(d) be a non-trivial representation of G, then d > ’%1.

Proof. Consider the following two elements in G:

() ()

It is easy to check that u,v generates GG. Since p is non-trivial, without loss of
generality we may assume that p(u) # ;. Note that

a 0 11 al 0 1 a? "
(0 a1> (0 1)(0 a):<0 1)’ Va €, .

This implies that u is conjugate to u® for any a € F,. Let A be the multi-set of

eigenvalues of p(u), we have A = A" Va € [F;. On the other hand, since u? = 1,
we have A C {z € C, 2P = 1}. Moreover, one can check that A # {1,...,1}, as this
would imply that p(u)? # I; (unless p(u) = I;). Consequently, we can pick A € A

such that A\ # 1. Then, the p%l distinct elements Xlg, a € F all lie in A. We conclude

that d > |A| > 21, as desired. O

The above lemma says that any non-trivial representation of G = SLy(F,) has
dimension at least of order p. This lower bound is order tight: consider the subgroup

U of G:
a t "
UI{(O a_l),CLGFp,tE]Fp},

which has size of order p?>. We have G acts on G/U induces a non-trivial represen-
tation with dimension of order p.
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Before proving Theorem 18.5, we first introduce some notations. For u: G — R,
define p*(g) = pu(g™"),Vg € G. One can check that T};, the adjoint of T),, equals T},
Moreover, T),T; =T, T,;» = T}~ Denote v = p* p*.

Proof of Theorem 18.5. Let V' C (*(G), be the eigenspace of T, = 1,1, that cor-
responds to the eigenvalue \;(7,) = o1(7T,)* Consider the left shift operator L,
(*(G) — (*(G) defined by L,f(h) = f(g7*h),Vf € *(G),g,h € G. It is straightfor-
ward to check that L, commutes with 7}, and thus L, maps V to itself. Since V'
does not contain any constant function, L, induces a non-trivial representation of G
on V. By Lemma 18.6, we have dim(V)) > 2%, and thus A;(7},) has multiplicity at
least p%l. Therefore, by the trace formula we have

P lomy =L)< DT =TT

2
=TI = Y. T2, =G ule)? = |Gllul?e

91,92€G geG

Since |G| ~ p?, the desired result follows. O

As a corollary, we see that for any set A C G with |A] > 2Cp?, it holds that
01(Ta)? < CP?||palleq) < 1/2. Note that for U the subgroup of G defined as above,
we have |U| ~ p? and o,(Ty) = 1. This example also shows that the result of
Theorem 18.5 is order-tight.

We say p is symmetric if p = p* (i.e. u(g) = p(g™')). When p is symmetric,
we have T), is self-adjoint and thus o1(7,)* = M (T,)* = M(TF) = M(Tex) =
01(T),+x). Applying Theorem 18.5, we obtain that for any K € N, it holds that

Our plan is to pick K = Cylog p for some universal constant Cy > 0, and show that
||“Ase |||e”2 < p~*'. This would imply that o1(T4_,) < 1 — ¢ for some universal
c=c(C, CO) > 0.

Lifting to SLy(Z). Consider the projection 7, : Z — F,, which induces a group
homomorphism 11, : SLy(Z) — SLy(F,). Let M be a probability measure on SLy(Z)
and we let = I1,(M) be its push-forward onto SLy(F,). It holds that IT,(M*K) =
K for any K € N. Therefore, to understand ,uj{; | for large K € N, we may try to
first understand M3X , where My, = 714, and then understand how it projects
onto SLy(FF,).

Some good features about SLy(Z):

nall2(0)

(1) SLy(Z) is virtually free, meaning that it has a finite index free subgroup.
(2a) SLy(Z) C SLy(R) closely related to Lie groups.
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(2b) SLy(Z) acts nicely on the H? hyperbolic plane.

Intuition about convolution on SLy(Z): As a warm-up, consider the convolu-
tionon Z. Let p = %(51 +4_1). By the central limit theorem, u can be approximated
by Gaussian, which intimately relates to the heat kernel on R. In light of this, we
might hope that for a probability measure M on SLy(Z), there is some central limit
theorem for matrices, and the convolution M*¥ would be related to the “heat kernel”
on SLy(R).

Consider the “ball” in SLy(R) with radius 7", defined as follows:

BT :{(CCL 2) GSLQ(R)Z(I2+b2+C2+d2§T2} .

Moreover, we denote Br(Z) := Br N SLy(Z).
Lemma 18.7. For T large, we have |Br(Z)| ~ T?.
Proof sketch. We need to count the solutions of ad—bc = 1,a,b,c,d € Z, a>+b*+c+

d*> < T?% For a typical pair (a,d) € [-T,T]?, the number of pairs (b,c) € [T, T]?
such that bc = ad—1 is at least 1, and at most 7°("). This suggests |Bp(Z)| ~ T2. O
Vague statement: for large K, M*¥ is roughly equally distributed on Br(Z), where
T ~exp(c(M) - K).
Let us see how a statement of this form about random walks on SLs(Z) leads to
a spectral gap in SLy(IF,).
Lemma 18.8. If yu is symmetric, then |3y = w?* (1), where I € G is the
wdentity element.

Proof. By definition we have
HM*KH%(G) _ Z M*K(g>2 _ Z M*K(Q>M*K(gfl) _ /L*ZK([) . 0
9eG geq

This leads us to examine [|p3% |17y = w25 (1), where I € SLy(IF,) is the identity.
We can relate this to a measure on SLs(Z). To set this up, let I'), C SLy(Z) be the
pre-image of I € SLy(F,) under II,,, i.c.,

r,:= {a,b,c,deZ,ad—bc:l, <(Cl Z)E(é ?) (modp)}

Now we have
s, ey = 1 (1) = T, (M35 (1)),
and by the vague statement, we expect

sel
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where T' ~ log p. Since SLy(FF,) has size of order p?, it is natural to expect that for
large T, T', N By(Z) occupies nearly a p~3-fraction in By(Z). The following lemma
shows that this is indeed the case.

Lemma 18.9. For T > p?, it holds that [T, N Br(Z)| < p~3T>.

Proof. For any (Z Z € 'y, we have p | b,p | ¢, and thus p* | be = ad — 1.
Meanwhile, we have p | a—1, p | d—1, which implies p? | (a—1)(d—1) = ad—a—d+1.
Altogether we conclude that p? | a+d — 2. In light of this, we see that for ((2 Z) €

I, N Br(Z), a € [-T,T] has at most O(p~'T) choices, and given a, d satisfies

= —2—a (mod p?) has at most O(p—2T) choices (here we use the fact that T' > p?).
Finally, given a,d, b, c satisfies bc = ad — 1 has at most 7°!) choices. Combining
things together, we obtain the desired bound. 0

Proof sketch for Theorem 18.3. Assuming the vague statement about random walks
on SLy(Z) we can now assemble our ingredients to give a proof sketch of Selberg’s
theorem.
We pick K such that T ~ exp(c(Mgq)K) ~ p'!, and thus K < Cplogp for a
universal constant Cy > 0. By the vague statement and Lemmas 18.8, 18.9, we have
. ILB@)| _pT
02(G) =~ |BT(Z)| I T2 :
Applying Theorem 18.5, we obtain that oy (T4, )* < p~'. Thisyields that o1(T4,,) <
1 — ¢ for some universal constant ¢ > 0. O

[

Connection to hyperbolic geometry

Selberg’s theorem is closely connected to hyperbolic geometry. In fact, Selberg’s
original theorem was about the eigenvalues of the Laplacian on certain hyperbolic
manifolds. The hyperbolic manifold perspective also gives a nice approach to the
vague statement in the proof sketch above. In this short section, we briefly introduce
these ideas.

Recall that SLy(Z) acts isometrically on H2. Let X(p) = H?/T,. If p is large,
then the action is properly discontinuous, and so X(p) is a hyperbolic surface. It
is a complete surface with finite area and with some cusps. Note that X(p) is a
cover of X (1), and the group of deck tranform of X (p) is SLy(F,). So the “large
scale geometry” of X(p) is closely related to the geometry of the Cayley graph of
SLo(F,) with generators A, where A is the reduction mod p of some set of generators
of SLy(Z). For instance, we could take A = A.

Consider the spectrum of the Laplacian of X (p). We have 0 lies in the spectrum,
but above 0 there is a gap. Denote A;(X(p)) the smallest positive eigenvalue of
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the Laplacian of X (p). Selberg proved that A\ (X(p)) > = and conjectured that
M (X(p)) > 1 —o(1). Because of the close connection between the geometry of X (p)
and the geometry of the Cayley graph of SLy(F,), it is not too hard to show that
a lower bound for A\;(X(p)) is equivalent to an upper bound for o1(T4), with A as
above.

