
PROJECTION THEORY NOTES 

Given a set or measure in Euclidean space, we consider its projection onto many 
different subspaces. Informally, we study an object by looking at its shadows in many 
different directions. How do the features of the object compare with the features of 
the shadows? If many shadows are highly concentrated, is the original object highly 
concentrated too? This type of question connects geometry and harmonic analysis 
and combinatorics. 

Understanding this type of question has applications in number theory, homoge-
neous dynamics and harmonic analysis. Some of these connections were just found 
recently. Seeing all the connections between projection theory and other areas was 
one motivation to teach this class. 

One of the fundamental problems in the subject is called the exceptional set prob-
lem. It is a quantitative version of the question from the first paragraph: If many 
shadows are highly concentrated, is the original object highly concentrated too? This 
question was introduced in the 1960s. It was fully answered in 2024 by Orponen-
Shmerkin-Ren-Wang. This breakthrough was a second motivation to teach this class. 

The full proof of Orponen-Shmerkin-Ren-Wang is quite complex, and we won’t 
study every detail, but we will introduce the background and describe the main new 
ideas. 

In the class, we will introduce projection theory, learn some classical methods, 
explore how it connects to other areas, and study some recent developments. 

Acknowledgements. Thanks to Pablo Shmerkin, who visited for a month dur-
ing this class, shared his insights on many topics, and guest taught several lectures. 
Thanks to everyone in the class for helping write the notes and for many helpful 
questions. Thanks to Jacob Reznikov for making the beautiful figures in these notes. 
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1. Introduction and overview 

Tuesday Feb 4 
In 18.156 this spring, we will study projection theory. Projection theory studies 

how a set X behaves under different orthogonal projections. Questions of this type 
aren’t usually emphaisized in the graduate analysis curriculum, but they come up in 
many areas of math, including harmonic analysis, analytic number theory, additive 
combinatorics, and homogeneous dynamics. It is an especially good time to study 
projection theory, because there have been some striking recent applications, and 
because one of the central problems of the field was very recently solved. At the 
same time, there are many interesting open problems which I am excited to discuss 
and reflect on. 

The goals of the course are: 

• Learn the classical techniques and results of projection theory (with full de-
tails). 

• Learn about applications in several areas. 
• Learn about open questions. 
• Learn some of the main ideas in the recent work in the field. Level of detail 
will depend on everyone’s interest. 

1.1. What is projection theory? Suppose that we have a set X ⊂ Rn . For any 
subspace V ⊂ Rn , let πV : Rn → V denote the orthogonal projection. Projection 
theory studies the relationship between the properties of the set X and the properties 
of the projections πV (X) as V varies among k-dimensional subspaces. Informally, 
we are looking at X from many different points of view and trying to coordinate the 
different information. 

The most basic question concerns the cardinality of X and the cardinality of πV (X) 
for different sets V . Suppose that X is a finite subset of R2 , and write |X| for the 
cardinality of a finite set. For almost every line L, |πL(X)| = |X|, but there could 
be some special lines L where |πL(X)| < |X|. For any number S < |X|, let ES(X) 
be the set of lines L with |πL(X)| ≤ S. The first question of projection theory is: 

Question 1. Suppose X ⊂ R2 is a finite set and S < |X|. Given |X| and S, what 
is the maximum possible size of ES(X)? 

A key example, suggested by Erdős, is when X is an integer grid. In this case, 
when the slope of L is a rational number of small height, |πL(X)| is small. Erdos 
conjectured that this example is the worst possible up to a constant factor, and in 
the early 1980s, Szemeredi and Trotter proved this conjecture. 

Theorem 1.1. (Szemeredi-Trotter 1982) If X is a finite subset of R2 , and S < 1
2 |X|, 

then 
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|ES(X)| ≤ CS 2|X|−1 + 1. 

The proof of the Szemeredi-Trotter theorem uses topology, and it started an in-
teresting interaction between combinatorial geometry questions and topology. 

There are many variations of this question. For finite sets X, we can consider 
higher dimensions Rn . Or we can consider other fields, like X ⊂ Fn

q where Fq is a 
finite field with q elements. Many of these questions are open. 

We can also consider infinite sets X. This angle was taken in geometric measure 
theory, where the size of an infinite set is measured using Hausdorff dimension. We 
write HD(X) for the Hausdorff dimension of X. The question was first considered 
by Marstrand in the 1950s. He proved the following theorem. 

Theorem 1.2. (Marstrand, 1954) Is X ⊂ R2 is a compact set, then for almost every 
line L, 

HD(πL(X)) = min(HD(X), 1). 

The lines L where HD(πL(X)) < min(HD(X), 1) are called exceptional directions. 
Our second main question is to estimate the size of the set of exceptional directions. 
We let Es(X) be the set of lines L where HD(πL(X)) < s. 

Question 2. Suppose X ⊂ R2 and s < HD(X). Given HD(X) and s, what is the 
maximum possible Hausdorff dimension of Es(X)? 

This second main question is called the exceptional set problem (for Hausdorff 
dimension). It is a geometric measure theory analogue of the first main question 
above, where size is measured by Hausdorff dimension instead of cardinality. In 
the 60s and 70s Kaufman and Falconer studied this question. Kaufman proved 
some results using a double counting argument, greatly simplifying the proof of 
Marstrand’s theorem. And Kaufman and Falconer proved other results using Fourier 
analysis. These are the first fundamental results in the field. They are interesting 
and useful, but they don’t give the full answer to Question 2. Nevertheless, no one 
improved on these results for about twenty years. 

Furstenberg introduced a generalization of the exceptional set problem, which is 
called the Furstenberg set conjecture. Furstenberg was motivated by a question 
related to ergodic theory. Later Tom Wolff studied the exceptoinal set problem and 
the Furstenberg set conjecture. Wolff was motivated by the Kakeya conjecture and 
by other problems in geometric measure theory. Wolff studied the proof of Theorem 
1.1 and tried to adapt the topological methods there to Question 2. He was able 
to prove some interesting estimates and he even applied them to prove some new 
estimates for the wave equation. But he was not able to prove any new estimates for 
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Question 2 itself. Wolff identified a key obstacle to addressing the exceptional set 
problem: the answer is different over C2 compared to R2 , but most methods do not 
distinguish these two problems. Similarly, the projection problem in F2

q is different 
depending on whether q is prime or not prime. 

Around 2000, Bourgain proved the first estimates in projection theory that dis-
tinguish between R2 and C2 . However, Bourgain’s proof improves the previous ex-
ponents only by a tiny number . For the next twenty years, the bounds in the 
exceptional set problem were only tiny improvments of the old bounds of Kaufman 
and Falconer. But very recently, Question 2 was answered completely by Orponen, 
Shmerkin, Ren, and Wang. 

Theorem 1.3. (Orponen-Shmerkin-Ren-Wang) If X ⊂ R2 , and s < HD(X), then 

HD(Es(X)) ≤ max(2s − HD(X), 0). 

The bound here is the natural analogue of the Szemeredi-Trotter theorem in the 
setting of Hausdorff dimension. There are many variations on this question too, and 
many of them are open. The field is developing rapidly. 

1.2. Applications of projection theory. We will survey several applications of 
projection theory. For each topic, we will introduce and motivate the topic and see 
how it connects with projection theory. We will prove something about each topic 
but not necessarily the strongest results. 

Sieve theory. Projection theory is closely parallel to some topics in sieve theory. 
Suppose now that X ⊂ Z. For any integer q, let πq : Z → Z/qZ be the quotient map, 
which takes an integer n and outputs n mod q. Sieve theory studies the relationship 
between the properties of the set X and properties of πq(X) for different q. 

Here is a sample result in sieve theory. One interesting example in sieve theory 
is the set of square numbers, which we denote as S. For every prime p, |πp(S)| = 
p+1 
2 ≈ p 

2
. Linnik proved that if X ⊂ {1, ..., N} and |πp(X)| ≤ p+1 

2 for every prime p, 
then |X|  N1/2 . The set of square numbers up to N shows that Linnik’s theorem is 
tight. The only known tight examples are close cousins of the square numbers, and 
it is an important open problem to understand whether there are other examples. 

Another important direction in sieve theory is to understand how prime numbers 
are distributed modulo q for different q. Let Px denote the set of prime numbers up 
to x. Dirichlet proved in the early 1800s that if q is fixed and x → ∞, then Px is 
evenly distributed modulo q among the residue classes that are relatively prime to 
q. Dirichlet’s method only works when q is far smaller than x – the exact statement 
is messy but q needs to be smaller than x for any  > 0. On the other hand, 
it is conjectured that for every q ≤ x1− , the prime numbers are evenly distributed 
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modulo q. The generalized Riemann hypothesis would imply that the prime numbers 
are evenly distributed modulo q for every q ≤ x1/2− . 

Sieve theory leads to equidistribution results that hold for most q. In particular, 
Bombieri-Vinogradov proved that for almost all q ≤ x1/2− , the primes are evenly 
distributed modulo q. The point of sieve theory here is that we consider πq(Px) for 
many different q and how these different “projections” are related to each other. 

One important problem in this area is to try to understand the distribution of Px 

mod q for most q when q > x1/2 . Yitang Zhang proved the first results of this kind 
in his proof of bounded gaps between primes. We will introduce this problem and 
some of the issues that make it difficult. 

There is a close analogy between classical methods in projection theory and clas-
sical methods in sieve theory. Orthogonal projections πV : Rn → V and reduction 
modulo q, πq : Z → Z/qZ are both homomorphisms of Abelian groups. Much of 
projection theory only really depends on this homomorphism structure and so there 
are closely parallel results in the two settings. In particular, Falconer’s work in pro-
jection theory (based on Fourier analysis) is closely analagous to the ‘large sieve’ 
method developed by Linnik and used by Bombieri-Vinogradov. And Kaufman’s 
work in projection theory (based on double counting) is closely analogous to the 
‘larger sieve’ method developed by Gallagher. 

Sum-product problems. Suppose that A is a finite set of a field F, such as 
R or Fp. We write A + A for the set of sums {a1 + a2 : a1, a2 ∈ A} and we write 
A · A for the set of products {a1a2 : a1, a2 ∈ A}. Erdos raised the question whether 
max(|A + A|, |A · A|) must be much bigger than |A|. He conjectured that for any 
set A ⊂ R, max(|A + A|, |A · A|)  |A|2− , and Erdos and Szemeredi proved that 
there is some c > 0 so that max(|A + A|, |A · A|)  |A|1+c . Elekes connected the sum 
product problem to the Szemeredi-Trotter theorem and used the latter to prove a 
bound with a much better exponent: max(|A + A|, |A · A|)  |A|5/4 . 

Ever since Elekes’s work, there has been a close connection between sum product 
problems and projection theory. This connection has been a two way street. Initially, 
Elekes used ideas from projection theory to prove new bounds in sum product theory. 
But the work of Bourgain and the recent work of Orponen-Shmerkin-Ren-Wang goes 
in the other direction, proving results in sum product theory first and then applying 
the results to projection theory in general. 

Bourgain and Gamburd went on to apply these ideas in sum product theory to 
questions about random walks on finite groups such as SL2(Fp). Suppose that 
g1, ..., gk are a set of generators of SL2(Fp) where we imagine that k = O(1) and 
p is large. This set of generators determines a random walk on the group SL2(Fp). 
Bourgain and Gamburd showed that, under fairly mild conditions on the generators, 
this random walk mixes very fast. 
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Homogeneous dynamics. The setting of homogeneous dynamics is a homoge-
nous space such as SLn(R)/SLn(Z). This homogeneous space can be viewed as 
the space of lattices in Rn . It comes up in many problems in number theory. If 
H ⊂ SLn(R) is a Lie subgroup, and x ∈ SLn(R)/SLn(Z), then we can consider the 
orbit Hx ⊂ SLn(R)/SLn(Z), and we can ask how this orbit is distributed. If H is a 
unipotent subgroup, then there is a very rigid classification theorem due to Ratner, 
building on special cases proven by Dani and Margulis. Ratner’s theorem says that 
either the orbit Hx is dense and evenly distributed, or else there is a very specific 
algebraic structure that describes the orbit. 

Recently, Lindenstrauss and Mohammadi returned to this question and worked on 
proving good quantitative bounds in Ratner’s theorem. So far, they were able to do 
so in some special cases. One of their key new ideas is to connect these problems in 
homogeneous dynamics with projection theory. 

We will introduce this area, motivate the question, and learn how projection theory 
enters the story. 

Those are all the applications that we had time to discuss in the class, but in this 
introduction, we briefly mention a couple of others. 

Imaging. Projection theory also comes up in different imaging technologies, from 
CAT scans to Cryo-electron-microscopy. In these settings, one tries to reconstruct a 
set X or function f from some information about its projections. Some of the math 
involved involved in imaging technology is related to the math in this course. In 
particular, imaging technology makes use of the close connection between projection 
theory and Fourier analysis. 

Fourier analysis. Projection theory has a close connection with Fourier analysis. 
Philosophically, projection theory is closely related to additive structure: the key 
feature of a projection πV : Rn → V is that it is a group homomorphism of abelian 
groups. Fourier analysis is also closely related to the additive structure of Rn: in 
Fourier analysis we study the characters of an abelian group. This leads to nice 
formulas relating projections and Fourier transforms. We will use Fourier analysis 
in our study of projection theory. 

Recent work in Fourier analysis, especially related to decoupling theory, is closely 
related to projection theory, and ideas have gone in both directions. 
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2. Fundamental methods of projection theory 

Thursday Feb 6 
In this lecture, we introduce two fundamental methods for proving estimates in 

projection theory: the double counting method and the Fourier method. 
These methods are cleanest in the setting of finite fields, so we begin with that 

case. 
We write Fq for the finite field with q elements. Our projections will be a set of 

linear maps F2
q → Fq. For each θ ∈ Fq, we define πθ : F2

q → Fq by 

(1) πθ(x1, x2) = x1 + θx2 

Consider the following setup. 
Setup. 

X ⊂ F2 
q 

D ⊂ Fq (set of directions) 

S = S(X, D) := max 
θ∈D 

|πθ(X)|. 

The first example of a set which has many small directions is an integer grid. 

Example 1. (Integer grid example) For simplicity suppose that q = p is prime. 
Write [N ] for {1, ..., N}. For some N ≤ p, define 

X = {(x1, x2) : x1, x2 ∈ [N ]} 

For some A ≤ p, define 

D = {a1/a2 : a1, a2 ∈ [A]} 

If θ ∈ D, and (x1, x2) ∈ X, we have 

πθ(x1, x2) = 
a2x1 + a1x2 

a2 
. 

Therefore, |πθ(X)|  AN . So we get 

S(X, D) ∼ max(AN, p). 

The configuration is interesting when S ≤ p/2. In this case, we have S ∼ AN and 
so 
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(2) |D| ∼ 
S2 

|X| 
This example generalizes to any finite field Fq (or any field). But when q = pr 

with r > 1, there is also a more dramatic example based on the subfields of Fq. We 
illustrate this in the case q = p2 . 

Example 2. (Subfield example) Suppose that q = p2 with p prime. Define 

X = F2 
p ⊂ F2 

q 

D = Fp ⊂ Fq 

If θ ∈ D, and (x1, x2) ∈ X, then we have πθ(x1, x2) = x1 + θx2 ∈ Fp. So |πθ(X)| ≤ p. 
So |X| = p 2 = q, |D| = p = q 1/2 , and S = S(X, D) = p = q 1/2 . 
Comparing with Example 1, we see that |D| is much larger than S2 

|X| . 

Over Fp, there is no known example more dramatic than the integer grid example. 
In fact, all known examples with many small projections are small variations of the 
integer grid example. This leads to the following conjecture. 

Conjecture 2.1. Suppose X ⊂ F2
p, D ⊂ Fp, and S = maxθ∈D |πθ(X)|. If S ≤ p/2, 

then 

|D|  
S2 

|X| 
Here we need S ≤ p/2 because for any sets X, D, we always have S ≤ p. If S = p, 

then we cannot get any information about |D|, |X|. For fields Fq, I have not seen 
a conjecture written down anywhere, but informally it is expected that the extreme 
examples are minor variations on Examples 1 and 2. 

We will prove two fundamental estimates about projection theory in F2
q. The 

proofs of these results introduce two main techniques that we will use repeatedly: 
double counting and the orthogonality / Fourier method. 

Theorem 2.2. (Double counting) Suppose X ⊂ F2
q, D ⊂ Fq, and S = maxθ∈D |πθ(X)|. 

If S ≤ |X|/2, then 

|D|  S 

Theorem 2.3. (Orthogonality/ Fourier) Suppose X ⊂ F2
q, D ⊂ Fq, and S = 

maxθ∈D |πθ(X)|. If S ≤ q/2, then 
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|D|  
Sq 
|X| 

. 

Remark. When S = q/2, or when S ∼ q, Theorem 2.3 matches the grid example 
and it is sharp. Theorem 2.3 is also sharp for the subfield example. If q = p, then 
whenever S is much less than q, Theorem 2.3 does not appear to be sharp. And even 
if q = p2 , there are many values of S, |X| where Theorem 2.3 does not appear to be 
sharp. 

These theorems give interesting bounds but they don’t give a complete picture 
of projection theory over F2

q. In part, this is because the techniques that we study 
today don’t distinguish prime fields from non-prime fields, but the optimal projection 
estimates do depend on whether the field is prime. It is fairly difficult to prove bounds 
going beyond these two theorems, and we will return to that later in the course. 

2.1. Double Counting. 

Proof of Theorem 1. We will apply double counting to the set 

(∗) := {θ ∈ D, x1 = x2 ∈ X : πθ(x1) = πθ(x2)} 
(Note on notation: here x1, x2 are points in X, not components of a vector.) 
We call (∗) the set of coincidences. The idea of the proof is as follows. If there are 

many directions θ where πθ(X) is small, then there must be a lot of coincidences. 
But for any x1 = x2 ∈ X, there is only one direction θ so that πθ(x1) = πθ(x2), and 
so there can’t be that many coincidences. 

If θ ∈ D, then we have |πθ(X)| ≤ S ≤ |X|/2. Therefore, using Cauchy-Schwarz, 
we get 

#{x1 = x2 ∈ X : πθ(x1) = πθ(x2)}  S 

 
|X| 
S 

 2 

. 

(Details of this argument are on the first problem set.). And so 

(∗)  |X|2 S−1|D|. 
On the other hand, for each x1 = x2 ∈ X, there is only one direction θ so that 

πθ(x1) = πθ(x2), and so 

(∗) ≤ |X|2 . 
All together we have 

|X|2 S−1|D|  (∗)  |X|2 , 
and so |D|  S.  



PROJECTION THEORY NOTES 11 

2.2. Orthogonality / Fourier method. 

Proof of Theorem 2.3. The fibers of the map πθ are parallel lines in F2
q. So if |πθ(X)| ≤ 

S, then we can cover X using at most L lines coming from fibers of πθ. 
Recall that for each θ ∈ D, |πθ(X)| ≤ S. Let Lθ be a set of S fibers of πθ which 

covers X. Let L = ∪θ∈DLθ. Note that 

|L| = |D|S. 
If L is a line in F2

q, we write L(x) for the characteristic function of L. We define 

f(x) = 
 

L∈L 

L(x) 

Notice that for each x ∈ X, 

f(x) = |D|. 
We will estimate the function f using orthogonality. To do that, we first break up 

each function L as a constant function plus a mean zero part: 

(3) L(x) = 
1 
q 

L0(x) 

+ L(x) − 
1 
q   

Lh(x) 

Here L0(x) = 1/q is the mean value of L(x), and so Lh(x) has mean zero. (The 
mean value of a function g : Fd

q → C is 1
qd 


x∈Fd 

q 
g(x).) We can break up f in a 

similar way: 

(4) f(x) = 
 

L∈L 

L(x) = 
|L| 
q 

f0(x) 

+ 
 

L∈L 

Lh(x)    
fh(x) 

The constant function f0 is very simple to understand. Since |L| = SD, and since 
we assumed S ≤ q/2, we have f0(x) ≤ |D|/2. Now for every x ∈ X, f(x) = |D|, and 
so 

|fh(x)| ≥ |D|/2 for all x ∈ X 

The key point is that the functions Lh(x) are essentially orthogonal, and we can 
use this to estimate the function fh. We state the orthogonality as a lemma. 



12 PROJECTION THEORY NOTES 

Lemma 2.4. If L1, L2 are two different lines in F2
q, then  

x∈F2 
q 

L1,h(x)L2,h(x) ≤ 0. 

Using Lemma 2.4, we can bound the L2 norm of fh:  

x∈F2 
q 

|fh(x)|2 = 
 

L1,L2∈L 

 

x∈F2 
q 

L1,h(x)L2,h(x) ≤ 

L∈L 

 

x∈F2 
q 

|Lh(x)|2 . 

For each line L, we can compute 
 

x ∈F2
q 
|Lh(x)|2 by hand. It is slightly smaller 

than 
 

x∈F2 
q 
L(x) = q. So all together we get the L2 bound 

(5) 
 

x∈F2 
q 

|fh(x)|2 ≤ |L|q 

Combining everything we have done so far, we see that 

|X||D|2  
 

x∈F2 
q 

|fh(x)|2 ≤ |L|q = |D|Sq 

Rearranging gives |D|  Sq 
|X| . 

 

Before we prove Lemma 2.4, we make some comments about the proof. Our 
bounds here are interesting when |L| is much larger than q. The key input is the L2 

estimate for fh in (5. When |L| is much bigger than q, then this estimate shows that 
x ∈F2

q 
|f0(x)|2 is much bigger than 

 
x ∈F2

q 
|fh(x)|2 . So f(x) is equal to a constant 

function f0 plus a perturbation fh, and for most x, |fh(x)| is much smaller than 
|f0(x)|. Informally, we could say that the function f(x) is almost constant. 
Looking back at the proof of our L2 estimate (5), the argument applies to any 

set of lines L. The crux of the matter is that if |L| is much bigger than q, and if 
f(x) = 

 
L∈L L(x), then f = f0 + fh where f0 is a constant function, and fh has 

small L2 norm. 
The key to the L2 estimate is the orthogonality in Lemma 2.4. Now we discuss 

the proof of Lemma 2.4. One simple proof is just to compute 


x∈F2 
q 
L1,h(x)L2,h(x). 

Recall that 

L1,h(x) = 

 
1 − 1/q x ∈ L1 

−1/q x /∈ L1 

We can now compute 
 

x∈F2 
q 
L1,h(x)L2,h(x). With a little algebra, we find 
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 

x∈F2 
q 

L1,h(x)L2,h(x) 

 
= 0 if L1, L2 are not parallel 

< 0 if L1, L2 are parallel 

The main case is when L1, L2 are not parallel. In this case something interesting 
is happening that causes the sum to be zero, and we should look for a conceptual 
explanation. One explanation comes from independence. After a change of coordi-
nates, we can assume that L1 is the vertical axis and L2 is the horizontal axis. In 
these coordinates, L1,h only depends on x1 and L2,h only depends on x2, and so L1,h 

and L2,h are independent. Therefore, 

 

x∈F2 
q 

L1,h(x)L2,h(x) = 

⎛ ⎝ 
2 

x∈F q 

L1,h(x)

⎞⎠ 

⎛ ⎝ 
2 

x∈F q 

L2,h(x)

⎞ ⎠ = 0 · 0 = 0. 

Another conceptual explanation comes from Fourier analysis. We now pause to 
review the Fourier transform over finite fields, and then we use Fourier analysis to 
explain why L1,h and L2,h are orthogonal when L1, L2 are not parallel. 
Suppose that e : Fq → C∗ is a non-trivial homomorphism from the group F+ 

q to 

the group C∗ . If q = p is prime, then we can take e(x) = e 2πi
x 
p . 

If x, ξ ∈ Fd
q , we define the dot product x · ξ by 

x · ξ = x1ξ1 + ... + xdξd. 

If f : Fd
q → C, then we define its Fourier transform ˆ f : Fd

q → C by 

(6) f̂(ξ) := 
 

x∈Fd
q 

f(x)e(−x · ξ) 

With this setup, we can write down the two fundamental theorems in Fourier 
analysis: Fourier inversion and Plancherel. 

Theorem 2.5. If f : Fd
q → C, then 

f(x) = 
1

qd 

 

ξ∈Fd
q 

f̂(ξ)e(x · ξ) = 
1 
qd 
f̂(0)    

f0(x) 

+ 
1

qd 

 

ξ =0 

f̂(ξ)e(x · ξ)    
fh(x) 

Theorem 2.6. If f, g : Fd
q → C, then  

x∈Fd
q 

f(x)g(x) = 
1

qd 

 

ξ∈Fd
q 

f̂(ξ)ĝ(ξ) 



14 PROJECTION THEORY NOTES 

Let us now revisit how we broke up a function f as f0 + fh. Starting with Fourier 
inversion, we can write f as 

f(x) = 
1

qd 

 

ξ∈Fd
q 

f̂(ξ)e(x · ξ) = 
1 
qd 
f̂(0)    

f0(x) 

+ 
1

qd 

 

ξ =0 

f̂(ξ)e(x · ξ)    
fh(x) 

Since f̂(0) = 
 

q∈F dq 
f(x), we see that f0 is just the mean value of f(x). So this 

decomposition is the same one we used above in the proof of Theorem 2.3. We 
can think of f0 as the contribution of the zero frequency, and we think of fh as the 
contribution of the non-zero frequencies. The letter h stands for ‘high’, and we think 
of fh as the ‘high-frequency’ part of f . In general, for any function f , we can define 
fh as above, and we have 

f̂h(ξ) = 

 
f̂(ξ) ξ = 0 

0 ξ = 0 

The Fourier transform interacts in a nice way with lines, and more generally with 
affine subspaces. Suppose that P ⊂ Fd

q is an affine k-plane. We write P (x) for the 
characteristic function of P . We define P ⊥ as 

P ⊥ = {ξ ∈ Fd 
q : (x1 − x2) · ξ = 0 for all x1, x2 ∈ P }. 

(Here the vector x1 −x2 is tangent to P , and so P ⊥ is the set of vectors perpendic-
ular to P . Note that P is affine, so it may not contain 0, whereas P ⊥ is a subspace, 
and it does contain 0.) 

Lemma 2.7. If P (x) is the characteristic function of an affine k-plane in Fd 
q , then 

|P̂ (ξ)| = 

 
q k ξ ∈ P⊥ 

0 ξ /∈ P⊥ 

The proof of Lemma 2.7 is on the first problem set. The main point is that when 
P is an affine plane, then P̂ (ξ) = 

 
x∈P e(−x · ξ) is a geometric series, and so we can 

sum it exactly. For most ξ, the geometric series sums to zero because of symmetry. 
Using Fourier analysis, we can now give another proof that when L1, L2 are not 

parallel, then L1,h and L2,h are orthogonal. By Plancherel, we have  

x∈F2 
q 

L1,h(x)L2,h(x) = 
1

qd 

 

ξ∈F2 
q 

L̂1,h(ξ)L̂2,h(ξ) = 
1

qd 

 

ξ =0 

L̂1(ξ)L̂2(ξ) 
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But by Lemma 2.7, the support of ˆ L1 is L⊥ 
1 and the support of ˆ L2 is L⊥ 

2 . Since 
the two supports intersect only at ξ = 0, our last sum is zero. 