The proof we sketched above can be translated into hyperbolic geometry using
the heat kernel. The heat kernel describes a diffusion process on a Riemannian
manifold, and it is a continuous analogue of a random walk. The heat kernel on a
Riemannian manifold is written as Hy(x,y), where t represents time, and z,y live in
the Riemannian manifold. The probabilistic interpretation is that Hy(z,y)dvol, is
the probability distribution for the position of a particle that started at = and then
diffused for time ¢.

We write H; x(p) for the heat kernel on X (p). We think of H; x(, as analogous to
1** in the proof sketch above, with ¢ analogous to k.

First big step: Prove that H; x(,) is roughly evenly distributed on X (p). We will
discuss the proof of this more below.

In particular, we prove that there is a constant Cj so that if ¢t = Cjylogp and
x € X(p), and for t = Cylogp, then

1H ) (2, )l < p720

This is analogous to proving that [[4™*||72gp,r ) < p~*!. There is a close con-
nection between the mixing properties of the heat kernel and the eigenvalues of the
Laplacian on a Riemannian manifold. This connection is analogous to the trace
formula that we used in the finite group setting. On a closed manifold, the for-
mula has a simple form closely parallel to the formulas we used above. If we let
0= X < A1 < Xy < ... be the spectrum of the Laplacian on a compact Riemannian
manifold M, then we have

Ze_zt’\j :/ HQt(x,x)dvol:/ Hy(z,y)*dxdy.
M M

j x M

Since X (p) is not compact, its spectral theory is a little more complicated, but
this is a technical detail. This part of the proof is less elementary in the hyperbolic
setting than in the finite group setting, but it is basically analogous.

Since SLo(F,) acts isometrically on X (p), each eigenspace is a representation of
SLy(F,). The main case is when the representation on the \; eigenspace is non-
trivial. Then it has dimension at least (p — 1)/2 and so we get

—1
B p-aem §/ Hy(x,y)*dxdy.
2 MxM
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Then the first big step gives us, with t = C'log p,

p— 16_29\1 < / Hi(z, y)?dady < pPp~2!
2 MxM

and so e 2 < p~! and so \; > ¢ > 0 uniformly in p.

Now we return to the first big step.

We write Hy x(p) for the heat kernel on X(p) and H,y for the heat kernel on
the hyperbolic plane. These two heat kernels are closely connected: H x(p) is the
pushforward of H,y by the covering map I, : H — X (p). In other words, if IL,(Z) =
x and IL,(y = y), then

}¥tXXp xZ, JI j{: }{tH
€l
In particular, to do the first big step, we have to estimate

Hyt xpy (7, 7) = ZH%H
v€elyp

This is analogous to estimate M**(I",) in the proof sketch above. This was a key
moment in the proof sketch above where we made a vague statement. This part
of the proof is easier in the hyperbolic context because there is a simple explicit
formula for H;p. Using this explicit formula and Lemma 18.9, it is fairly easy to
prove the desired bounds for Hy x (). So this part of the proof is actually easier in
the hyperbolic setting than in the finite group setting.
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19. RANDOM WALKS ON FINITE GROUPS III

April 24

We discuss how projection theory appears in the work of Bourgain-Gamburd.
Builds on work of Helfgott, Hrushovski, and Larsen-Pink.

We did not make notes for this lecture. A detailed reference is in Tao’s class notes
https://terrytao.wordpress.com/2012/01/13/254b-notes-4-the-bourgain-gamburd-expansion-
machine/ and https://terrytao.wordpress.com/2012/02/05/254b-notes-5-product-theorems-
pivot-arguments-and-the-larsen-pink-non-concentration-inequality /


https://terrytao.wordpress.com/2012/02/05/254b-notes-5-product-theorems
https://terrytao.wordpress.com/2012/01/13/254b-notes-4-the-bourgain-gamburd-expansion
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20. HOMOGENENOUS DyNAMICS 1

April 29

There has been recent striking work applying projection theory to homogeneous
dynamics. We will try to give a friendly introduction to the field of homogeneous
dynamics and how projection theory can help understand it.

In this lecture we introduce homogeneous dynamics and then explain in a simple
example how projection theory connects to dynamics. In the next lecture, we flesh
out this simple example. After that, we give a brief survey of the recent work
connecting homogeneous dynamics and projection theory.

First we introduce homogeneous dynamics. Let GG be a Lie group and I' a discrete
subgroup. The space X = G/I is called a homogeneous space, because the group G
acts on G/I', and for each x € X, the orbit Gx = X. If H C G is a subgroup, then we
can study the orbits Hz inside of X. We focus on the case that I has finite covolume,
meaning that X has finite volume. One important example is when G = SL,(R)
and I' = SL,(Z). In this case, the space X = SL,(R)/SL,(Z) parametrizes the
lattices in R™ with unit covolume. Here we could choose H to be a lower-dimensional
subgroup, such as the diagonal matrices or the upper triangular matrices. Since H
has infinite volume and X has finite volume, Hx “wraps around and around inside
of X”. There are examples where Hx is dense. There are other examples where Hx
is contained in a lower dimensional submanifold inside of X. How might Hz look in
general?

In this discussion, we have to be careful about left actions and right actions. An
element of G/I' is a coset of the form AI' where h € G. The group G acts on the
left on G/T, so an element g € G maps the coset hI' to the coset g~ 'hT'. (The
inverse here makes it a left action and is traditional, but it’s not that important in
our discussion.)

The simplest example is G = SLy(R), and I' = SLy(Z). Let m be a right invariant
metric on G, which induces a metric on G/I". The left action of G on G/I" distorts

the metric but it preserves the volume. Define U = {[1 i] } and up = {1 ﬂ
teR

A typical problem of homogeneous dynamics is to study the orbit U - z in G/I" for
reG/I.

Theorem 20.1. (Hedlund 30’s)
U - x is either periodic or dense.

These questions are interesting in their own right and they also have applications
to other areas of math. We describe one application to number theory.

Let Q(xy,--- ,x,) be a quadratic form.
Question: How is Q(Z") distributed?
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Conjecture 20.2. (Oppenheim) If n > 3, the signature of Q) is mized, and the
coeffiencts of Q are not contained in Zow for any «, then Q(Z") is dense in R.

This conjecture was proven by Margulis in the 1980s. Raghunathan observed that
the Oppenheim conjecture is related to homogeneous dynamics, and the proof uses
this connection. Suppose that n = 3, which is the hardest case. Since the signature
of @) is mixed, we can assume that it has signature (2,1). Then there is a linear
change of variables that converts @) to a standard quadratic form of signature (2, 1),
such as Q(x) = 2% + 23 — x2. This linear change of variables converts Z* to some
lattice A, and so we have Q(Z3) = Q:(A).

The key point is that the quadratic form (); has many symmetries. In particular,
SO(2;1) C SL(3;R) preserves the quadratic form. Therefore, for any h € SO(2,1),
we have

Q(Zg) = Q1(A) = Q1 (hA).

Thus we are led to study the SO(2, 1)-orbit of A in the space of lattices. The space
of lattices in R™ is X,, = SL,(R)/SL,(Z). If SO(2,1)A is dense in X3, then Q(Z?)
is dense in Upex, (@Q1(A)) = R.

Margulis showed that SO(2, 1)A is dense in X3 except for some very special lattices
A. When SO(2,1)A is not dense in X3, Margulis showed that it must be a lower-
dimensional homogeneous space contained in X3. In terms of the original problem,
this scenario implies that the quadratic form () has coefficients in Za for some o € R.

The Lie group SO(2,1) is a 3-dimensional Lie group. It contains a 1-dimensional
unipotent subgroup U C SO(2,1). Most of the work in the proof is to show that UA
is either dense or is contained in a lower-dimensional homogeneous subspace of Xj.
This can be viewed as a higher dimensional generalization of Hedlund’s theorem,
although the proof is much more difficult and involves new ideas. Ratner extended
this work to a very general theorem that applies to all G/T" and all unipotent orbits.

In these notes, we will sketch how projection theory leads to bounds related to the
geometry of the orbits U - x in SLy(R)/SLy(Z). While this will not lead to a full
proof of Hedlund’s theorem, it will give some interesting information. Then we will
discuss why it is more difficult to understand unipotent orbits in higher dimensional
homogeneous spaces like SL3(R)/SL3(Z). Finally, we will discuss some recent work
applying projection theory to help understand unipotent orbits in higher dimensions.

It’s important to note that Hedlund’s thoerem is special for the unipotent group
U. For the subgroup D of diagonal matrices, an orbit Dx may be neither periodic
nor dense. For instance, the Hausdorff dimension of the closure of Dz may be strictly
between 1 and 3. It is important to understand what is special about the unipotent
group. In our discussion, the special feature will be the way the unipotent group
interacts with the diagonal group. We need a little notation to state this interaction.



110 PROJECTION THEORY NOTES

,
Define a, = {e €_T:| . After some calculation, we see that

aruta;l = uet.

Denote Uy e = {ux}icpo,r). Note that
Upmr = aRU[O,l]a;zlx

where 2% = T'. Also note that if R = Jr, agr = a.

Goal: Understand how a, acts on unipotent orbits.