To summarize, ˆ L1,h and ˆ L2,h have disjoint supports, and so L1,h and L2,h are 
orthogonal. 

Remark. We don’t necessarily need Fourier analysis to prove Theorem 2.3, but in 
some further developments the Fourier analysis is helpful. For instance, if we want 
to generalize Theorem 2.3 to higher dimensions, the Fourier analysis point of view 
is important. You will explore this on the first problem set. 

2.3. Projection theory for balls in Euclidean space. Next we will start to 
study projection theory in Euclidean space. We will consider the projections of a set 
of unit balls in Euclidean space, and we will adapt our two fundamental methods to 
that setting. There is a new issue that appears for balls in Euclidean space, which 
has to do with how the balls are clustered. In this lecture, we start to set up our 
problems in the context of balls in Euclidean space, and we see how the clustering 
comes into play. 

In this section, for a set X ⊂ Rd , we write |X| for the d-dimensional measure of 
X. 

Setup 
Suppose that X is a set of disjoint unit balls in BR ⊂ R2 . 
Suppose that D is a finite set in S1 , which is 1/R-separated. 
Define S(X, D) = maxθ∈D |πθ(X)|, the maximal 1-dimensional measure of πθ(X). 

Here we suppose that the directions in D are 1/R-separated because otherwise the 
projections would be essentially equivalent. 

Next we can consider some examples. There is an integer grid example which is 
analogous to the one we mentioned in finite fields. 

Example 1. (Widely spaced integer grid example) 
We let X be an N × N grid of unit balls in BR 

2 , spaced as widely as possible. The 
centers of the balls lie on the lattice R 

N Z × R 
N . 

We choose a parameter A ≤ R, and we let D be the set of directions with slope 
in the set {a1/a2 : a1, a2 ∈ [A]}. 

By a similar analysis to the one in finite fields, we see that 

S(X, D) ∼ max(AN, R). 

The configuration is interesting when S ≤ R/2. In this case, we have S ∼ AN 
and so 
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(7) |D| ∼ 
S2 

|X| 

Notice that the numerology of Example 1 in the setting of balls exactly matches 
the numerology for the integer grid in F2

p. 
We recall that for projection theory in F2

q, there were interesting examples related 
to subfields of Fq. The field R does have subfields, such as the field of rational 
numbers. However, these subfields do not lead to interesting sets of unit balls in BR. 
I think that the issue is that Q is not closed. To get a set of unit balls, we might 
take the 1-neighborhood of Q × Q, but that is all of R2 . 

But there is a new phenomenon for projection theory of balls in Euclidean space 
which has to do with clustering. As a second example, we consider a tightly clustered 
set of balls. 

Example 2. (Clustered example) 
For some N ≤ R, we let X be a set of ∼ N2 disjoint unit balls in BN ⊂ BR. We 

have |X| ∼ N2 

Now for every direction θ, we have |πθ(X)|  N . 
So we can let D be a maximal set of 1/R separated directions, so |D| ∼ R, and 

we can take S = 2N . 
Plugging in, we find that |D| is much larger than S2

|X| ∼ 1. And so this example is 
more extreme than Example 1. 

The new theme in this setting is that projection estimates depend on how much X 
is clustered. It turns out that it is important to consider both how X is clustered and 
how D is clustered. We can quantify the clustering of X and D with the following 
definitions. 

We write B(c, r) for the ball with center c and radius r. For any 1 ≤ r ≤ R, we 
define 

(8) NX (r) = max 
c∈BR 

|X ∩ B(c, r)| 

We write γ for an arc of S1 , and |γ| for its length. For any ρ ∈ [1/R, 1], we define 

(9) ND(ρ) = max 
|γ|=ρ 

#(D ∩ γ) 

Our goal will be to prove projection estimates that depend on the functions NX (r) 
and ND(ρ). 
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In the next lecture we will work out analogues of Theorem 2.2 and Theorem 2.3 
for balls in R2 . The main idea will be to adapt the methods we used today in order 
to take account of clustering information from NX (r) and ND(ρ). 
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3. Projection theory for balls in Euclidean space 

Tuesday February 11 
In this lecture, we develop the tools from the last lecture in the more geometric 

setting of Euclidean space. 
We first introduced our main tools in the setting of finite fields, where the technical 

details are simple. Now we adapt these tools to Euclidean space. Euclidean space 
has many different scales. We have to take into account many different scales in 
order to even ask good questions in Euclidean space. Paying attention to multiple 
scales will go on to be one of the key ideas in the subject. 

We suppose that X is a set of disjoint balls in Euclidean space, and study the 
orthogonal projections of X in different directions. Here is the precise setup. 

SETUP 
Let X be a set of disjoint unit balls in BR ⊆ R2 . Let D ⊂ S1 be a set of 1/R 
separated directions. 

S = S(X, D) = max 
θ∈D 

|πθ(X)|. 

NX (r) = max 
c∈R2 

|X ∩ B(c, r)|. 

ND(ρ) = max 
σ∈S arc 
|σ|=ρ 

|D ∩ σ|. 

Double Counting 

Theorem 3.1. (Double Counting Real Version) 
If SETUP, then 

|D|  
S 
|X| 

 

1≤r≤R 

NX (r)ND(1/r). 

Proof. 
∗ = #{B1, B2 unit balls ∈ X, θ ∈ D : πθ(B1) ∩ πθ(B2) = ∅}.

Lower bound: ∗  |D| 
 

|X| 
S 

 2 
S. It basically follows from the same argument as in 

the finite field setting. 
Upper bound: Fix B1, B2 with dist(B1, B2) ∼ r, let c(B1), c(B2) be the center of B1 

and B2. Write 

v = 
c(B2) − c(B1) 
|c(B2) − c(B1)| 

to be the angle from B1 to B2. (see Figure 1) If πθ(B1) ∩ πθ(B2) = ∅, then 
angle(θ, γ)  1/r. Thus, 

#{θ : πθ(B1) ∩ πθ(B2)}  ND(1/r). 
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B1 

B2 

v 

Figure 1. Angle between two balls 

#{B1, B2 ∈ X : dist(B1, B2)  r}  |X|NX (r). 

Thus, 

∗  
 

r dyadic 
1≤r≤R 

|X|NX (r)ND(1/r) 

so 
|X|2 S−1 D  ∗  

 

r dyadic 
1≤r≤R 

|X|NX (r)ND(1/r). 

 

Example 3.2. For NX (r), 

(1) X neighborhood of a curve. (see Figure 2a) 

NX (r) ∼ r 

(2) Well-spaced N × B grid. (see Figure 2b) 

NX (r) = 

 
1 r ≤ R/N 

r 2 N2 

R2 r > R/N 

(3) A cluster of N2 unit balls (see Figure 2c) 

NX (r) ∼ 

 
r 2 r ≤ N 

N2 r > N 

Pictures of How Nr(X) depends on r (see Figure 3) 

Normalize N = R1/2 . 
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X 

BR 

(a) A neighborhood of a 
curve. 

R 
N 

(b) A well-spaced grid. 

N R 

(c) A cluster of balls. 

Figure 2. Examples for NX (r). 

0 0.2 0.4 0.6 0.8 1 
0 

0.2 

0.4 

0.6 

0.8 

1 

A 

B 

C 

logR r 

logR NX (r) 

Figure 5 

Figure 3. Plots of Nr(X) vs r. 

Straight Line Case 

|X| = R α , NX (r) ∼ r α 

We call this regular α dim spacing. 
Below Straight Line Case 

|X| = R α , NX (r)  r α 

We call this α dim spacing. 

Definition 3.3. We say that X has Hausdorff spacing if it has α dimension spacing 
for some α. Another way to say this is that 

NRβ (X)  |X|β 

for any 0 ≤ β ≤ 1. 
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Corollary 3.4. (Double Counting Real Version) 
If SETUP X, D has Hausdorff spacing then 

|D|  log R(|S| + 
|S| 
|X|

|D|) ⇒ (S ∼ X or |D|  S). 

Proof. Let’s calculate NX(r)ND(1/r). Suppose r = Rβ , the Hausdorff condition 
implies 

NX(R β)ND(R
−β)  |X|β|D|1−β 

Thus, by theorem 3.1, 

|D|  log R 
|S| 
|X| 

max 
0≤β≤1 

|X| β|D|1−β  log R(|S| + 
|S| 
|X|

)|D|. 

 

Recall the theorem in the finite field case. 

Theorem 3.5. If X ⊆ F2 
q, D ⊆ Fq, S = maxθ∈D |πθ(X)| then S ∼ |X| or |D|  S. 

Note that in the R setting if we impose the Hausdorff spacing condition, then we 
get basically the same result as in the finite field case. 
Now let’s compare result in projection theory in F2

q vs unit balls in B2 
R with Hausdorff 

spacing. 

Theorem 3.6. (Fourier Method Finite Field) If Fq-SETUP and S ≤ q/2, then 

|D|  
Sq 
|X| 

. 

Corollary 3.7. If R-SETUP and X, D has Hausdorff spacing. Then, |D|  SR 
|X| 

Conjecture 3.8. If p primes, Fp SETUP and S ≤ 1
2 min(q, |X|) then 

|D|  
|S|2 

X 

Conjecture 3.9. (Furstenberg) If SETUP, X and D has Hausdorff spacing and 

S ≤ R− min(R, |x|), 

then 

|D|  
|S|2 

|R| 
. 

The above conjecture is proven in 2024 by (Orponen, Shmerkin, Ren and Wang) 
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3.1. Fourier Method. 

Lemma 3.10. (Main lemma in finite field) 
If L is a set of lines in F2 

q. Write f = 
 

L∈L 1L(x). Then, f = f0 + f1 so suppf̂0 = 

{0}, suppf̂h = {0}c . Then, f0 is a constant function. Then, f02 
2 = |L|2 , fh2 

2 = 
|L|q. 

Now, let’s look at the R setting. Let T be a set of 1×R in R2 . Let φT be a smooth 
approximation of 1T . 

Lemma 3.11. (Main lemma in real) 
Let T be a set of 1 × R rectangles in R2 . Let f = 

 
T ∈T φT (x). Then, 

f = 
 

1≤r≤R 
dyadic 

fr(x) 

such that suppf̂r ⊆ B(1/r) and fr22  NT(r)|T|r−1R where 

NT(r) := max 
T̃ :2r×2Rrect 

#{T ∈ T : T ⊂ T̃ }. 

Proof. (proof sketch of main lemma) 
suppφ̂T ⊂ T ∗ where T ∗ := {ξ ∈ R2 : |(x1 − x2) · ξ| ≤ 1, any x1, x2 ∈ T }. (see 
Figure 4)  

R 

1 

T 

X 
1 

1 
R 

T ∗ 

ξ 

Figure 4. The dual of a rectangle. 

Littlewood-Paley decomposition 
Write 1 = 

 
1≤r≤R 
dyadic 

ηr(ξ) with ηr ≥ 0 such that 

suppηr ⊆ Ann( 
1 
10r 

≤ |ξ| ≤ 
1 
r 
), 1 < r < R 
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and suppηR ⊆ B(1/R) and suppη1 ⊆ {ξ : |ξ| > 1/10}. Define fr = (ηrf̂)∨ so 

suppf̂r ⊆ B(1/r). In particular, we can write φT,r = (ηrφ̂T ) 
∨ 
. 

Visual of η̂r and φT,r 

We have ηr(ξ) ∼ 1 on Ann(1/r) and 

| ̌ηr(x)| ∼ 

 
1/r2 on |x|  r 

rapidly decay if |x| > r. 

(see Figure 5) where η̌r(x) = 
 
eix·ξηr(ξ)dξ. Note that 

 
η̌r(x)dx = ηr(0). As 

|X| 

r 
η̌r(x) 

Figure 5. Visual of radial component of η̂r.  
|η̌r(x)|dx = ηr(0), we have that f ∗ |η̌r(x)| ∼ Average of f on B(x, r). As 

φT,r = φT ∗ η̌1, we have |φT,r(X)| ∼ r−11r neighborhood of T . (see Figure 6) 

T 

r neighborhood of T 

Figure 6. A tube T and its r neighborhood. 
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Lemma 3.12. (Orthogonality) 
If T1, T2 are 1 × R tubes then |φT1,r, φT2,r|  R−1000 unless there exists T̃ , a R r × 
R1+ rectangle such that T1, T2 ∈ T̃ . 

Proof. (proof sketch) If angle(T1, T2)  R r 
R
, then supp ˆφT1,R ∩ supp ˆφT2,R = ∅. If 

Nr(T1) and Nr(T2) are disjoint, then  
φT1,r φT2,r = 

 
φT1 ∗ η̂rφT1 ∗ η̂r  R−1000 

as φT1 ∗ η̂r and φT1 ∗ η̂r have essentially disjoint support.  

L2 estimates 

fr 2 
2 =  

 

T ∈T 

φT,r  2 
L2 (10) 

= 
 

T1,T2 

φT1,r, φT2,r  (11) 

= 
 

T1∼rT2 

φT1,r, φT2,r  + neglible (12) 

≤ 
 

T1∼rT2 

φT,r  2 
2 + φT2,r  2 

2 (13) 

≤ Nr(T) 
 

T ∈T 

φT,r  2 
2 (14) 

= NT(r) 
 

T ∈T 

φT,r  2 
2 (15) 

= NT(r)|T|r−2 rR (16) 

where r−2 is the amplitude and rR is the area. 
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4. The Fourier method in Euclidean space 

Thursday February 13. 
In this lecture, we finishing developing the Fourier method for projection estimates 

in Euclidean space. 
Before we dive into the Fourier method in Euclidean space, let us overview the 

result in the case of finite fields. The main lemma used in the finite case is the 
following. 

Lemma 4.1 (Main Lemma 2F). If L is a collection of lines in F2
q, and L(x) is the 

characteristic function for L ∈ L, then we can decompose 

f(x) = 
 

L∈L 

L(x) 

as f = f0 + fh, where f0 = |L| 
q , f0 is orthogonal to fh, and 

||f0||2 
L2  |L|2 , ||fh||2 

L2  |L|q . 

Now one can use this lemma to get L2 bounds on f quite easily, we immediately 
get ||f ||2L2  ||f0||L2 + ||fh||L2 , however, there are easier ways to get this same bound. 

Lemma 4.2 (Elementary L2 bounds on f). We have ||f ||2L2  |L|q + |L|2 . 

Proof. We can directly compute 

||f ||2 
L2 = 

 

x∈F2 
q 

  

L∈L 

L(x) 

 2 

= 
 

x∈F2 
q 

  

L1,L2∈L 

L1(x)L2(x) 

 

= 
 

x∈F2 
q 

  

L1=L2∈L 

L1(x)L2(x) 

 

+ 

  

L1 =L2∈L 

L1(x)L2(x) 

 

Now different lines always meet at exactly one point, so 
 

x∈F2 
q 
L1(x)L2(x) = 1 for

L1 = L2. Thus we have 

||f ||2 
L2 ≤ 

 

x∈F2 
q 

  

L∈L 

L 2(x) 

 

+ 
 

L1 =L2∈L 

1 ≤ |L|q + |L|2 

 

One could then ask, isn’t the Fourier method then useless if we can arrive at the 
same norm bound in an easier way? And in some regimes, it is, if |L| ∼ q then the 
Main Lemma does not give us any extra information. However, in the case where 
|L|  q we not only get the L2 bounds, but we also get the extra piece of information 
the constant part, the zeroth frequency, of f , dominates the contributions to the 
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norm. We can interpret this information as asserting that f is in some sense ’almost 
constant’. The usefulness of this will become clear in the Euclidean case. 

2r 

2R 

T̃ 
T1 T2 T3 

We now recall the setup for the Fourier Method in Eu-
clidean Space. 

Setup 
Suppose that T is a set of 1 × R rectangles. 
Suppose that for each rectangle T ∈ T, ψt is a smooth 

approximation for 1T . 
Let f = 

 
T ∈T ψT and NT(r) = max ̃T |{T ∈ T : T ⊂ T̃ }| 

where T̃ ranges across all 2r × 2R rectangles, as can be seen 
in the diagram on the right. 

Lemma 4.3 (Main Lemma 2R). If the setup holds then we 
can decompose f as 

f = 
 

1≤r≤R 
r dyadic 

fr 

with fr (nearly) orthogonal to each other, and for each r, 

f̂r ⊂ B(1/r) and ||fr||2 
L2  |T|NT(r) 

R 
r 

Now again we can use this lemma to arrive at a quick L2 bound, simply adding up 
over r we get ||fr||2 

L2  
 

r dyadic |T|NT(r)
R 
r . But once again, there are easier ways to 

get this bound, which we will now show. 

For two tubes T1, T2 we will write r(T1, T2) to be the 
minimal r such that T1 and T2 are both contained 
in a 2r × 2R rectangle. 
A simple look at the geometry of the rectangles 
gives us the following lemma 

Lemma 4.4. For any two tubes T1, T2 we have  
T1(x)T2(x)dx ∼ 

R 
r(T1, T2) 

∼ 1 

∼ R 
r 

2r 

2R 

T̃ T1 T2 

In a similar way to the elementary bound in the finite case we can compute directly, 
we will use the previous lemma, and group the terms in the sum by r  

f 2 = 
 

T1,T2∈T 

 
T1(x)T2(x)dx = 

 

r dyadic 

 

T1,T2∈T 
r∼r(T1,T2) 

R 
r 
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Now fix r, for the first tube we have |T| choices and for the second we have at most 
NT(r) choices. This gives us  

r dyadic 

 

T1,T2∈T 
r∼r(T1,T2) 

R 
r 
= 

 

r dyadic 

|T|NT(r) 
R 
r 
. 

Once again we get the same L2 bound as from the Main Lemma. 
Thus we again find that the important part of the Lemma, isn’t just the L2 bound, 

its the extra information we get about the frequency structure of the function. We 
will want to think about this information in a particular way, which we will call the 
’locally constant intuition’. 

Intuition If suppĝ ⊂ B1/r then g ≈ constant on each Br. This intuitively should 
make sense, if suppĝ ⊂ B1/r then g is a combination of waves with frequency at 
most 1/r, since each wave is then approximately constant on any given Br then it is 
plausible that their combination is as well. 

Now to use this intuition in our setup let us consider the following diagrams 
fr f1 

r 

The left diagram shows us what happens in a setup where our f is dominated by 
some fr with r large, our function then is dominated by the scale r and we can see as 
expected by our intuition, that for most balls of radius r, our function is relatively 
constant. Furthermore, the locations where f is large will all look like the blob we 
have drawn in red, and they will have more geometric structure to exploit there. 

On the other hand when f is dominated by f1, it is dominated by high frequencies 
and it might look like the diagram on the right, here we have less points where f is 
large but they are more scattered and have less structure. 

Now let us formalize this intuition before using it with our main lemma. Consider 
a function g with suppĝ ⊂ B1/r, what can we say about it? Well in analysis there 
is often a specific way we deal with supports we know, and that is using a bump 
function. That is, let η be a compactly supported smooth function with η = 1 on 
B(1, r), then we have ˆ g = ˆ g · η and so applying inverse Fourier to this equation we 
get g = g ∗ ˇ η. We will need three important properties of of η̌. 
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• |η̌(x)|  r−2 , which comes from simple triangle inequality applied to the 
integral defining η̌. 

• |η̌(x)|  r −2( |x| 
r )

−1000 , which comes from integration by parts. 
• If η is radial, then ˇ η is also radial, which we will assume to be the case 
henceforth. 

Now we can use these two facts to get information about g. We define ψr := |η̌| and 
derive the following. 

Lemma 4.5. If suppˆ g ⊂ B1/r, then |g(x)| ≤ |g| ∗ ψr. 

Proof. We compute 

|g(x)| = |(g ∗ η̌)(x)| = 

    
g(y)η̌(x − y)

    ≤ 
 

|g(y)||η̌(x − y)| = |g| ∗ ψr 

 

Lemma 4.6. If suppĝ ⊂ B1/r, then |g(x)|2  |g|2 ∗ ψr. 

Proof. We again compute 

|g(x)| = |(g ∗ η̌)(x)|2 = 

   
g(y)η̌(x − y)

   2 

Now we write g(y)η̌(x − y) = (g(y)η̌(x − y)1/2) · (η̌(x − y)1/2) and apply Cauchy 
Schwarz to get     

g(y)η̌(x − y)

   2 

≤ 
 

(g(y)η̌(x − y)1/2)2 

 
(η̌(x − y)1/2)2 

= 
 
g(y)2 η̌(x − y) 

 
η̌(x − y) 

 (|g|2 ∗ ψr)(1) 

 

Back to our setup, we can now apply all these computations to improve our L2 

bound and derive the Euclidean version of theorem 2F. We recall our setup. 
Setup. X is a set of unit balls in BR ⊂ R2 . 
D ⊂ S1 is a set of directions, which is 1/R-separated. 
S = maxθ∈D |πθ(X)|. 
NX (r) = maxc∈R2 |X ∩ B(c, r)| and ND(ρ) = maxσ⊂S1 

|σ|=ρ 
|D ∩ σ|. 

We will use  to mean g(R, x) ≤ C log(R)f(R, x) for some constant C. 
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Theorem 4.7. If our setup holds then 

|D|  
SR 
|X| 

max 
r 

NX (r)ND(r/R) 
r2 

. 

Proof. First for all θ ∈ D we define Tθ to be the set of S different 1 × R tubes T at 
angle θ that cover X. We then set 

T = 
 

θ∈D 

Tθ f(x) = 
 

T ∈T 

ψT (x). 

Then for any x ∈ X we have |f(x)| ≥ |D| so we get the simple lower bound 

|D|2|X| ≤ 
 

X 
|f |2 

Now the upper bound will be a bit trickier, let us think again about the picture 
we had before, and notice that if our X set is quite spread apart, that is when NT(r) 
is small, then estimating 


X |fr|

2 by ||fr||2L2 will be quite a lossy comparison, we can 
do better. 

fr 

r 

X 

First we will use the fact that suppf̂r ⊂ B1/r to get  

X 
|fr|2 = 

 
1X |fr| 2 dx ≤ 

 
1X · (|fr|2 ∗ ψr)dx = 

  
1X (x)|fr|2(y)ψr(x − y)dydx 

Now let us assume that η and hence ψr are radial, then they are also symmetric, so 
this entire expression is symmetric with respect to swapping x and y. Hence we have  

X 
|fr|2 = 

 
|fr|2(x) 

 
1X (y)ψr(x − y)dydx = 

 
|fr| 2(x)(1X ∗ ψr)dx 

Now morally ψr is approximately r−21B1/r 
so we have that 1X ∗ψr  r−2NX (r). This 

then gives us  

X 
|fr|2  r−2 NX (r) 

 
|fr|2  

R|T|NT(r)NX (r) 
r3 

. 



30 PROJECTION THEORY NOTES 

Now let us estimate NT(r), for any fixed θ we know that the number of rectangles 
of size 1 × R that can fit inside a rectangle of size 2r × 2R is  r since no more can 
fit. The maximum angle (with respect to the large rectangle) that can fit is going to 
be  r/R, so as many as ND(r/R) different θ can count, hence we have a bound of 
NT(r)  rND(r/R). We thus have  

X 
|fr|2  

R|T|ND(r/R)NX(r) 
r2 

. 

We also have |T| = S|D| so putting it all together we have 

|X||D|2 ≤ 
 

1≤r≤R 
r dyadic 

 

X 
|fr|2  S|D|R 

 

1≤r≤R 
r dyadic 

ND(r/R)NX(r) 
r2 

≤ S|D|R log R max 
1≤r≤R 
r dyadic 

ND(r/R)NX(r) 
r2 

which we can rewrite into 

|D|  
SR 
|X| 

max 
1≤r≤R 
r dyadic 

ND(r/R)NX(r) 
r2 

 

Now this result looks a little ugly, so let us see what it looks like with the Hausdorff 
assumption we discussed last class. Recall that we say X has Hausdorff spacing if 
NX(R

β)  |X|β for all 0 ≤ β ≤ 1. If then X and D both have Hausdorff spacing 
then we have 

max 
1≤r≤R 
r dyadic 

ND(r/R)NX(r) 
r2 

∼ 1 + 
|X||D| 
R2 

Corollary 4.8. If the setup holds and X, D both have Hausdorff spacing then 

|D|  
SR 
|X| 

+ 
S|D| 
|X| 

. 

In particular either R  S or |D|  SR 
|X| . 

We will end off this section with a little bit of history about the Fourier and double 
counting method. 

Fourier Method History 
• 1940s - First use of Fourier method by Linnik in Sieve Theory. 
• 1970s - Fourier method use by Rot for the Heilbronn triangle problem. 
• 1980s - Falconer uses the method for geometric measure theory (what we are 
currently doing). 
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• Recently - Vinh used the Fourier method in the finite field setting. 

Double Counting Method History 

• 60s - Kaufmann uses double counting method for geometric measure theory. 
• 60s - Gallagher uses double counting method for Sieve theory. 

4.1. Sieve Theory. We will now move on to the study of Sieve theory, which as we 
will see is very similar to what we have done so far. 

We will be interested in studying the maps πq : Z → Zq := Z/qZ given by 
πq(x) = x mod q. These will play the role of our projections, in the sense that they 
are also group homomorphisms of Abelian groups. 

We will use [N ] to denote the set {1, ..., N} and we will study the projections of 
subsets of [N ]. 

Example Consider the set X = {n2 : 1 ≤ n ≤ N1/2} ⊂ [N ], we know from basic 
algebra that |πp(X)| = p+1 

2 for all primes p. This should seem unusual since we could 
have an extremely large set and yet all of its projections miss half of their co-domain. 
The natural next question is, how large can a set S be and still have this property? 

Theorem 4.9 (Linnik). If X ⊂ [N ], π p(X) ≤ p+1 
2 for all prime p then |X|  N1/2 . 

The only known sharp families for this theorem are square numbers and their close 
relatives, namely images of specific quadratic polynomials. 

Let us now begin analyzing this problem using the double counting method. 

Theorem 4.10 (1S). If X ⊂ [N ], D a set of primes less than N and for all p ∈ D 
we have that |π p(X)| ≤ S, then either |X| ≤ 2S or |D|  S. 

Proof. We start as usual by considering the set of coincidences 

(∗) = {x1, x2 ∈ X, p ∈ D : π p(x) = π p(x2)} 

by the same argument as usual we have the lower bound 

|(∗)| ≥ |D| 
 
|X| 
S 

 2 

= |X|2|D|S−1 . 

For the upper bound fix x1 and x2 and count the number of p’s for which the 
condition can hold, if πp(x1) = πp(x2) then we have p|x2 − x1. We now have two 
cases 

If x1 = x2 then any p works, this gives us a |X||D| term. 
If x1 = x2 then only the prime divisors of x1 − x2 work of which there are at most 

log N , so this gives us an |X|2 log N term. 
Together we get 

|X|2|D|S−1 ≤ |(∗)| ≤ |X||D| + |X| 2 log N 
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which we can rewrite as 

|D| ≤ 
S|D| 
|X| 

+ S log N 

so either the first term dominates and we have S ≤ 2|X| or the second term dominates 
and we get |D|  S.  