We first spend some time visualizing how a, acts on X. Then we will use this
geometric information to prove bounds about how a, acts on unipotent orbits. For
this geometric discussion, it may be useful to look at the class video on the OCW
page.

We write L, for the left action of g on G or on G/I. So L,(h) = g 'h and
Ly(hT') = g~'hL. (The inverse is traditional and makes it a left group action, but is
not too important for us.) We write R, for the right action of g on G. So R,(h) = hg.

Since the metric m is right invariant, the map R, : G — G preserves m. However,
Ly : G — G does not preserve m. The mapping L,-1 does not preserve m. For any
h € G, L,- maps T),G to T,-1,G. This mapping always has singular values e’ 1,
and e~?". The singular vectors are Vexp, V05 Veomp € TpG. Here veopm, is the singular
vector with singular value e=2" and we call it the compressing direction.

We shall consider a tube in the fundamental domain for G/T". By choosing coor-
dinates on the tube, we can identify it with D? x [0, 1] and put coordinates x, ¢ with
r € D? and t € [0,1]. We choose the coordinates so that each vertical line z x [0, 1]
is a piece of a U orbit, and so that ui(x,t;) = (z,t + 7).

When we apply L,-1 to the this tube, some directions get stretched and some
directions get compressed. The tangent direction to the U orbits is stretched — the
tangent direction is exactly vegp. So the compressing direction veem, is perpendicular
to the orbits. Now the key geometric point is that the compressing direction is
twisting relative to the unipotent orbits. The following picture illustrates how L -1
acts on slices of the tube at various heights t.

If we slice the tube at a given height ¢, we get a disk. The map L,-1 approximately
smooshes this disk to an ellipse. The direction veemy is the direction of the original
tube which is smooshed in this process. In the picture, at ¢ = 1, the direction vop,, is
vertical and at t = 0 the direction is horizontal. As ¢ goes from 0 to 1, the direction
Veomp twists gradually.

In the picture, there are three unipotent orbits. The three dots in each disk
represent where the unipotent orbit intersects that disk. So we see that at height
t = 0, two of the orbits get smooshed close together. On the other hand, at height
t =1, the action of L,-1 does not smoosh the orbits close together. The key point is
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FIGURE 16. Action of L -1 on slices of the tube at various heights .

that at most heights ¢, the action of L,-1 does not smoosh the orbits together very
much.
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21. HOMOGENEOUS DyNaMIcCS 11

May 1

In this lecture, we give some more details about how projection theory can help
understand homogeneous dynamics. We sketch proofs in a simple case. Then we
discuss recent work by Lindenstrauss-Mohammadi which uses projection theory to
prove quantitative bounds in Ratner-type equidistribution theorems. The projection
theory that appears here is related to some recent problems in projection theory
raised by Fassler-Orponen.

We pick up from the end of the last lecture. At the end of the last lecture, we
drew a picture to illustrate how L,-1 acts on the space X = SLy(R)/SLa(Z). The
key point in the picture is that the compressing direction veem, is twisting relative
to the unipotent orbits.

To start this lecture, we formulate precisely what we mean when we say that
Vcomp 18 twisting and indicate how to compute and prove this twisting using matrix
computations. Then we explain how to use this twisting to prove bounds about an
orbit Ux.

We call Veomp(t) € Ty,q, the direction that was compressed when we apply L, -1,
i.e. the smallest singular value vector for dL, 1. We also define an orbit vector vwb(t)
such that ui(go + €vg) = urgo + €Vorp(t). The moral the the story is that at each
point there is an orbit vector and a compression vector and the angle between them
is changing.

Let us first compute Veomp at go € G. Here Veomp = Veomp,go € Ty, G is the smallest
singular vector for dL,-1 : Ty,G' — Tp, 4,G.

To study this we make use of the fact that m is right invariant. So the singular
values and vectors of L,-1 are closely related to those of

R(‘ZTQO)*l © Lail © Rgoh - aThQO(aTQO)_l = arha;l = CaTh.
Here C,, : G — G mean conjugation by a,. Note that C,_ :e—e. dC, :T.G O

a b e’ 1la o] [eT
dCo, {c d} - [ 6_7"_ [c d_ { er}'

Recall: Orthonormal basis for T,G :

0 1] _ {0 o] 5 [ 0]
= 7n: 7d: 1
{0 0 1 0] 0 -

)

After some calculation, we see that
dCy, (n) = €*n,dC,, () = e *n,dC,, (d) = d

Thus, Ry,(7) is the singular vector of dL,-1 at go with singular value e~2". In other
words
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Veomp,go — Rgo (ﬁ)

Next we want to study Veomp(t) = Veompurgo- Plugging in, we get

Veomp(t) = Ru,go (1) = Ntz go.
For comparison, we consider a vector that tracks the orbits of U. We define an
orbit vector vy, such that

u(go + €vo) = Usgo + €Vorp(t).
If we use coordinates so that the orbits are vertical lines {z} x [0, 1], then in these
coordinates v,,(t) will be constant in ¢. Solving the equation above, we see that

Vorp () = ugvp.
If Vr6(0) = V9 = Veomp(0) = En) Jo, then we would have
Uorb<t) = ut(n)g[)-
Comparing formulas for veem,(t) and ve,(t) we see that they are not the same.
And so the compression direction is twisting relative to the orbits.
Tracking the spread of an orbit

U[O,T}I' = CLRU[OJ](I;%I[L’.

Put z = a}’%laz and assume that T is not deep in the cusp. This implies that U - x is
not close to being periodic. Let R = Jr and put U; = alUjp ;1. Define | X|s to be
the nubmer of § balls needed to cover X. Goal: Estimate |Uj|s in terms of j,0, .
Define X; to be the top layer of U;, then |U;|s = § 71| X;[s. We say that we are in
the very spread situation if |Uj|s ~ 62 and | X;|s ~ 072

Using the Key Picture

Lemma 21.1. Ife* =§. Then,
| Xjials ~ >~ 6 Avgoci<a|me X5,

tesZ
0<t<1

Let f; be L,-1 restricted to time t. f; looks like the projection map 7; (see Fig-
ure 18). f; is not linear but is smooth.
We now bring into play a rather simple projection estimate.

Proposition 21.2. If X € B?, then
Avggesi|mo X5 2 | X157,
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# of balls in a strip
X ™ = ‘Wth‘a

T

6—27’

FI1GURE 17. Proof sketch for the projection estimate.

¥ | -
N>

1

FIGURE 18. f; is almost a projection.

The sharp case for this example is shown in Figure 19.
The proof for m; holds for f; as well.

Corollary 21.3.
| Xjials 2 6712
Proof. | X 1ls 2 6~ Avg| i X515 = 074 X5 0
Suppose |Xo|s = 1, then | Xi|s = 671, [Xals = 6732, | Xsls =2 677/

Remark 21.4. This proof sketch shows that X; is well spread, but it doesn’t show
that the orbit is dense.
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FIGURE 19. Example with X = B, C By, we see that |X][5; ~ (£)
and [me(X)|5 ~ &

This finishes our discussion of homogenenous dynamics ni SLy(R). Next we con-
sider higher dimensions. Hedlund’s theorem was extended to higher dimensions by
Dani, Margulis, and Ratner. One key result in the theory is Ratner’s theorem. A
special case of Ratner’s theorem says that if U C SL,(R) is a unipotent subgroup,
and X = SL,(R)/SL,(Z), then the closure of an orbit Uz is either all of X or is a
lower-dimensional homogeneous space.

As one concrete example, we can consider, G = SL3(R), I' = SL3(Z). Put,

2

~

U=

[en RNl o

t
1t
0 1

The orbit closures in this situation were studied by Margulis in connection with
the Oppenheim conjecture about the values of quadratic forms.

Ratner’s theorem gives the best possible qualitative information about orbit clo-
sures in great generality. But there are interesting open questions about quantitative
information. We can consider a finite piece of the orbit of the form Uy rjz. In terms
of T', it would be interesting to describe how this piece of orbit is distributed in X.
Recently, Lindenstrauss, Mohammadi, and collaborators proved strong quantitative
bounds about the distribution of Uy 72z in certain Lie groups. Together with Wang
and Yang they gave strong quantitative bounds for the unipotent group U C SL3(R)
mentioned above, establishing a strong quantitative version of the Oppenheim con-
jecture.

In the course of this work, they found a new connection between homogeneous
dynamics and projection theory. The discussion above applies their ideas in the
much simpler case of SLy(R).

In the last short section, we explain what is similar and what is different in SL,,(R)
for n > 3.
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The initial setup with diagonal matrices and unipotent matrices is quite similar.
To study the group U C SL3(R) above, we set

e 0 0
a.= |0 1

0 0 e
Then we have

aruga, ' = Uery,
which is closely analogous to the setup in SLs(R).

Next we can study the action of L -1. We can study the singular value of L,-1 by
studying the singular value of C,, They are

e e e 1,1,e" e, e

The direction tangent to U is a singular vector with singular value e”. The per-
pendicular space is 7-dimensional.