As an example if |π p(X)| ≤ N2/3 for any p ∈ D with |D| = O(log N)N2/3 then 
|X|  N2/3 . 
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5. The large sieve 

Thursday Feb 20. 
Sieve theory is a classical topic in number theory. With hindsight, it is closely 

parallel to projection theory. In particular, the large sieve, developed by Linnik in 
the 1940s, is closely parallel to the Fourier method in projection theory, developed 
by Kaufman and Falconer in the 1960s and 70s. 

5.1. The Large Sieve. Let [N ] = {1, 2, . . . , N} and f : [N ] → C. We define a 
projection of f for many different p as follows: let π p f : Zp → C be defined as 

π p f(a) = 
 

n≡a mod p 

f(n) 

It’s often helpful to separate a function into its constant part and mean zero part: 

f0 = 
 1
N 

N 

n=1 

f(n) 
 
1[N ] 

fH = f − f0 and we have 
 

n 

fH (n) = 0 

We do the same thing with the projections: 

(π p f)0 = 
1

p 

 

a∈Zp 

π p f(a) = constant fn 

(π p f)H = π p f − (π p f)0 

Remark. We have 

• (πpf)H = πpfH 

• (π p f)0 = π p f0 

so the order of those operations does not matter. 

The main theme of the large sieve is that for an almost arbitrary function, if we 
take many different projections πpf , then for most p, the oscillating high-frequency 
part of πpf is smaller than the constant part. We make this precise in the following 
theorem. 

Let PM = {p prime, M 
2 ≤ p ≤ M}. 

Theorem 5.1 (Linnik). If f : [N ] → C and M ≤ N1/2 then  

p∈PM 

||(π p f)H ||2 
L2  

N

M 

 

n 

|fH (n)|2 
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Remark. Background result from analytic number theory: |PM | ∼ M
logM ≈ M 

Corollary 5.2. 

Avgp∈PM 
||(π p f)H ||2 

L2  
N 
M2 

 

n 

|fH (n)|2 

Let us first see an application of this result before we move on to the proof. Last 
time we gave the example of square numbers, which have the interesting property 
that they leave only p+1 

2 different residues mod p (that is, the quadratic residues) 
for any prime p. So let us think about such a set, i.e. a set where if you project it 
via mod p you get significantly less than all p residue classes. We ask the question 
”What does that tell us about the set?” 

Corollary 5.3. If A ⊂ [N ], |πpA| ≤ (.99)p for any p ∈ PN1/2 then |A|  N1/2 . 

Proof. Let f = 1A. Assume p ∈ PN1/2 , we get  

a∈Zp 

|π p f(a)|2  

 
|A| 
p 

 2 

· p ∼ |A|2 N−1/2 

by Cauchy-Schwarz. Now, let’s analyze the high-frequency part. Because supp(πpf) ⊆ 
πp(A), |supp(πpf)| ≤ .99p. Hence  

a∈Zp 

|(π p f)H (a)|2 ∼ 
 

a∈Zp 

|π p f(a)|2  |A|2 N−1/2 

where we are using the following lemma: 

Lemma 5.4. If g : Zp → C and |supp(g)| ≤ .99p then ||gH ||2 
L2 ∼ ||g||2 

L2 . 

Proof. Recall that g = g0 + gH and we know g0 ⊥ gH . So ||g||2 
L2 = ||g0||2 

L2 + ||gH ||2 
L2 . 

If ||g0||2 
L2 ≤ 1

2 ||g||
2 
L2 then we are done, so assume the contrary. Let S = (supp(g))c , 

by the given condition we have |S| ≥ .01p. On S we have gH = −g0 and thus 

||gH ||2 
L2 ≥ 

 

a∈S 

|gH (a)|2 = 
 

a∈S 

|g0|2 = 
|S| 
p 

 

a∈Zp 

|g0|2 ≥ 
1 
100 

||g0||2 
L2 

This gives ||gH ||2 
L2 ∼ ||g||2 

L2 , as desired.  

Now we go back to our proof of the Corollary 5. We know that the L2 norm of 
the high-frequency part of πpf is comparable to the L2 norm of πpf itself. But we 
can upper bound the former by our Theorem: 

Avgp∈P 
N 1/2 

||(π p f)H ||2 
L2  

N 
(N1/2)2 

 

n 

|fH (n)|2  |A| 

In conclusion, |A|2N−1/2  |A| and thus |A|  N1/2 .  
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It is interesting that this result matches the example of square numbers. In that 
sense, the bound proven above is sharp. However, it would be helpful to look at 
more examples. For that purpose, we look at the following. 

Reference point. Random set: take a subset A ⊆ [N ] randomly by choosing n 
in A with probability 1/2 independently. Then we see 

π p 1A(a) = #{n ∈ [N ], n ≡ a mod p, n ∈ A} 

and thus 

EAπ p 1A(a) = 
1 
2 
#{n ∈ [N ], n ≡ a mod p} ∼ 

1

2

N 
p 

However, we don’t expect it to always be 1
2 
N
p . So we consider the variance, which is 

the square root of 1
2 
N
p . Hence 

with high probability 

   π p 1A(a) − 
N 
2p 

   

 
N 
2p 

In particular, if p ∈ PN1/2 then for all a ∈ Zp

w.h.p 

   π p 1A(a) − 
N 
2p 

    N 1/4 

Now, let us compare this with what our theorem says about an arbitrary set. 

Corollary 5.5. If A ⊆ [N ] then 

Avgp∈P 
N 1/2 

Avga∈Zp 

   π p 1A(a) − 
|A| 
p 

    N 1/4 

Proof. We plug in Corollary 4 and get 

Avgp∈P 
N 1/2 


a∈Zp 

   π p 1A(a) − 
|A| 
p 

   2 

 |A| ≤ N 

Since the size of p is around N1/2 we find that 

Avgp∈P 
N 1/2 

Avga∈Z p 

   π p 1A(a) − 
|A| 
p 

   2 

 N 1/2 

Replace the average of the squares by the square of the average (by using Cauchy-
Schwartz): 

AvgpAvga 

   π p 1A(a) − 
|A| 
p 

    N 1/4 

 
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So the large sieve tells us that if you take an arbitrary set A and look at a random 
residue class {n ∈ A : n ≡ a mod p} with a random p and a random a, the size of 
the intersection is similar to what occurs for random sets A. 

One cute application of this idea is to count the number of primes in an arithmetic 
progression. Specifically, if we take A as the set of primes up to N , then πp1A(a) is 
the number of primes ≤ N and congruent to a modulo p. So, the question is ”How 
evenly distributed are the primes among those arithmetic progressions?”. One might 
conjecture that for every p and every a = 0 the following holds: π p 1A(a) − 

|A| 
p 

   N 1/4 

The above corollary makes some progress towards this conjecture, since it implies 
that the conjecture is true for most residue classes. However, it is somewhat silly 
to call this a progress towards counting primes in arithmetic progressions, since the 
proof uses nothing about the prime numbers and only uses the fact that the primes 
are a set of numbers. That being said, this line of reasoning is still important, and 
in the next class we will come back to this question. We will discuss the Bombieri-
Vinogradov theorem, which uses those ideas in a crucial way. 

Lastly, we mention the following before we move onto the proof of the large sieve 
inequality. Imagine that the set A had cardinality N/2. Then πp1A would have size 
around N/p and since p ∈ PN1/2 we have that N/p ∼ N1/2 . Also |A|/p has size 
∼ N1/2 as well, and we know the error (on average) is around N1/4 . In particu-
lar this means (πp1A)0 is much higher than (πp1A)H at most of the points. Hence, 
when we take a set A of size N/2 look at all the projections, a typical projection 
looks almost constant - it’s a constant function plus something much smaller. So 
the projection process takes something with no structure and produces something 
that’s almost constant. People often describe this as ”the projections get smoother. 
” In the next lecture, we will work out analogous ideas for orthogonal projections 
in R2 , and we will see that the word “smoother” is just the right word in that context. 

5.2. Proof of Linnik’s Large Sieve inequality. The main idea of the proof is to 
study f and πpf by taking their Fourier transforms. So, let us first state how the 
Fourier transform of the functions f : Z → C and πpf : Zp → C are defined. 

First, for the function f : Z → C with suppf ⊆ [N ] we define f : R/Z → C as f(ξ) = 
 

n 

f(n)e−2πiξ·n 
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and we can check that f(ξ) is 1-periodic, showing that it is well-defined. Also the 
two main theorems of Fourier analysis of functions over the reals hold in our case as 
well: 

(i) Fourier Inversion: 

f(n) = 
 1 

0 

f(ξ)e 2πin·ξ dξ 

(ii) Plancherel:  

n 

|f(n)|2 = 
 1 

0 
| f(ξ)| 2 dξ 

Secondly, for a function g : Zp → C we define the Fourier transform  g : Zp → C as 

g(α) = 
 

a∈Zp 

g(a)e −2πi aα 
p 

Similarly, if we plug in α+p·t for integer t into the definition we get that g(α+p·t) =  g(α). Hence the Fourier transform  g is a well defined function on the cosets α + pZ
and thus is well defined on Zp. Simiarly, the Fourier Inversion and Plancharel hold 
as well: 

(i) Fourier Inversion: 

g(a) = 
1

p 

 

α∈Zp 

g(α)e 2πi aα 
p 

(ii) Plancherel:  

a 

|g(a)|2 = 
1

p 

 

α 

|g(α)|2 

Now we introduce a lemma that connects the Fourier transforms of f and πpf . 
We call this the Dictionary between the integer world and the modp world. 

Lemma 5.6 (Dictionary). πpf(α) = f(α
p ) 

Proof. The proof is clear if we unwind all the definitions: π p f(α) = 
 

a∈Zp

π p f(a)e 
−2πi aα 

p 

= 
 

a∈Zp 

  

n≡a mod p 

f(n) 

 

e −2πia α 
p 

Notice that n ≡ a mod p implies e −2πiaα 
p = e −2πin α 

p . Thus we get π p f(α) = 
 

n 

f(n)e −2πin α 
p = f 

 α 
p 

 
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 

Lemma 5.7 (previous). ||(π p f)H ||2 
L2 = 

 
α∈Zp 
α=0 

  π p f(α) 
  2 

Remark. Since Lemma 5.2 applies to any function, we also have πpfH (α) = fH (α/p). 
Now let us write the left hand side of the Linnik’s inequality using the Dictionary 

lemma: 

LHS of Thm. = 
 

p∈PM 

||(π p f)H ||2 
L2 

= 
 

p∈PM 

1 
p 

 

α=0 
α∈Zp 

  π p fH (α) 
  2 

∼ 
1 
M 

 

p∈PM 

 

α=0 
α∈Zp 

fH 

 α 
p 

  2 
(17) 

Let’s now visualize this set of points QM = {α
p : p ∈ PM and 0 < α ≤ p − 1}. Note 

that |QM | ≈ M2 . 

Lemma 5.8. If α1 
p1 
, α2 
p2 

∈ QM are not equal, then |α1 
p1 

− α2 
p2 
| ≥ 1 

M2 . 

Proof.    α1 

p1 
− 
α2 

p2 

   =    α1p2 − α2p1 

p1p2 

   ≥ 
1 

p1p2 
≥ 

1 
M2 

 

Remark. If α1 
p1 

= α2 
p2 

in QM , then p1 = p2 and α1 = α2. 

In Figure 7 below, we have the interval [0, 1] with the points of QM on it. QM is not 
perfectly evenly spaced out but is very close to perfect. In orange is the graph of the 
function | fH |2 and we have highlighted the value of | fH |2 on the set QM . What we are 
interested in is taking the sum of this function | fH |2 on the set QM . This reminds us 
of Riemann integration. Indeed, we will compare this to the integral 


[0,1] | fH (ω)|2dω. 

Notice that there is a way for this sum to be way bigger than the integral: if 
| fH |2 has narrow peaks on QM . This way, the sum will be big while the peaks don’t 
contribute much to the integral 

 
[0,1] | fH (ω)|2dω. So it is important to understand 

how wide the peaks are. The following heuristics helps for this task: 
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Figure 7. Picture. 

Heuristic: |fH |2 is roughly constant on intervals of size 1 
N . 

This can be seen from the fact that f is supported on [0, N ]. We will make this 
notion precise in a moment, but it means that each peak should be 1 

N
wide. Since we 

are given M ≤ N 
1
2 , this guarantees that the spacing between two consecutive points 

of QM is bigger than the width 1 
N
. 

We will now follow this heuristic and obtain our desired inequality (we shall come 
back and prove more rigorously later). Heuristic implies 

 

ξ∈QM 

|fH (ξ)|2  N 
 1 

0 
|fH (ω)| 2 dω 

This is because for each ξ ∈ QM : 

|fH (ξ)|2  N 
 

Iξ 

|fH (ω)| 2 dω 

where Iξ is a length 1 
N

interval around ξ. Then we can see that the intervals Iξ for 
ξ ∈ QM doesn’t overlap, so we can bound the sum over ξ ∈ QM by the integral over 
the domain [0, 1]. 
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The rest is just algebra: recall (17) and we get 

LHS of Thm. ∼ 
1 
M 

 

ξ∈QM 

|fH (ξ)|2 

 
N 
M 

 1 

0 
|fH (ω)| 2 dω = 

N

M 

 

n 

|fH (n)|2 

as desired. 

Remark. We have this theme that if you take one function and project it modp 
for many different primes, most of them look nearly constant. So why is the zero 
frequency special in this story? It’s because for primes p the sets {α

p : 0 ≤ α ≤ p−1} 
all intersect at 0 but all the other points appear only once. Hence the zero frequency 
is being counted very differently than all the other frequencies. If ˆ f is large on a 
small interval I that does not contain zero, then this part of ˆ f will contribute to πpf 
for only a few primes p. But if ˆ f is large on a small interval I around zero, then this 
part of ˆ f will contribute to πpf for every p. 

Lastly, we will rigorously prove our heuristic. We will take a function ψN : Z → C 
such that 

ψN (n) = 1 for n ∈ [N ] and ψN smooth, rapidly decaying 

The Fourier Transform of ψN behaves like this: 

(18) ψN (ξ) = 

 
∼ N if |ξ| ≤ 1 

N 

 N(N |ξ|)−1000 if |ξ| > 1 
N 

Refer to the figure below for a visualization of | ψN |. 

Audience Question: What does smoothness mean for a function on Z? An-
swer: You can think of ψN as a smooth function on the real line being restricted to Z. 

This function is helpful because 

f = fψN if suppf ⊆ [N ] 

By taking the Fourier Transform, we get f = f ∗ ψN . By the triangle inequality we 

obtain | f | ≤ | f | ∗ 
 ψN 

 . Noting that  1
2 

− 1
2 

|ψN (ξ)|dξ  1 
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Figure 8. Graph of |ψN | 

we can show by Cauchy-Schwartz that 

| f |2  | f |2 ∗ 
ψN 

 
Audience Question: The Fourier Transform of functions on Z and R are not 

the same. Which one do you mean when you say  ψN ?

Answer: So we mean that we first take a function ψN,R : R → C smooth with 
ψN,R = 1 on [−N,N ] and rapidly decaying outside. Then we define ψN,ZZ as the 
restriction of ψN,R to Z. To analyze the Fourier transform of these functions, we 
start with ψN,R. By standard integration by parts, we get: for ξ ∈ R 

(19) |ψN,R(ξ)| = 

 
∼ N if |ξ| ≤ 1 

N 

 N(N |ξ|)−1000 if |ξ| > 1 
N 

Now ψN,Z is related to  ψN,R by the equation below, which boils down to Poisson
summation: 

ψN,Z(ξ) = 
 

z∈Z 

ψN,R(ξ + z) 

for ξ ∈ R/Z. Now the bounds for | ψN,R| in (19) combined with this equation give 
the desired bounds for | ψN,Z| in (18). 

Now let’s do a slightly more rigorous proof of the Linnik’s large sieve inequality. 
Recall the statement: 
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Theorem 5.9 (Linnik). If f : [N ] → C and M ≤ N1/2 then  

p∈PM 

||(π p f)H ||2 
L2  

N

M 

 

n 

|fH (n)|2 

Proof. Remember that 

LHS ∼ 
1 
M 

 

ξ∈QM 

|fH (ξ)|2 

To relate this sum to an integral, we use the fact that |fH |2  |fH |2 ∗ 
 ψN 

. This fact 
encodes the locally constant property of | f |2 . We get 

1 
M 

 

ξ∈QM 

|fH (ξ)|2  
1 
M 


ξ∈QM 

 

R/Z 
|fH (ω)|2

   ψN (ξ − ω)
   dω 

= 
1 
M 

 

R/Z 
|fH (ω)|2 

  

ξ∈QM 

|ψN (ξ − ω)| 

 

dω 

We claim that this sum is bounded by  N :  

ξ∈QM 

|ψN (ξ − ω)|  N 

This is because the function g(ξ) = | ψN (ξ − ω)| has a peak around ω with height 
N and width 1/N and is extremely small away from this peak. The distance between 
any two distinct points in QM is  1 

M2 ≥ 1 
N
, and so at most O(1) points of QM lie 

under the peak of g(ξ). Hence, we find that 

1 
M 

 

ξ∈QM 

|fH (ξ)|2  
N 
M 

 

R/Z 
|fH (ω)| 2 dω = 

N

M 

 

n 

|fH (n)|2 

finishing the proof of Linnik’s large sieve.  

In the last five minutes of the class, we want to give a quick teaser on how these 
ideas come up in the setting of projection theory over Rd . We have this theme 
that functions on [1, 2, . . . , N ] look almost constant after projecting modp for most 
primes p. And there is a totally analogous phenomenon for functions on Rd . Specif-
ically, if you project those functions onto lower subspaces, almost all of them look 
smoother than the original function. We have mentioned on the first day that if you 
are in a high enough dimension, even L2 functions that are nowhere continuous has 
the property that its projection on a typical line are C1 are even C2 . 
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So here is a setup that is analogous to the large sieve. Let f : Rd → C and V ⊂ Rd 

be a subspace. Then we have the projection πV f : V → C. 

Remark. For any function g : V → C on a vector space V , the Fourier Transform g : V → C is also defined on V . 

We also have the Dictionary lemma: 

Lemma 5.10 (Dictionary). We have πV f = f  
V 
. Notice that πV f is a function on 

V while  f is a function on Rd . 

Figure 9. Picture. 

In the figure, we see two subspaces V1 and V2 (among others) of Rd . Notice that 
the origin lies in every subspace V . On the other hand, a non-zero frequency ω ∈ Rd 

only lies in a small fraction of subspaces V . Therefore, if ˆ f is large on a small ball B 
far away from zero, then this contributes to πV f for only a small fraction of subspaces 
V . On the other hand, if ˆ f is large on a small B around zero, then this contributes to 
πV f for every subspace V . If we compare f with a typical πV f , the high-frequency 
parts of the Fourier transform are “damped” in πV f compared to f . This causes 
πV f to be smoother than f . We will explore these ideas more fully next class. 
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6. Projections and smoothing 

Tues Feb 25 
The projection of a rough function at a typical angle is usually smoother than 

the original function. This fundamental observation is one of the core principles of 
projection theory. It is also closely related to the large sieve. 

We first set up what it means to project a function and then state the result 
precisely. The proof is closely analogous to the proof of the large sieve. 

Setup 
Let f : Rd → C be a L2 function. For V ⊂ Rd a subspace, we define 

πV f(y) = 
 

V ⊥ 

f(y + z) dvolV ⊥ (z) , ∀y ∈ V . 

In particular, for θ ∈ Sd−1 we write πθf = πspan(θ)f . 
The following theorem states that the projection of a high dimensional function 

onto a typical direction is fairly smooth. 

Theorem 6.1. If f ∈ L2(Rd), supp(f) ⊂ B1, then provided that d−1 
2 > 1 

2 + k, it 
holds  

Sd−1 

πθf 2 
Ck dθ  f 2 

L2 . 

The following lemma builds a connection between the Fourier transform of f and 
that of its projection. 

Lemma 6.2 (Dictionary). For any subspace V ⊂ Rd and any ξ ∈ V , πV f(ξ) = f̂(ξ). 

Proof. By definition we have 

πV f(ξ) = 
 

V 
f(x)e−ix·ξ dx = 

 

V 

 

V ⊥ 

f(x + y) dvolV ⊥ (y)e−ix·ξ dx 

= 

V 

 

V ⊥ 

f(x + y)e−i(x+y)·ξ dvolV ⊥ (y) dx 

= 

Rd 

f(x)e−ix·ξ dx = f̂(x) .  

Now we prove Theorem 6.1. 
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Proof. Using the dictionary lemma, we now relate fL2 with πθf . By Plancherel’s 
theorem and the polar coordinate transform, we have 

f 2 
L2 = f̂ 2 

L2 = 
 

Rd 

|f̂(ξ)|2 dξ 

= 
 

Sd−1 

 ∞ 

0 
|f̂(rθ)|2 r d−1 dr dθ 

= 
1 
2 


Sd−1 

 ∞ 

−∞ 
|πθf(r)|2 r d−1 dr dθ . 

Recall the Sobolev norms  · Ḣs 
and  · Hs : for f : V → C,

f 2 
Ḣs = 

 

V 
|f̂(ξ)|2|ξ|2s dξ , f 2 

Hs = 
 

V 
|f̂(ξ)| 2 (1 + |ξ|)2s dξ . 

The above estimate shows that  

Sd−1 

πθf 2 

Ḣ 
d−1 
2 

dθ  f 2 
L2 . 

By the Sobolev embedding theorem, if s > 1 
2
+ k, then πθfCk  πθf 

H
d−1 
2 
. We 

have 

Sd−1 

πθf 2 
Ck dθ  

 

Sd−1 

πθf 2 

H 
d−1 
2 

dθ  
 

Sd−1 

 ∞ 

−∞ 
|πθf(r)| 2 (1 + r d−1) dr dθ 

 f 2 
L2 + 

 

Sd−1 

 

|r|≤1 
|f̂(rθ)|2 dr dθ  f 2 

L2 + f 2 
L1 . 

Finally, since f supports on B1, we have fL1  fL2 , the proof is completed.  

Connection to probability theory. Let X1, . . . , XN be independent random 
variables Uni([−1/2, 1/2]). The joint density of X1, . . . , XN is given by f(x) = 
1[−1/2,1/2]N (x). According to central limit theorem, 

1 √ 
N 
(X1 + X2 + · · · + XN ) ⇒ N (0, 1/6) . 

This suggests that the projection of f onto the direction ( 1 √
N 
, . . . , 1 √

N 
) approximates 

a Gaussian, which is a much smoother function than 1[−1/2,1/2]. 
Indeed, the central limit theorem says something more: provided the direction is 

not “close” to any coordinate axis, then the projection will approximate Gaussian. 
Similar results can be generalized from high dimensional cube to high dimensional 
convex bodies. This shows again the point that projecting onto a typical direction 
smoothens high dimensional functions. 
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7. Applications of the Large Sieve to Number Theory 

Linnik initially used the large sieve to study the distribution of quadratic residues. 
We will see that work on Problem set 4. 

Perhaps the most important application of the large sieve in number theory con-
cerns the distribution of primes mod q. 

7.1. Distribution of primes mod q. Let π(N) denote the number of primes less 
than or equal to N . Let π(N, q, a) be the number of primes p satisfying p ≤ N and 
p = a mod q. We want to focus on a ∈ Z∗ 

q, since if a and q are not relatively prime, 
π(N, q, a) is at most one. So let φ(q) = |Z∗

q|. If the primes were evenly distributed 

mod q, then π(N, q, a) would be close to π(N) 
φ(q)

. To quantify how badly this fails, we 
introduce the function 

Δ q(N) := max 
a∈Z∗ 

q

 π(N, q, a) − 
π(N) 
φ(q) 

 . 
Here are some results on Δq(N): 

Theorem 7.1 (Dirichlet). For all q, 

lim 
N→∞ 

Δ q(N) 
N/q 

= 0. 

Theorem 7.2 (Siegel-Walfisz). For any A, there is some cA such that 

Δ q(N) ≤ cAN(log N)−A . 

This is the best result that applies to all q. If one assumes the generalized Riemann 
hypothesis, then it is true that 

Δ q(N) ≤ (CN )N 1/2 

for any  > 0. Montgomery conjectured that for any  > 0, there is a constant C 

such that Δq(N) ≤ (CN
) 
 

N
q 

 1/2 
. 

Instead of trying to understand what happens for all q, we will be concerned with 
the typical behavior of Δq(N). The theorem we will discuss is 

Theorem 7.3 (Renyi, Bombiere–Vinogradov). For all  > 0 and all A,  

q≤N1/2− 

Δ q(N) ≤ C(, A)N(log N)−A . 

This says that for most q ≤ N1/2− , Δq(N) ≤ N
q (log N)−A  N

q . So the primes 

are close to equidistributed mod q for most q up to N1/2− . 
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We will not give the complete proof, which is somewhat messy, but we will discuss 
most of the main ideas. In particular, we will explain how the large sieve and 
projection theory enter the story. 

7.2. Multiplicative Convolution and Primes. To prove this, we will use the 
multiplicative convolution, which interacts nicely with prime numbers and pro-
jections. 

Definition 7.4. If f, g : N → C, then their multiplicative convolution is the 
function 

f ∗ M g(n) = 
 

n1,n2,n1n2=n 

f(n1)g(n2). 

This is related to the prime numbers through the sieve. Sieving is the process of 
obtaining prime numbers by crossing off all the multiples of 2, then all the multiples 
of 3, and so on, until only the primes are left. If you try to write this down with a 
formula, the multiplicative convolution will appear. Let 1 = 1N and define 

D p(n) = 

⎧⎪⎨ ⎪⎩
1 n = 1, 

−1 n = p, 

0 n = 1, p. 

Then we can calculate 

1N ∗ M D2 = 1N − 12N = 1odd. 

Similarly, 1N ∗M D2 ∗M D3 is the indicator function for n relatively prime to 2 and 3. 
For a set of primes S, define 

RPS(n) = 

 
1 (p, n) = 1 ∀p ∈ S, 

0 else. 

Note that if S = PN1/2 and N1/2 < n ≤ N , then RPS(n) = P (n). 

Lemma 7.5. If S = {p1, . . . , pr}, then 

RPS(n) = 1 ∗ M D p1 ∗ M . . . ∗ M D pr . 

7.3. Multiplicative Convolution and Projections. Now we will examine the 
relationship between multiplicative convolution and projection. Multiplicative con-
volution interacts nicely with the projection Z → Zq because this projection is a ring 
homomorphism. 

Lemma 7.6 (Lemma 1). If f, g : N → C, then π q(f ∗ M g) = π q f ∗ M π qg. 
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To be extra careful, we should say what we mean by multiplicative convolution in 
Zq: 

F ∗ M G(a) = 
 

a1,a2∈Zq ,a1a2=a 

F (a1)G(a2) 

for functions F, G : Zq → C. 

Proof. Write 
f = 

 

n1 

δn1 f(n1), g = 
 

n2 

δn2 g(n2). 

Then 
f ∗ M g = 

 

n1,n2 

δn1n2 f(n1)g(n2). 