Recall that in the SLy(R) case, the singular values of L,-1 were e?". 1,e %", and
the tangent vector to U is singular vector with singular value e?". The perpendicular
space is 2-dimensional, and the singular values for that space are 1 and e=%".

The first difference in SL3(R) is that the perpendicular space is higher dimensional
and it has more different singular values. A linear map with singular values 1 and e 2"
can be approximated by a projection. In 7 dimensions, a linear map with singular
values 1,1,1,1,e ", e ™", e " can be approximated by a projection from R onto a
4-dimensional subspace. But here, we have to deal with a linear map with singular
values e 2", e7", e ",1,1,¢e", e?. This linear map is not approximately a projection.
However, this is not the most serious issue.

Our key geometric input is that as ¢ varies, the linear map on the perpendicular
space twists. In the case of SLy(R), we get a 1-parameter family of linear maps. Each
linear map is almost a projection, and so we almost get the whole set of projections
from R? to a 1-dimensional space. For U C SL3(R), the variable ¢ still lives in R
because the group U is 1-dimensional, and so we get a 1-parameter family of linear
maps on R”. These linear maps are a bit more complicated than projections, but
suppose for a moment that we had a 1-parameter family of projections from R7 to 4-
dimensional subspaces. This 1-parameter family is still a very small subset of all the
projections from R7 to 1-dimensional subspaces. This is the most serious difference
between SLs(R) and SL3(R).

This leads to a problem called the restricted projection problem, which was posed
by Fassler-Orponen. In the restricted projection problem, instead of considering all
the projections from R” to k-dimensional subspaces, we consider only a smooth lower
dimensional family of projections. There are many different choices we could make

2r
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for this smooth family, leading to many different problems. The simplest interesting
example occurs in three dimensions.

Question 21.5. (Fassler-Orponen 2013)
For 0 € S?,, let my : R® — 0+ be the orthogonal projection. Let vy be curve in S%. If
X C B? and X is a (8,s,C) set, estimate Avgge,|mo(X)]s.

The answer depends on whether « lies in an equator or not.

Example 21.6. Let v be the equator and X a § x1x1 slab. Then, Avgge|mo(X)|o ~
6t

An equator is a geodesic in S? and so it has zero extrinsic curvature in S?. We say
that v C S? is non-degenerate if it has non-zero extrinsic curvature at every point.
For non-degenerate curves, there are much stronger estimates.

Theorem 21.7. (Gan-Guo-Guth-Harris-Maldague- Wang)
If X C B?is a (6,2,C) set and v is non-degenerate. Then, Avgpes|mo(X)|s >
C.072%¢ for any € > 0.

The proof is based on decoupling in Fourier analysis.

Results about the restricted projection problem in the spirit of the theorem above
were used as tools in the work on quantitative Ratner theorems. Here is a sample
theorem in this direction:

Theorem 21.8. (Lindenstrauss, Mohammadi, Wang, Yang, vague statement) There
is a constant ¢ > 0 so that the following holds. If G = SL(3,R), I' = SL(3,Z). U
as above and U - x is not close to a proper homogeneous subspace, then, Uz is
T~¢-dense in (G/TI).

One key step in the proof of this theorem is that, for 6 = T7¢,
’U[O,T]x|6 Z Ceéf(dim GJre).

Part of the proof of this key step follows the ideas we have outlined, but with the
restricted projection theorem in place of the simple projection theorem that we used
above.

The full proofs of the results we have discussed in homogeneous dynamics require
more tools and ideas from homogeneous dynamics. But hopefully these notes give
an idea of how tools from projection theory can help to study dynamics.

There is some other recent work in this area by Benard-He and Benard-He-Zhang,
applying tools from projection theory to study random walks on homogeneous spaces.
The introductions to those papers are a good next step for further reading.
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22. SHARP PROJECTION THEOREMS [: INTRODUCTION AND BECK’S THEOREM

May 6

In the last two years, Orponen-Shmerkin and Ren-Wang proved the Furstenberg set
conjecture. As a special case, this gives a sharp projection theorem in R?, completely
answering the questions in projection theory first raised by Kaufman in the 1960s. It
can also be viewed as a harmonic analysis cousin of the Szemeredi-Trotter theorem.
I think it is a remarkable result, and this work was one of my main motivations to
teach this class.

The full proof of the Furstenberg set conjecture spans several long papers. It is
too long and too technical to give the full proof in these lectures. But in the last
three lectures we will discuss some of the ideas of the proof.

We begin this section by restating the Szemeredi Trotter theorem, an important
sharp theorem in projection theory.

Theorem 22.1 (1982). Let E be a set of points in R*. Pick some integer S > 1.
For every x in E, let L, be a set of S lines passing through x. Define L =, g L.
Then

(46) |L| 2 min(|E] - S, |B|'/25%?2)

This theorem is discussed in more detail earlier in these notes. It is one of the earlier
examples of a sharp theorem in projection theory. The Furstenberg set conjecture
is a continuous analogue of this theorem, in which points are replaced by d-balls
and lines are replaced by d-tubes. To state it, we first recall the (4, s,C) spacing
condition.

Definition 22.2. A set E C R? contained in the unit ball centered at the origin is
(6,5,C) if

(47) |E N By(r)|s < Cre|E|s

for all balls of radius r with v > § centered at arbitrary points x, where | - |5 is the
0-ball covering number.

The following theorem by Orponen, Shmerkin, Ren, Wang (OSRW) gives an anal-
ogous statement to the Szemeredi Trotter theorem for (4, s,C) sets (this statement
is also known as the Furstenberg conjecture (or FC)) :

Theorem 22.3. [Furstenberg Conjecture, OSRW (2024)] Let E C R? be a (6,t,C)
set. Define a 0 tube as a 1 x § rectangle in the plane. For every x € E, let T, be

a set of § tubes in R? passing through x. For each z, let Dir T, C S* be the set of
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directions of the 0 tubes in T,. Assume that for all x € E, Dir T, is a (0, s,C) subset
of St. Define

']I‘:U']I‘x

Then for every e > 0

(48) ‘T‘ > 06070(1)66 min(éft*s, 5775/2733/27 57173)
where ¢, is a constant depending on €.

Denote the three cases of the minimum value, A, B, and C, in order. The first
two cases of the minimum value are analogous to the cases of the Szemeredi Trotter
theorem. In case A, each point has many lines passing through it, and each line
passes through only one point. The second case corresponds to a grid of points with
lines corresponding to rational angles.

The third case is new in the setup with J-balls and d-tubes. Notice that if we
randomly pick a d-ball in B%*(1) and a d-tube in B?*(1), the the probability that the
0-ball intersects the d-tube is ~ d. To get an example in this third case, we randomly
pick a set E consisting of 67t d-balls and a set T consisting of 6 ~1=% d-tubes. For each
r € E, we define T, to be the set of T € T so that x € T. With high probability,
for every x € E, |T,| ~ 6. Moreover, for any n > 0, with high probability the set
E will be (0,¢,07") and each Dir T, will be (J,s,6").

22.1. History of the Furstenberg conjecture. The first set of methods that were
applied are classical methods, due to Kaufman, Falconer, and Wolff. These consisted
of double counting arguments and Fourier methods.

Double counting methods give sharp bounds when the first term in Theorem 22.3
dominates, which happens when s > t.

Fourier methods give sharp bounds when the third term in Theorem 22.3 domi-
nates, which happens when s +¢ > 2.

When the second term dominates, classical methods are not sharp. One of their
key deficiencies that they cannot distinguish between R and C. As the Furstenberg
conjecture is false in C, it is essential to use methods that distinguish the two spaces.

The second set of methods, from 2000 to 2022 was € improvements. These methods
began with Bourgain’s projection thoerem in 2000, and showed bounds that were €
better than the trivial or classical bounds. For instance, these methods were used to
show that if t =1 and s = 1/2, then

|T| z 0—0(1)5—1—6
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for some tiny but explicit ¢ > 0. Without the e, this bound is trivial, but the
€ improvement was a large step forward. In particular it was the first result to
distinguish R from C.

In 2021, Orponen and Shmerkin pushed these methods further, proving a very
general e-improvement result.

Theorem 22.4. [Orponen-Shmerkin (2021)] Under the same hypotheses as Theorem
22.3, for every 0 < s < t there is € > 0 so that

(49) T 2 672

In this situation, the classical method gives the lower boundf |T| 2 6~% and this
theorem improves the classical bound by e. The proof uses Bourgain’s projection
thoerem, as well as other ideas.

The main progress in the second stage consisted of proving € improvements in
more and more general situations. This last theorem of Orponen-Shmerkin was an
important step in that direction. However, thoughtout this second phase, the value
of € remained quite small.

The third phase is based on repeatedly applying the ¢ improvement results to reach
a sharp result. The result by OSRW is a key example of these methods.