Here δn is the delta function δn(m) = 

 
1 n = m 

0 else 
. Then 

π q f(a) = 
 

n1 

δn1 mod q(a)f(n1), 

πq f ∗ M πqg(a) = 
 

n1,n2 

δn1n2 mod q f(n1)g(n2) 

= π q(f ∗ M g)(a). 

 

For our final result, we want L∞ bounds, but our theory is geared toward L2 

bounds. Here’s how we can get L∞ bounds: 

Lemma 7.7 (Lemma 2). If f, g : N → C, then 

f ∗ M gL∞(Z∗ 
q) ≤ fL2 gL2 . 

Proof. For a ∈ Z∗
q, f ∗M g(a) = 

 
b∈Z∗ 

q 
f(b)g(ab−1) ≤ fL2 gL2 by Cauchy-Schwarz. 

 

There is also the minor technical annoyance of switching between Zq and Z∗
q. If 

f : Zq → C, let f ∗ : Z∗
q → C be the restriction. Then we can write f = f0 + fh 

and f ∗ = f ∗ 
0 + f ∗ 

h , where the starred functions are defined on Z∗
q and the unstarred 

functions are defined on Zq, the subscript zero indicates a constant function, and the 
subscript h indicates an average zero function. 

Lemma 7.8 (Lemma 3). 
f ∗ 

h L2(Z∗ 
q) ≤ fhL2(Zq). 

Finally, taking the high frequency part commutes with multiplicative convolution: 
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Lemma 7.9 (Lemma 4). If f ∗ , g ∗ : Z∗ 
q → C, then 

(f ∗ ∗ M g 
∗)h = f ∗ 

h ∗ M g
∗ 
h. 

If we combine all of these, we get the following proposition: 

Proposition 7.10. 

(πq(f ∗ M g))
∗ 
h L∞ ≤ (π q f)hL2 (π qg)hL2 . 

Proof. By Lemma 1 then Lemma 4, 

(πq(f ∗ M g))
∗ 
h = ((π q f ∗ M πqg))

∗ 
h = (πq f)

∗ 
h ∗ M (πqg)

∗ 
h. 

Then using Lemma 2 and Lemma 3, we get 

(π q(f ∗ M g))
∗ 
h L∞ ≤ (π q f)

∗ 
h L2 (π qg)

∗ 
h L2 

≤ (π q f)hL2 (π qg)hL2 . 

 

7.4. Large Sieve and Multiplicative Convolution. Our goal is to prove that 
P (n) is evenly distributed mod q for most q of a given size. We will focus on the case 
that q is prime, which avoids technical issues but still shows the main proof ideas. 

We have seen that for a large range of n, P (n) is equal to RPS(n), where S = 
PN1/2 . The key property of RPS(n) is that it is a multiplicative convolution. Our 
next theorem shows that most projections of a multiplicative convolution are nearly 
constant – it is the main analytic ingredient in the proof of Bombieri-Vinogradov. 

Theorem 7.11. If f : [N1] → C and g : [N2] → C, then f ∗ M g : [N ] → C, where 
N = N1N2, and  

p∈PM 

(π q(f ∗ M g))
∗ 
h  2 

L∞  

 
N1 

M 
+M 

 
N2 

M 
+M 

 1/2 

fL2 gL2 . 

Proof. We apply the proposition, Cauchy-Schwarz, and then the large sieve:  

p∈PM 

(π p(f ∗ M g))
∗ 
h  2 

L∞ ≤ 
 

p∈PM 

(π p f)hL2 (π pg)hL2 

≤ 

  

p∈PM 

(π p f)h 2 
L2 

 1/2   

p∈PM 

(π pg)h 2 
L2 

 1/2 

 

 
N1 

M 
+M 

 
N2 

M 
+M 

 1/2 

fL2 gL2 . 

 
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For the main theorem, we have |f(n)|, |g(n)|  1, so f2L2  N1 and g2L2  N2, 
so  

p∈PM 

(π q(f ∗ M g))
∗ 
h  2 

L∞  
N 
M 

+ 
 
N1N + 

 
N2N +M 

√ 
N. 

This will be good if M ≤ N1/2− and N1, N2  N . We cannot have N1 or N2 close 
to N , because in that case the other factor will be close to 1 and the multiplicative 
convolution will not result in a more evenly spread function. And the first condition 
must be true for the projection theory methods to be able to say anything. 

Finally, we give a rough outline the proof of the Bombieri-Vinogradov theorem for 
q prime. 

I am actually not sure whether the full BV theorem can be proven following this 
outline. The proof in books is based on a different way of finding multiplicative 
convolution structure in the primes, which is called Vaughn’s identity. Vaughn’s 
identity is more efficient and leads to fewer terms, but I found it a little harder to 
motivate. 

Let S = P <N1/2 . If N1/2 < n < N , RPS(n) = P (n). Also 

RP S(N) = [1 ∗ M D p1 ] ∗ M [. . . ∗ M D pR ] 

= f ∗ M g 

= 

  

I1 

f1I1 

 

∗ M 

  

I2 

g1I2 

 

= 
 

I1,I2 

f1I1 ∗ M g1I2 . 

Here I1 and I2 are intervals that are narrower than dyadic intervals. Let N1 = min I1 

and N2 = min I2. For n ≤ N , 

RPS(n) = 
 

I1,I2,N1·N2≤N 

f1I1 ∗ M g1I2 . 

We can then apply the theorem above for each pair of intervals. This works when 1  
N1, N2  N . Otherwise, we must group the convolutions for RPS(N) differently. It 
is a possible course project to think this through carefully and see what bounds it 
gives. 
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8. The Szemeredi-Trotter theorem 

Tues March 4 
The Szemeredi-Trotter theorem gives the sharp answer to a natural discrete pro-

jection problem in the plane. It was proven in the early 1980s. The proof of the 
theorem is based on topology, and it is completely different from the proofs we have 
explored earlier. Tom Wolff noticed the connection between the Szemeredi-Trotter 
theorem and problems in geometric measure theory like the exceptional set problem 
and the Furstenberg set problem. 

8.1. The Szemeredi-Trotter projection theorem. 

Theorem 8.1. Let X be a set of points in R2 and D a set of directions in S1 . Then 
we define 

(20) S(X, D) = max 
θ∈D 

|πθ(X)| 

Then 

(21) |D| ≤ 
S2 

|X| 
+ 1 

Now for the general theorem, let X be a set of points in R2 and L a set of lines in 
R2 . Then we define 

I(X, L) := #{x ∈ X,  ∈ L, x ∈ } 

Note that 

I(X, L) = 
 

∈L 

| ∩ X| 

Then the SzemerdiTrotter (ST) theorem states that 

Theorem 8.2. 

(22) I(X, L) ≤ |X| + |L| + |X|2/3|L|2/3 

Example 8.3 (Example 1 for ST Theorem). The ST theorem is sharp with the |X| 
bound when the number of lines is small and each point lies on a single line. 

Example 8.4 (Example 2 for ST Theorem). The ST theorem is sharp with the |L| 
bound when the number of lines is large and each line lies on a single point. 
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Figure 10. Example of setup where |X| term dominates and I ∼ |X| 

Figure 11. Example of setup where |L| term dominates and I ∼ |L|. 

Example 8.5 (Example 3 for ST Theorem). We let X be an N ×N grid, and define 
QM := {a

b : a, b ∈ [M ]}. Define L to be the set of lines with slopes in QM that pass 
through points in X. Then |QM | ∼ M2 (the double counting when gcd(a, b) > 1 only 
affects the magnitude of |QM | up to a constant factor). Every point in X has a line 
passing through it for each slope in QM . Then 

(23) I(X, L) = |X||QM | ∼ N 2 M 2 

We now define projection operators for each s ∈ QM as 

(24) πs(x1, x2) = x2 = −sx1 

The fibers of πs are lines of slope s, and the number of lines in L with direction s 
is |πs(X)|. We now prove the following lemma: 

Lemma 8.6. For all s ∈ QM , |πs(X)|  MN 

Proof. Take x1, x2 ∈ [N ] and s = a
b . Then 

(25) πs(x1, x2) = x2 − 
a 
b 
x2 = 

bx2 − ax1 

b 

Since a, b ≤ M and x1, x2 ≤ N , |bx2 − ax1|  MN . Since bx2 − ax1 must be an 
integer, there are at most MN distinct values in πs(X).  
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Then since L has at most NM lines for every element of QM . |L  |QM |NM ∼ 
M3N . Then 

(26) I(X, L) ∼ N 2 M 2  (M 3 N · N 2)2/3  |X|2/3|L|2/3 

Therefore the grid is a sharp example of the SzemerdiTrotter theorem where the 
|X|2/3|L|2/3 term dominates. Note that the SzemerdiTrotter theorem implies the ST 
projection theorem, which is a special case when L is the set of lines with directions 
in D passing through points in X. 

8.2. Question: Are there other sharp examples for the SzemerdiTrotter 
theorem? Another example is grids over number fields. Let R be a number field, 
(for example Z[ 

√
2]). Then define 

RN = {a1 + a2 

√ 
2 : a1, a2 ∈ Z, |a1|, |a2| ≤ N} 

QRM = { 
a 
b 
: a, b ∈ RM } 

Then define X := RN × RN and L as the set of lines with slopes in QRM that 
pass through a point in X. This is similar to the grid example. 

8.3. Proof of the Szemeredi-Trotter theorem. We begin the proof of the Szemeredi-
Trotter theorem with a lemma. 

Lemma 8.7. 
I(X, L) ≤ |X||L|1/2 + |L| 

Proof. We start with expanding I(X, L) and applying Cauchy Schwartz to get 

I(X, L) = 
 

∈l 

| ∩ X| ≤ 

 

|L| 
 

∈L 

| ∩ X|2 

 1/2 

This is advantageous because | ∩ X|2  
 |∩X| 

2

 
+ 1. Then  

∈L 

| ∩ X|2  |L| + 
 

∈L 

 
| ∩ X| 

2 

 

Since for every pair of points x1, x2 ∈ X, there is at most one line  that contains 
x1 and x2, every pair of points in X can be counted at most once. Then  

∈L 

 
| ∩ X| 

2 

 

≤ 

 
|X| 
2 

 

 |X|2 
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This gives the final conclusion 

I(X, L)  
 
|L|(|X|2 + |L|) 

 1/2 ≤ |X||L|1/2 + |L| 
 

Note that this proof uses only the very general fact that any two points define a 
line. Therefore it holds over spaces such as finite fields. However, the SzemerdiTrotter 
theorem does not hold over finite fields. To see this take X = F2

q (as the whole space) 
and L as all lines in F2

q. Then for every , | ∩ X| = q, so I(X, L) = q3 . However, 
|X|2/3|L|2/3 = q8/3 ≤ I(X, L). Therefore, the SzemerdiTrotter theorem requires 
properties of the topology of R2 to work. In particular, it uses a cell decomposition 
lemma, which allows cutting the plane into pieces. 

Lemma 8.8 (Cell decomposition lemma). Let X be a set of points in R2 and pick 
an integer s ≥ 1. Then the plane can be disjointly partitioned into a set of open sets 
Oi and a closed set W such that 

R2 = W ∪ 
 

i 

Oi 

and additionally, 

| ∩ W | ≤ s 

and for every i, 

|X| ∩ Oi|  
|X| 
s2 

This lemma essentially states that the plane can be split into cells that each contain 
only a small subset of X, and that the walls don’t intersect any line too many times. 
As an example of this theorem, let X be a ”roughly” square grid. That is ⊂ [N ]2 

and fir every ball B1(c) of radius 1 (where c is an arbitrary point in the plane), 
|X ∩ B1(c)|  1. The below example shows the grid for s = 2. 
Each line can only intersect 2s lines in W , so | ∩ W | ≤ 2s. Since X is roughly 

grid shaped, and each cell is a square of side length N/s, |X ∩ Oi|  |X|/s2 , which 
satisfies the requirements. 

We now proceed to the proof of the SzemerdiTrotter theorem. It hinges on the 
fact that lemma 8.7 is sharp when the number of lines is either small (bounded by 
a constant) or much larger than the number of points (|L| > |X|2). We can use this 
by using the cell decomposition lemma to pick cells where one of these conditions 
holds. 
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Figure 12. The points show the points in X. The dashed lines indi-
cate the ”rough grid” shape of X. The solid lines show W , which is 
the set dividing X 

Proof. Given X and L, and arbitrary s. Then using the cell decomposition lemma, 
define Xi = X ∩ Oi. Then |Xi| ≤ |X|/s2 and 

 

i 

|Xi| ≤ |X| 

Define 

Li = { ∈ L :  ∩ Oi = ∅} 

From the cell decomposition lemma 

 

i 

|Li| ≤ s|L| 

Then as every intersection of a point and a line is either on a cell boundary or 
within a cell. Then 

I(X, L) ≤ 
 

i 

I(Xi, Li) + I(X ∩ W, L) 

Applying lemma 8.7 to the first term, and the | ∩ W |  s bound to the second 
term, 
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I(X, L)  
 

i 

(|Xi||Li|1/2 + |Li|) + s|L| 

 

  

i 

|Xi|2 
 

i 

|Li| 

 1/2 

+ 2s|L| 

 

  

i 

|X| 
s2 

|Xi| 

 1/2 

(s|L|)1/2 + 2s|L| 

s−1/2|X||L|1/2 + s|L| 

We then choose s to minimize this quantity. This is effectively choosing s so that 
both terms are equal. Then 

s−1/2|X||L|1/2 =s|L| 
|X||L|−1/2 =s 3/2 

s =|X|2/3|L|−1/3 

Plugging s back into the inequality gives 

I(X, L)  |X|2/3|L|2/3 

which gives the desired bound.  