It is striking and surprising that it is possible to bootstrap the e-improvement
theorems to get sharp bounds, and I think this is one of the main ideas to take away
from the recent work in projection theory. In this class and the next class, we will
try to explain how it works.

We begin in this class with the simplest example I know in which an e-improvement
can be bootstrapped to get a sharp bound. The result is an analogue of Beck’s
theorem from combinatorial geometry, and we begin by stating Beck’s theorem.

Theorem 22.5 (Beck). Let E be a set of points in R* and for any line {, assume
that ¢ intersects at most half of the points in E. i.e.

1
[ENE| < S|E|

For everyx € E, let L, g be the set of lines passing through x that also pass through
an additional point in E, i.e.

Ly.={l:1 is aline passing through x such that [{ N E| > 2}

Then for every x

Lzl Z | E|



PROJECTION THEORY NOTES 121

Proof sketch. We assume that the lines in each L, p are uniform, that is each L, g
contains approximately the same number of lines, and each point has approximately
the same number of lines passing through it. This implies that

|l
|Lx,E|
for each ¢ and each x. Let S ~ |L, g| be the number of lines through each point.
Also let L = UyepL, p.
Double counting shows that

|EN{| ~

|E|- S~ |L[-[E|/S

The left hand side is the number of points multiplied by the number of lines per
point, so is the total number of lines multiplied by the number of points per line.
The right hand side is number of lines multiplied by |E|/S, which is the number of
points per line. The two sides are therefore equal. By manipulating the equation,
we get

|L| ~ S?
On the other hand, the Szemeredi Trotter theorem tells us that

L] Z min(S| B|, % E|'/?).
Since |L| ~ S?, this implies that

Sz |E|
the desired conclusion. O

Note that to obtain this conclusion, a weaker version of Szemeredi Trotter is suf-
ficient. We only need to know that if

|E| > S
then

|L| > S°

This weaker version of Szemeredi-Trotter is only an e improvement of a double
counting bound. This bound is analogous to the bound in Theorem 22.4. Using
Theorem 22.4, Orponen, Shmerkin, and Wang were able to prove a continuum ana-
logue of Beck’s theorem. Here is the statement.
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Theorem 22.6. [Continuum Beck’s Theorem, OSW (2023)] Choose n > 0 and let
E be a (6,u,C) set in the plane such that for all p X 1 rectangle R,

[ENR|s < Cp'|El;
Then for most x € E,

|Legls 2 6 min(67%, 671

(Here L, g is a set of lines through the point . We define the distance between
two such lines as the angle between them, and so we can define |L, g|s.)

This theorem is sharp. And the result is false over C. It is one of the first sharp
theorems in projection theory which distinguishes R from C.

The proof is based on the proof of Beck’s theorem, but there is a new issue in this
setting, and a new idea to deal with the issue. Here we give only a proof sketch,
explaining the new issue and the new idea.

Suppose we try to imitate the proof of Beck’s theorem using Theorem 22.4 in
place of the Szemeredi-Trotter theorem. In order to apply Theorem 22.4, we need to
assume that each L, g is a (J,s,C) set for some s. By doing some uniformization,
we can reduce to the case that all the sets L, g are similar to each other: |L, g| is
roughly constant in = and every L, g is a (4, s, C) set for the same s, C.

As above, we let L = UyepL, g. Welet T be the set of -tubes formed by thickening
the line segments of L. Several lines may thicken to essentially the same é-tube T € T.
We let T, be the set of tubes of T passing through z. So we have |T,| ~ |L; gls-

A version of the same double counting argument as above shows that

IT| ~ | To|* ~ | Lo 5l5-
On the other hand, Theorem 22.4 tells us that if 0 < s < min(u, 1) then

T) 2 67
for some small € = €(s,u). Comparing the last two equations, we see that

|Lepls Z07°°¢
We state what we have learned as a lemma.

Lemma 22.7. If0 < s < min(u, 1), and a typical set L, g is (0,s,C), then

|Lapls 2 67°7°

Let us reflect on the lemma. If L, g is (0, s, C), then it follows that |L, g|s 2 0.
This lemma improves on that trivial bound by an e. However, it looks far from the
sharp bound in Theorem 22.6.
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Orponen, Shmerkin, and Wang proved Theorem 22.6 by a bootstrapping argument,
where Theorem 22.4 is used not just once but many times at many different scales.

We now sketch this bootstrapping argumen. Suppose that L, g is uniform and
(0,s,c) for s, where 0,s < min(u,1). Then L, g is (p,s,C) for p > 6. The lemma
then implies that for every p,

’Lx,E‘p Zp e
for every p > 4. From the assumption that L, g is a uniform set, L, g is therefore
a (0,s + ¢€,C) set. To summarize, we now have a stronger lemma:

Lemma 22.8. If0 < s < min(u, 1), and if a typical set L, g is uniform and (6, s,C'),
then a typical L, g is (0,s + ¢€,C") where € = €(s,u) > 0.

The hypothesis in Theorem 22.6 that ' does not concentrate too much in rectan-
gles shows that each L, g is a (9,7, C) set. Starting with this assumption, we can
then apply Lemma 22.8 repeatedly. As we keep iterating, the value of s will approach
min(u, 1).

We should note that this proof sketch was not a complete proof. The technical
work that is missing is to make precise what we mean when we say that L, g is
typical. This requires some careful uniformizing and pigeonholing.

I was very impressed when Theorem 22.6 was proven, because it gives the sharp
answer to a natural question in projection theory and distinguishes R from C. On
the other hand, it was not at all clear to me whether these ideas would lead to sharp
answers to more difficult problems like the Furstenberg set conjecture. Here is one
issue. In the combinatorial geometry world, it was well known that an e-improvement
to Szemeredi-Trotter implies Beck’s theorem, and that Beck’s theorem is sharp. The
proof of the continuum Beck’s theorem builds on this observation. But on the other
hand, no one knows how to bootstrap an e-improvement to Szemeredi-Trotter in
order to prove the full Szemeredi-Trotter theorem. So it was not all clear whether
to expect that we could bootstrap the e-improvement estimate in Theorem 22.4 in
order to prove the Furstenberg set conjecture. In fact, it would be fair to stay that
this strategy sounded very doubtful to me.

As we will see, OSRW did prove the Fustenberg set conjecture, and bootstrapping
theorem 22.4 played a key role.

22.2. Outline of OSRW proof of Furstenberg conjecture. We now begin to
discuss the proof of the Furstenberg set conjecture, just at the level of a very broad
outline.

The proof is split into cases based on the spacing of the set E. I believe this
division into cases is a second major takeaway from the recent work. Until recently,
most proofs in projection theory applies for all (¢, s,C) sets. But different (4, s, C)
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sets can have quite different spacing properties. And it turns out that depending on
the way a set E is spaced, different tools are helpful to bound the projection theory
of E.

The best language for describing the spacing of E is the language of branching
functions and uniform sets. First by a pigeonholing argument, we can reduce to the
case where F is a uniform set with 6 = A™ for some large m. Recall that the uniform
condition on E means that for any dyadic A/ cube @ with j an integer between 1
and m, then

|ENQ|sivr ~ R,

where 1 < R; < A~? is a branching number that determines the spacing of E.

The sequence of branching numbers R; gives very precise information on “the way
FE is spaced”. Notice that recording the sequence of branching numbers contains a
lot more information than a single number s that would appear if we said that F is
a (0,s,C) set.

To build intuition, it is well worth a little time to draw sets with a few different
branching functions. Here are two different cases that turn out to play an important
role in the story.

AD regular case. For every j, R; ~ A~'. In this case, the set E is a (0,¢,C') set.
But not all (d,¢,C) sets are AD regular.

Well spaced case. In this case, R; = A™% for j < m and R; = 1 for j > m. The
number of points in the set F is A™2™, and these points are as well-separated as
possible. If we choose ¢ so that " = A™?™ then the set E is a (4,¢, C) set. But it
looks very different from an AD regular set.

Among (0,t,C) sets, the AD regular set is the most compressed (the distances
between points are as small as possible). And the well spaced case is the most
spread out.

There is also a continuum of cases in between.

One important feature of the proof is that there are different tools for the AD
regular case and the well spaced case.

In 2024, Orponen-Shmerkin proved the AD regular case of the Furstenberg set con-
jecture. Their proof uses a bootstrapping argument and uses the continuum Beck
theorem. It could be described as an elaborate bootstrapping argument which uses
the e-improvement in Theorem 22.4 many times. (Recall that there is no known
bootstrapping argument to deduce Szemeredi-Trotter from a weaker e-improvement
version of Szemeredi-Trotter. But Orponen and Shmerkin showed that the AD reg-
ular case has a lot of special structure, and in this case the sharp estimate does
ultimately follow from an e-improvment version.)
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Somewhat earlier, Guth-Solomon-Wang proved that well spaced case of the Fursten-
berg set conjecture. The proof is based on Fourier methods.

At this point, the Furstenberg conjecture had been proven in two extreme cases
by very different methods. But there were many other cases in between these.

A little later in 2024, Ren and Wang proved the full Furstenberg set conjecture.
They used a multiscale argument which breaks the problem into several different
scales. And they showed that, if the sequence of scales is picked carefully, then
each scale can be controlled using either the AD regular case or a Fourier method
generalizing the GSW method.

In the next two lectures, we will survey these developments, spending one lecture
on the AD regular case, and one lecture on the rest of the proof.
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23. SHARP PROJECTION THEOREMS II: AD REGULAR CASE

May 8

A set E is called AD regular if the spacing of the set £ behaves similarly at all
scales. AD regular sets include classical fractals such as the Cantor set. Orponen
and Shmerkin proved the AD regular case of the Furstenberg set conjecture. We
discuss their proof and how the self similar spacing comes into play.

Recall that we want to prove the following:

Theorem 23.1 (OSRW). If E C R? is a (4,t,C)-set and for all z € E, T, is a set
of 0-tubes going through X, Dir(Tx) is a (9, s, C)-set, with Tx uniform, |T,| ~ 6=,
and s > 0, then

IT| > c6C~OW min (677,675 % 6717+,

When 07°* is the minimum, call this case A. When §727% is the minimum, call
this case B. And if §717* is the minimum, call this case C.

In case A, s > t and the result follows by double counting. In case C, s +t > 2,
and we can deduce the theorem using the Fourier method. This leaves case B, which
is the essentially new content of this theorem.

It will be a little easier to think about things in terms of

R(E,T) := “typical number of d-balls of E on a typical tube of T”.

More precisely,
|E]o

|T|

We will be interested in the AD-regular case. Suppose E is uniform. Let § = A™
(m large). Then

R(E,T) =

|E ﬂ QAj|Aj+1 ~ Bj,
where B; is the branching number, for all dyadic cubes Qs intersection E.

Definition 23.2. F is (6,t,C)-AD-regular if

J
115

j=1

1

E(AJ>_t S S C(AJ)_t.

Let
Rap(s,t,6,C) = max R(E,T).

E, T obey hypotheses of theorem, F is (§,¢, C')-AD-regular
We won'’t worry about C, so we'll just set C' = 1. The argument works if C' T 1.
And we’ll abbreviate the above to Rap(d). Then in terms of these quantities, the
theorem in the AD-regular case is
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Theorem 23.3. [OS]
Rap(s,t,8) < max (1, 57563, 51—t> .

The AD regular case seems like a very special case, but as we’ll see, this is a very
important case that is crucial to proving the theorem. Breaking into cases was an
important step to proving the general theorem.

The AD regular case is special because it interacts in a very nice way with mul-
tiscale arguments. This gives us special tools for studying the AD regular case. If
E is an AD regular set, of dimension ¢ then if we take £ N B(x,p) and rescale it
to diameter 1, we get an AD regular set of dimension ¢. In contrast, if F is just a
(0, s,C) set, and if we take £'N B(x, p) and rescale it to diameter 1, then we can say
much less about it. This feature of AD regular sets leads to the following key lemma.

Lemma 23.4 (Submultiplicative Lemma). If 6 = §,d2, 01,02 < 1, then
Rap(0) £ Rap(01)Rap(02).

Proof Sketch. The idea is to take a set E of d-balls and T of d-tubes and thicken it
to set E; of d;-balls and a set Ty of §;-tubes. We can also restrict £ and T to a
01-ball and magnify it. Then we’ll get a set Ey of do-balls and a set Ty of do-tubes.
Then (E4,Ty) and (FE», Ts) satisfy the hypotheses, and

Rap(6) < (number of d;-balls in a §;-tube)
- (number of §-balls in a §-tube within one d;-ball)

< Rap(01)Rap(d2).
]

(1) If £ and T, are uniform and E is (d,t), then E; is (61,t). If T, is (0, s), then
Ty is (01, s). If E is AD-regular then so is Ej.

(2) Because E is AD-regular, £ N Bs, magnifies to a set that is (d2,¢) and AD-
regular.

This is why we need to work with AD-regular sets.

Remark. This lemma is analogous to a submultiplicative lemma from decoupling
theory in Fourier analysis. In both cases, multiscale analysis turns out to be very
powerful. Beyond that, it’s not clear to me whether the two theories are parallel.

Next we give several applications of the submultiplicative lemma and then discuss
some of the ideas in the proof of Theorem 23.3.

23.1. Brute force proof. One can give a brute force proof of the AD-regular OS
theorem. For some specific gy, check by brute force

Rap(s,t,00) < max(1, 8, 202, 6170)5:
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FI1GURE 20. Submultiplicative lemma

for some € > 0. There are essentially only finitely (but a very very large number!)
many cases for a fixed dy, so this can theoretically be check by brute force. Then we
can use the submultiplicative lemma many times to get

Rap(s,t,65) < max(L, (83)2(65)%, (65)' ) (69)™
and so on.

On the one hand, the brute force part is completely unmanageable, and so this
is not a realistic of proof. Nevertheless, it is interesting to note that in principle
one can prove a nearly sharp Furstenberg estimate in the AD regular case just by
using the simple submultiplicative lemma and brute force. Most deep questions in
math cannot be easily reduced to a (hopelessly large) brute force computation. I

think this argument, while it is impractical, still suggests that the AD regular case
of Furstenberg may be especially approachable.

23.2. General AD vs Projective AD. Theorem 23.3 is related to projection the-
ory but it is more general.

Definition 23.5. We say (F,T) is projective if Dir(T,,) = Dir(T,,) for any
T1,x9 € K.
Let
RAD,proj (6) = max R(E, T)

(E,T) satisfy hypotheses, E is AD-reg, (E, T) projective

Then clearly Rap proj(0) < Rap(0).
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Notice that from the proof of the submultiplicative lemma, if we let §; = d, = /3,
then the small ball problems are all projective: We can only distinguish the angles
of tubes for the small ball up to ~ v/3, so they are the angles of the larger v/8-tubes.
So

Rap(8) < Rap(6"*)Rap proj(67%)

S Rap(6Y*) Rap proj (6"/*) Rap,proj (6'/%)
<

~

So to prove the theorem, it suffices to check the projective case.
We also note that the proof of the submultiplicative lemma applies to the projective
case giving

Lemma 23.6 (Submultiplicative Lemma, projective version). If 6 = 0192, 91,09 < 1,
then

RAD,proj (6) é RAD,proj (51 ) RAD,proj (52> .

23.3. Sketch of the proof for the AD regular case. When Pablo Shmerkin
was visiting me, he described to me the philosophy of the proof in a way that has
stuck with me. He said, “The goal of the proof is get an e-improvement to the
submultiplicative lemma.”

Let us state this in a precise way. Let us write RHS(6) for the right-hand side of

Theorem 23.3, so RHS(§) = max (1, 57283, 51_t> .

Lemma 23.7 (e-improvement to submultiplicative lemma). Fiz s,t. For every a > 0
there 1s some € > 0 so that either

Rap proj (0Y?) S 67 “RHS,

or

Rap proj(8) S 0°Rap proj (0/7)°.

Given this lemma, a simple iteration argument shows that Rap p;(0) 5 RHS.
To prove the lemma, we have to examine the situation when the submultiplicative
lemma is almost sharp in the sense that

Rap proj (6) Z 8°Rap proj (3"%)%.

So what does it mean for the submultiplicative lemma to be (almost) sharp? Let’s
recall a little bit of the setup of the submultiplication lemma. We have E a set of §
balls and T a set of d-tubes, and we want to estimate R(FE,T), they typical number
of 6-balls of E in a d-tube T € T. We let T; be the set of §'/2-tubes formed by
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FiGUure 21. Top: Submultiplicative Lemma is Not Sharp, Bottom:
Submultiplicative Lemma is sharp

thickening tubes of T, and we let E; be the set of §'/2-balls formed by thickening
balls of K. Given the spacing conditions of F and of T,, we see that each tube of
T intersects < RAD,proj((Sl/ 2) thick balls of F;. And we see that the restriction of T
to a ball of radius §/2 intersects at most Rap pro;(0%/2) 0-balls of E. This gives the
submultiplicative bound Rap pro;(0) S Rap proj(61/2)%. If the argument is tight, then
each step must be tight. In particular, for a typical tube T" that intersects a typical
ball B € E;, we must have |T'0 BN Els ~ Rap proj (612

So in the two pictures below, E must resemble the bottom picture in the following
figure.

In this picture, you may see a hint of a product structure. We're going to make
this precise. Let T} € T be a 6% tube. We are going to study E N T;. Choose
coordinates so that T} is described by 0 < x5 < 62,0 < x; < 1. Let A be the
projection of E'N 7T} on the x, axis and let B be the projection of E; NT7 on the x;
axis. Now we see that ENT; C A x B.

The set A x B is a union of horizontal rectangles of dimensions 6%/ x 6. When
the submultiplicative lemma is sharp, then a fraction Z 1 of these rectangles contain
~ Rapproj(6Y/2) d-balls of E. Let X C A x B be the union of rectangles that do
contain & Rap prej(61/2) d-balls of E.

Now we study the projection of £ N7} onto almost vertical lines. Suppose that
lc| < 62, and let £, be the line at angle ¢ from the z, axis. Let 7. : R? — £, be
orthogonal projection. Notice that since |¢| < 6'/2, we have

WC(E) N B51/2 = 7TC(E N Tl) = 7TC(X).
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We are studying the projective case of the Furstenberg set problem. So let D C S*
be the set of directions in which we are projecting. Let C' C D be the subset of D
corresponding to projections onto lines £, with |¢| < §'/2 as above.

When we choose the tube 77, we can arrange that A = my(X) has typical size, and
therefore we get

[T(X)]s < |Als for all ¢ € C.
Because we are assuming that the submultiplicative lemma, the set X is almost
a product set. Using a cousin of the Balog-Szemeredi-Gowers theorem called the

asymmetric BSG theorem, it is possible to reduce to the case that X is a product
set, X = A x B. Now we have

|A+¢B|s 5 |Als for all c € C.
At this point, we can use Plunnecke-Ruzsa to get stronger inequalities of the form

|A+ 1B+ coB+c3B|s S |Als for all c € C.

The full details of this argument are somewhat complicated, and we do not give
them here. First one needs to determine the spacing properties of A, B, C'. To
discuss this, it is convenient to first change coordinates. The set A is a set of 0-
intervals inside of B(§/2). It is natural to rescale A to a set of §*/2 intervals inside
[0,1]. Similarly, we can rescale C' to a set of §'/%intervals inside [0,1]. Let us set
p = 642, After rescaling, we have that |4 + c¢B|, < |A|, for all ¢ € C.

The spacing properties of A, B, C fall into different cases. The most interesting
case is when

o Aisa (p,a)-set with |A| ~ p~.
e Bis a (p,b)-set with |B| ~ p~°.
e Cisa (p,c)-set with |C| ~ p~°.
e For any c € C, |[A+ ¢B|, S |4],-

Orponen-Shmerkin formulated and proved a projection estimate called the ABC

sum product estimate.

Theorem 23.8. (ABC sum product theorem, Orponen-Shmerkin)
Under the hypotheses in the bullet points above, a > b+ c.

This theorem is sharp: if a = b + ¢ there is a natural example that satisfies the
hypotheses above, given by

A=[0,1NZ,

B =1[0,1]N6"Z,
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C' =[0,1] N Z.

Using the ABC sum product theorem and some computation, Orponen-Shmerkin
check that E, T must obey the conclusion of the Furstenberg set conjecture.

We will not prove the ABC sum product theorem here, but we make a few com-
ments about it.

The proof of the ABC sum product theorem is based on two key inputs. One key
input is the continuum Beck theorem from the last lecture. The ABC sum product
theorem would be false over C. Orponen-Shmerkin reduce it to continuum Beck
theorem, our first example of a sharp projection theorem distinguishing R from C.
The second key input is from additive combinatorics. The setup of the ABC sum
product theorem involves sum sets, and so Plunnecke-Ruzsa and other tools from
additive combinatorics naturally come into play, as we hinted above. These tools
give us a lot of leverage, and they allow the reduction from ABC sum product to
continuum Beck.

The ABC sum product theorem can be considered as a special case of the Fursten-
berg set conjecture. (The Furstenberg set conjecture directly implies the ABC sum
product theorem.) But it is a special case with extra structure, especially the prod-
uct structure, which makes it more accessible to tools from additive combinatorics.
The ABC sum product theorem has an analogue over prime fields, and the finite field
analogue has a short proof using additive combinatorics, even though the analogue
of the Furstenberg set conjecture over prime fields remains open.

To finish, let us summarize the ideas we have discussed about the AD regular case.

e In the AD regular case, we have the submultiplicative lemma.

e The submultiplicative lemma allows us to reduce to the AD regular projection
case.

e In a worst case example, the submultiplicative lemma must be sharp, and
this forces E/ to have some product structure.

e This product structure lets us use tools from additive combinatorics like
Plunnecke-Ruzsa.

e With these tools, Orponen-Shmerkin reduce the problem to the continuum
Beck theorem.

e As we discussed in the last lecture, the continuum Beck theorem reduces
to the Orponen-Shmerkin projection theorem, an e-improvement on a simple
double counting argument. And this theorem in turn reduces to the Bourgain
projection theorem.
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24. SHARP PROJECTION THEOREMS III: COMBINING DIFFERENT SCALES

May 13

Last lecture, we discussed some of the ideas in the proof of the AD regular case of
the Furstenberg conjecture by Orponen-Shmerkin.

Building on their work, Ren and Wang proved the full Furstenberg conjecture.
They used the AD regular case as a black box. The rest of the proof depends on two
ideas, which we will explore in this lecture.

e Using a Fourier method in the well-spaced case.
e Combining different scales.

24.1. Well spaced case. For the well-spaced case, we want to have some sort of
Geometric Measure Theory version of the SzemerediTrotter (theorem ?7). Let us
remind ourselves what the classic theorem looks like in our setting.

Theorem 24.1. If E C R? is a set of N points and Lr(FE) the set of R-rich lines,
then ,
N N
Leo(E)| < — 4+ —
La(B) S 5 + 5
Guth-Solomon-Wang proved an analogue of this theorem in the well spaced case.

Theorem 24.2 (GSW). Let E C R? be a set of N 0-balls with E C By which is
well-spaced, in the sense that |E'N By-12]s < 1.
Let Tgr(E) be a set of 0-tubes which are essentially distinct with |T N E|s > R.

Assume also that R > §~<0|E|s. Then
Tr(E)| = 55

When we compare the two theorems two things stand out to us.

e Iirst we no longer have a % term. In Szemeredi-Trotter, the N/R term
dominates only when R > v/N which isn’t possible in the well-spaced case
since each line intersects roughly v/ N squares.

e The second difference is that we do need to assume some lower bound on R.
To see why this is necessary, let us consider a random d-tube 7', then the
expected number of balls on the line is

E[|T N El5] ~ 6| E]s.

If R is equal to |E|s, then an average tube will be R-rich, and so |Tr(E)|
can be comparable to the total number of essentially distinct §-tubes (about
572). In this regime, the theorem is not true. But if we increase R slightly,
then we get the sharp bound in the theorem. It is quite remarkable that
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there is such a sharp phase transition once we increase R past the richness of
a random tube.

Proof sketch. We will now sketch the proof of this theorem, the tools we will need
are the Fourier Method, Double Counting, and Playing with different scales.

Using the Fourier method as in Lecture 4, you can prove that under the hypothesis
of the theorem, we get that

ITr(E)| £ 07 |ElsR™> =0"'NR™.

(This is a good exercise on the techniques we have studied in the class.)

Now in the special case where R = 6 “6|E|s then 6! ~ & so
N?
1A P2 _
0 "NR* = ﬁ,

which exactly matches the theorem. This special case is when R takes the smallest
value allowed by our hypotheses. Unfortunately, this breaks down when we increase
R. However, this bound gets better as we increase ¢, that is if we increase the width
of our tubes.
Recall that |E|; = N. We know § °0|E|s = 66N < R < NY2. We set the scale
parameter p such that p- N ~ R. This way
R )
0<p= N < N2
We are going to study E,, the p-neighborhood of £. Now we want to understand

N—1/2 © . a3

FIGURE 22. An example of a well spaced set with N points, along
with its £, neighborhood in red

0-tubes that hit a lot of balls, but now that we have thickened our set, it makes sense
to study thickened tubes intersecting our set. We define

T4(E,) = {p-tubes T, : |T, N E,|, > R}.
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Now we can again apply the Fourier method, and we get the bounds
N2
R-R?
where we importantly used the fact that |E|, = |E|s = N because our set is well-
spaced. In particular, if we pick R = R then

IT(E,)| S ptE[R? =

N2

T(E)| S -

Now one might think that we are now done, but this isn’t quite the case. Recall that
originally we want to count thin d-tubes, where as this rescaling result gives us a
bound for thick p-tubes. While each d-tube can be expanded to give a single p-tube,
each p-tube can contain many J-tubes and so we are not quite done yet. So we need
to estimate the number of R-rich d-tubes contained in a R-rich p-tube.

For a given tube p-tube T),, we define

Tr(E,T,) = {0 —tubesT : [TNE|; > R,T CT,}.

By using an inductive argument, we can reduce to the case that for each J-tube
T € T the 6-balls in ENT are not concentrated on one side. The tubes in the picture
below obey this two ends condition.

Here is the rough idea of the inductive argument. If the balls in a typical T' concen-
trate in a much shorter tube Ty,+ C T, then we study those shorter tubes and use
an induction on scale.

Using the two ends condition, we can bound the number of thin tubes in each fat
tube as follows.

Lemma 24.3. Suppose that E is a well spaced set in B' C R? in the sense that
|E| ~ N and |E N B(x, N"Y2| < 1. Suppose that 6 < p < N~Y2. Suppose T, is a
p-tube with |T,N E|, ~ R, and suppose that each §-tube T € Tr(E, T,) obeys the two
ends condition. Then
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R2?

Ta(E,T))| S
Proof. We apply double counting to the set

{(T,x1,22) € Tr(E,T,) x E X E: x1,x9 € T near opposite ends }

For each T € Tg(E,T,) we have > R? choices of x1,xs, so the cardinality is at
least |Tr(E,T,)|R?. On the other hand, given zy, x5 there is < 1 choice of T, and so

the cardinality is < R2. O

Now to solve our original problem, we can dyadically sum over R and apply Lemma
24.3. This gives us

Ta(B)l < ) |Ta(E,)| - [Ta(E,T,)
R>R, dyadic

2 D2
Y pmwE
~ R-R2 R?

R>R, dyadic

O

It can be instructive to check where we used each hypothesis of the result.

e The well-spaced hypothesis was only used to control the rescaled size |E|, of
E, and a slightly weaker version was used for the Fourier analysis.

e The lower bound on R was necessary for the Fourier analysis part. It was nec-
essary to assume because otherwise the lower frequencies of the characteristic
functions of the tubes dominate and we get a bad bound.

Another thing that is interesting is that it seems oddly coincidental that the lower
bound given by simple examples matches the upper bound given by this argument.
There are several proofs of Szemeredi-Trotter, but in each case it feels like something
of a coincidence that the upper bounds match examples and are therefore sharp.
There are many cousin problems to Szemeredi-Trotter where lines are replaced by
circles or parabolas or other curves, and in most of those problems the upper and
lower bounds are far from matching.

24.2. Combining scales. So far, we have discussed proofs for two special cases of
the Furstenberg conjecture: the AD regular case and the well spaced case. Ren and
Wang realized that the general conjecture can be proven by dividing the range of
scales [, 1] into pieces, and using one of these two techniques on each piece. This
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multiscale argument is short and elegant and it may have other applications. It builds
on multiscale arguments developed by Keleti-Shmerkin and Orponen-Shmerkin.
Before we describe it, let’s recall the main theorem.

Theorem 24.4 (OSRW). Let E be a (6,t) set in By C R* and |E| = §.
For every x € E let T, be a (9, s) set of tubes passing through x with |T,| = 0~°. Set

T =U,cp Ta-
Let R = |ENT|s be the size of a typical intersection between the tubes and E.

Then R < max(_ 1 975673 6.
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FI1GURE 23. The 3 regimes of the OSRW theorem, A - unrelated balls
with many tubes through each, B - an integer grid of balls, C' - ran-
domly picked tubes

[The picture C isn’t quite what would be perfect. There should be many J-balls
in the picture, so many that every tube hits many J-balls. |

We have already used many tools and techniques to prove this theorem for specific
cases and regimes. Let us quickly document these.

(1) In the case where A dominates, i.e. s > ¢, this is true by D.C.
(2) In the case where C' dominates, i.e. s+t > 2, this is true by the Fourier
method.
(3) In the case where B dominates we have s <t < 2 —s. In this case we do not
yet know if the theorem holds. However, we proved it for two special cases:
e If ' is AD-regular, we proved this last class (theorem 23.3).
o If F is well-spaced, which we just showed.
The last idea of the proof which comes from Ren and Wang, comes in two steps.
First they relax the well-spaced condition in the result we proved to a semi-well-
spaced set, which we will define in a moment. Secondly they put together the known
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regimes by using a multiscale approach and a variant of the submultiplicative lemma
we used for the AD-regular case.

Let p be a scale parameter with 0 < p < 1. Let us assume now that E is a general
uniform set. So F, is a collection of p-balls, and £ contains about the same number

of ¢-balls in each p-ball of E,.

F1GURE 24. Multiscale argument

Now R(Ej5, Ts) is the number of d-balls of Ej that are in T5. From the diagram we
can compute this by first calculating the number of p-balls contained in 7T}, which
we will denote R(E,,T,). Then if we call one of these balls B, then for each such
ball we take all the short segments of d-tubes and see how many d-balls each of them
hits, we will call this R(Ep, Tg). We thus have

R(E(;, Té) é R(Epa Tp) ’ R<EBa TB)
But now we can rescale B to By, so we will assume from now on that Eg is a set of
9_balls, and Tp is a set of %—tubes.

We started with one scale 9, and using this multi-scale argument we broke it up
into two similar problems with scales p and %. We can choose p freely. And we can
then keep doing this splitting, breaking the problem into many subproblems. We
hope to arrange that we can solve each of these subproblems with the tools we have.
At that point we will also hope that we can multiply the bounds together to get a
sharp bound for the original problem.
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Now to discuss these scaling argument we will use the language of the branch-
ing function of a uniform set. Because we are concerned with scaling we will
reparametrize the function by setting f : logs(p) — log1 |E,|, with domain [0, 1].
What do we know about f7

(1) f is trivially increasing, since |E| = 0~" we have that f(0) =0 and f(1) = ¢.

(2) Because E is a (9,t) set we know that f(z) > ¢-x for all z € [0, 1].

(3) Because we are in 2 dimensional Euclidean space, we can always cover a
Cp ball with C? smaller p balls and so our function satisfies f(z + Azx) <
f(x) 4+ 2Ax, i.e. is 2-Lipschitz.

All of these properties give us a range of ’admissable’ branching functions, which we
can represent in the following graph.
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FIGURE 25. An example of a branching function (blue). The two
known cases of an AD-regular set and a Well-spaced set bound an
admissible region in which the function can lie (red). The semi-well-
spaced case corresponds to any function lying above the green dashed
line.

Using this language we can define what a semi-well-spaced set is. A well spaced
set is formed on the graph with two lines of slope 2 and 0 which meet in the middle.
We then slightly weaken this to have two lines of slope 2 — s and s. Any branching
function above this new graph corresponds to a semi-well-spaced set. Ren and Wang
adapted the Fourier method to prove the Furstenberg conjecture in the semi-well-
spaced case.
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Now how does our multiscale argument interact with this branching function?
The branching function of E, corresponds to the branching function of £ on scales
[0,logs(p)]. Similarly, if B is a ball of radius p, then the branching function of
Ep corresponds to the branching function of E restricted to [logs(p), 1]. In essence
the multiscale argument splits our branching function into two pieces which we can
analyze separately.

In our graph this looks like splitting the graph into a left and a right part. The
left part corresponds to the branching function of F, and the right describes the
branching function of Eg. Because the branching function of Es can be recovered
from the two pieces by placing them side by side, we will call this the Concatenation
method. Let us work out an explicit example.

t,, -

log% | Ep|

logs p

Consider a branching function as above, by splitting at p corresponding to where
the two lines meet, we get

5\ "
0" =|Es| = |E,||Eg| = p" - (E)

Now let us try to estimate R(FEs, Tj) using this splitting. We already know that
R(Es,Ts) < R(E,,T,)R(Ep,Tp),
Now we have two scenarios that can happen depending on the values ¢, t5.

® 5 <1,y <2—s. In this case we can estimate both R(E,,T,) and R(Eg, Tp)
by the B bound in the theorem. This gives us

c o n (8NP0 F . .
R(E,, T))R(Ep, Tp) < p2p~> (;) (;) = 02072,
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where we used the equation for 6! we had above. This is exactly the bound
we want when t is in the B regime.

e 2— 5 <t and ty < s. Now when we bound R(E,, T,) we get the C' bound
of the theorem, and when we bound R(Eg, Tg) we get the A bound of the
theorem. This gives us

R(E,, T,)R(Eg,Tg) < p'™ 1> 2673,

Unfortunately, in this regime, we do not get the desired bound.

What can we learn from this? We can assume from the start that s <t <2 —s, so
that we are in scenario B. When we split our branching function in pieces, we want
each piece to be in scenario B, and we want to be able to analyze each piece. So we
want each piece to be in scenario B, and we want each piece to be either AD regular
or semi-well-spaced.

The last argument of the theorem is then to show that such a decomposition is
always possible.

Lemma 24.5. If f :[0,1] — R is 2-Lip, increasing with f(1) =t, f(x) >t -z and
s<t<2—s.

Then there is a decomposition [0,1] = | |I (plus some tiny leftovers) where on each
interval I either

e f is almost linear with slope t;, s <t; <2 — s.
o f is semi-well-spaced.

We do not show the full proof here, but an interesting tool used here is the
Radamacher theorem. Because our function is 2-Lipschitz our function must be
differentiable almost everywhere. Thus as we split into smaller and smaller pieces,
our pieces will look more and more like constant slope functions, i.e. the AD-regular
case. We then use the semi-well-spaced case to get rid of the slopes that are outside
our range.

This lemma was the last tool in our outline and finishes our sketch of the proof of
the Furstenberg conjecture.
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