Note that in the above argument s must be an integer, so this can only be done 
when |X|2 > |L|. When |X|2 < |L| then setting s = 1 gives the the bound I(X, L)  
|L|. Additionally, s2 can be at most |X|. Then when |X| < |X|4/3|L|−2/3 , |X| > |L|2 , 
so setting s = |X|1/2 gives the bound I(X, L)  |X| 

We now prove the cell decomposition lemma. However, several prelimary theorems 
must be shown first. 

Theorem 8.9 (Borsuk Ulam Theorem). Let f : Sn → Rn be a continuous function 
that is antipodal, ie for every θ ∈ Sn , f(θ) = −f(−θ). Then 0 is in the image of f . 

Corollary 8.10 (Ham Sandwich Theorem). Let O1, O2, ..., On ⊂ Rn be bounded open 
subsets. Then there exists a hyperplane H that bisects every Oi. 

Proof. An upper half (hyper)plane can be described as the set {x : a · x > b}, for 
some vector a and b a real number. As scaling a and b by a positive real number 
preserves this hyperplane, the tuple (a, b), can be identified with an element of Sn . 



PROJECTION THEORY NOTES 57 

Then for an element θ ∈ Sn corresponding to (a, b), we let cθ be the affine operator 
defined by cθ(x) = a · x + b. We then define the vector valued function f by 

fi(θ) = Vol(Oi ∩ {x : cθ(x) > 0}) − Vol(Oi ∩ {x : cθ(x) < 0}) 
f is antipodal, so it has a zero. This zero corresponds to each set being bisected, 

which proves the theorem  

The Ham Sandwich theorem works when there are up to n subsets of Rn . This is 
roughly because n degrees of freedom are needed to bisect the n sets. We can then 
use polynomials to increase the number of degrees of freedom, and so the number of 
sets that can be bisected. 

Theorem 8.11 (Polynomial Ham Sandwich Theorem). We use the same setup as 
the ham sandwich theorem, except that there can be up to N sets Oi. Then there 
exists a polynomial zero set that bisects every Oi 

Proof. First define the space 

PolyD(Rn) = {p ∈ R[x1, ..., xn] : deg p ≤ D} 

PolyD(Rn) is then a vector space of degree Dn . We claim that if N < Dn , then 
there is a nonzero element of PolyD(Rn) that satisfies the claim. We define the vector 
valued function f by 

fi(p) = Vol(Oi ∩ {x : p(x) > 0}) − Vol(Oi ∩ {x : p(x) < 0}) 
Since scaling each nonzero p by a positive real does not change f , f is a function 

from SDN −1 to Rn . Additionally, f is antipodal. Then by the Borsuk Ulam theorem 
the conclusion follows.  

The Ham Sandwich theorems allow open subsets of Euclidean space to be subdi-
vided, but the cell decomposition lemma requires dividing sets of points. This is a 
technical detail that follows from the Polynomial Ham Sandwich Theorem. 

Lemma 8.12 (Ham Sandwich theorem for finite sets). Let s1, s2, ..., sN be a set of 
finite sets in Rn . Then there exists a polynomial level set such that for every si, 

|si ∩ {x : p(x) > 0}| ≤ 
|si| 
2 

|si ∩ {x : p(x) < 0}| ≤ 
|si| 
2 

As individual points cannot be bisected, this lemma instead guarantees that excess 
points will lie on the level set. 
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Proof. Take some  > 0 and for each i define N(si) to be the set of balls of radius 
 centered at the points on si. Then by the Polynomial Ham Sandwich theorem the 
N(si) can all bisected by the zero set of a polynomial of degree Dn > n. Then 
taking  to 0 we get a sequence of polynomials p that each bisect the N(si). Since 
the sphere Sn is compact, there must a convergent subsequence to some polynomial 
p. To show that this polynomial p satisfies the conclusion, for contradiction assume 
that there exists i such that 

|si ∩ {x : p(x) > 0}| > 
1 
2
|si| 

Since every point in si ∩ {x : p(x) > 0} is some nonzero distance from the set 
{x : p(x) = 0}, there is some  > 0 such that modifying p by  and enlarging si by  
gives 

|N(si) ∩ {x : p(x) > 0}| > 
1 
2
|N(si)| = 

a contradiction. Note that this step requires the boundedness of si to take a 
perturbation of p continuous.  

We will now prove the cell decomposition lemma. 

Proof. We begin with step k = 1. Then define p1 to be the degree 1 polynomial that 
splits X into two parts. Then X1,1 := {x ∈ X : p1(x) > 0} and X1,2 := {x ∈ X : 
p1(x) < 0} 

Then at stek k + 1, define pk to be the polynomial of degree Dk with D2 ∼ 2k such 
that pk bisects all Xk,1, ..., Xk,2k . Then Dk ∼ 2k/2 . 

Then pick kfinal such that 2kf inal ∼ s2 . Then let Oi be the sets defined by {x : 
±p1(x) > 0}∩ ... ∩{x : ±pkf inal (x) > 0} for all choices of ±. Define W = {x : p1(x) =
0} ∪ ... ∪ {x : pkfinal (x) = 0} 
X has been bisected kfinal times, so then 

|Xkf inal,i|  |X|/s 2 

A line can intersect a polynomial of degree D at most D times, so then 

| ∩ W | ≤ 1 + 2 + 4 + ... + 2 kf inal/2 ∼ s 
Then each line can intersect W at most ∼ s times.  
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9. Reflections on the Szemeredi-Trotter theorem 

Thur March 6 
There is an important analogy between the Szemeredi-Trotter theorem and the 

exceptional set problem in projection theory. The Szemeredi-Trotter theorem can be 
viewed as the sharp projection theorem for finite sets of points in R2 . The exceptional 
set problem concerns the projection theory of a finite set of balls in R2 subject to 
a natural spacing condition. The sharp answers to both problems are essentially 
the same – based on integer grids. This analogy was noticed by Tom Wolff in the 
late 1990s. He adapted proof methods from combinatorial geometry to problems 
in geometric measure theory and harmonic analysis, with striking results. He tried 
hard to adapt the proof of Szemeredi-Trotter to the exceptional set problem and the 
Furstenberg set conjecture, but he was not able to prove sharp results. 

The proof of Szemeredi-Trotter using topological methods is elegant and impor-
tant, but there are several important questions that it does not address. In this class 
we will discuss them. 

First let’s recall the statement of Szemerédi-Trotter theorem. Let X be a set of 
points, L be a set of lines (both in R2), we use I(X, L) to denote the set of incidences 
between them: 

I(X, L) = {(p, l) ∈ X × L : p ∈ L}. 
Szemerédi-Trotter claims that 

|I(X, L)|  |X| + |L| + |X|2/3|L|2/3 . 

All the current proofs of this theorem, like the cell decomposition method we 
discussed in the previous lectures, used the topology of Euclidean plane. This is not 
surprising, as the conclusion of this theorem is indeed related to the structure of the 
base field. If we replace R2 by F2

p, Szemerédi-Trotter bound will fail as one can see 
by taking L to be all the lines in F2

p. 
On the other hand, the current methods provide little information on some closely 

related problems, such as: 
1. Projection theory over finite fields. 
2. Structure of sharp examples for Szemerédi-Trotter. 
3. Projection theory of unit balls, instead of points, in R2 with spacing conditions 

(lots of attempts by Wolff). 

Structure of Sharp Examples. Let’s stare at the Szemerédi-Trotter bound: 

|I(X, L)|  |X| + |L| + |X|2/3|L|2/3 . 

There are three terms on the RHS. The first two terms are given by double counting 
which generalizes to other fields. They dominate when there are too many points or 
lines, in which case the structure of the sharp examples example is not very rigid, 
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giving us many degrees of freedom. To be more specific, when the first dominates we 
have |X|  |L|2 , which means that the number of points has already exceeded the 
total number of intersections among the lines. In this case, the upper bound is tight 
if each point has a line passing through it. The typical sharp example looks like some 
chains of beads. Similarly, when the second term dominates the sharp examples look 
like a bunch of stars, where each line doesn’t have much chance to pass through too 
many points. 

The case where the third term dominates is the most interesting one. The known 
sharp examples are integer grids and their variation R-grids, where R is the integer 
rings of number fields. We expect that the sharp examples in this case are highly 
structured. To see what information about the sharp examples the proof of Sze-
merédi-Trotter theorem tells us, let’s briefly review the cell decomposition proof: 
Divide R2 into s2 cells. In each cell there are |X|/s2 points and (in average) |L|/s 
lines. By choosing s to be large enough we will have |L|/s  (|X|/s2)2 and then 
apply the double counting bound. The proof doesn’t tell us much information on the 
structure of the sharp example unless we can figure out the way our cells interact. 
Unfortunately the proof of cell decomposition is not very constructive and based on 
existence theorems from topology. 

Remark 9.1. In the projective plane PR2 there is something called point-line duality. 
It preserves the incidence relationship between points and lines. In fact, the statement 
that a point with coordinates [a0, a1, a2] lies on a line with coefficients [b0, b1, b2] simply 
means a0b0 + a1b1 + a2b2 = 0, where the roles of ai and bi are interchangeable. The 
chain example and the star examples are mapped to each other via the point-line 
duality, while the grid example will be mapped to something different. 

There are also some interesting variations of this problem. For example, one may 
ask about the structure of X which maximizes the projections for some particular D. 
Define SD(N) = min|X|=N S(X, D). For an arbitrary D, what can we tell about the 
structure of X achieving this maximum? All the known examples are for direction 
sets with special structures. 

Denote the directions in R2 by elements of R∪{∞} with corresponding projections 
πt(x) = x1 + tx2 for t ∈ R, π∞(x) = x2. Since we can use a projective transformation 
to map any three directions to any three specified directions without changing the 
incidence structure, let’s begin with |D| = 4. Without of loss of generality we 
may assume D = {0, 1, t, ∞}. When t is rational with small denominator the grid 
example still works. Things become more interesting when t is transcendental. For 
example, we may take Pk,s = {a0 + a1t + · · · + ak−1t

k−1 : ai ∈ Z, 0 ≤ ai ≤ s − 1} 
be a set of polynomials in t and let X = Pk,s × Pk,s. Then |X| = s2k . We have 
π0(X) = π∞(X) = Pk,s, π1(X) ⊂ Pk,2s, πt(X) ⊂ Pk+1,2s. Since t is transcendental, 
S(X, D) ∼ |πt(X)| ∼ 2k|X|1/2k|X|1/2 . Choose k = (log2(|X|)/21/2 to maximize 
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the RHS, we obtain that is this case SD(X) ∼ e c(log |X|)1/2 |X|1/2 . It would also be
interesting to analyze S(X, D) for other D’s, like D = {0, 1, ∞, t1, . . . , tk} where tj’s 
are algebraic independent over Q. 

Projection Theory over Finite Fields. We have seen that projection theory over 
finite fields may be different from that over the reals. Let X be a set of points, D be 
a set of directions. Let S = maxθ∈D πθ(X). Our conjecture is that for |S| ≤ p/2, 

|S|  |D|1/2|X|1/2 . 

It would be attempting to investigate the structure of sharp examples for this bound, 
and one may conjecture they are essentially grids. 

Remark 9.2. Let’s give an example showing that the original version of Szemerédi-
Trotter bound fails over complex field. Again, let X be a set of unit balls in BC2 

R ⊂ C2 , 
D ⊂ BC 

1 ⊂ C be an R−1-separated set of directions. For t ∈ D, let πt : C2 → C 
be the map (z1, z2) → z1 + tz2. For our example, choose X to be a maximal set of 
R−1-separated unit balls with centers in R2 , and D to be a maximal R−1-separated 
subset of R ∩ BC 

R. Then |X| ∼ R2 , |D| ∼ R satisfy the Hausdorff spacing condition, 
while S(X, D) ∼ R  |X|1/2|D|1/2 . 

Projection Theory of Unit Balls. Let X be a set of unit balls in BR, D be a 
set of 1/R-separated directions. Define NX (r) = maxc∈BR |X ∩ B(c, r)|, ND(ρ) = 
maxγ⊂S1 ,|γ|=ρ |D ∩ γ|. We will assume that X has Hausdorff spacing, which means 
there exists 0 ≤ α ≤ 1 such that |X| ∼ Rα , NX (r)  rα . Similarly we will also 
assume that |D| ∼ Rβ , ND(r/R)  rβ . The following conjecture by Furstenberg was 
recently proved by Orponen, Shmerkin, Ren and Wang: 

Theorem 9.3. Under the above assumption, we have 

|D| 
< 
≈ |S|2/|X| 

if |D|  R− min(R, |X|). 

We will discuss briefly why cell decomposition doesn’t work in this case. Suppose 
that we have divided BR into s2 cells. There is no guarantee on the shape of each 
cell Oi, but in one important scenario, most cells are roughly balls of some radius r 
so that it is possible for us to apply induction hypothesis. (At first one might think 
r = R/s, but this may not be the case. It may be that most of the balls of radius 
r cover only a fractal subset of BR which contains our set X.) The problem is, the 
R−1-separated directions may look indistinguishable at smaller scales. In each cell 
we have to choose an r-separated subset Di ⊂ D. By the Hausdorff assumption, in a 
typical cell we will have |Xi| ∼ rα , |Di| ∼ rβ . So we can not force |Xi|2 to be smaller 
than |Li| by simply passing to smaller balls. 
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10. Sum-product theory 

Tues March 18 
The best bounds in projection theory are different in different fields. The best 

bounds for projections of balls in C2 are different than in R2 . The best bounds for 
projections in F2

p2 are different than for F2
p. Most of the recent work in projection 

theory is concerned with understanding these differences, and they are important for 
many applications. 

The key example is simplest in the finite field setting. It goes as follows. 

Example 10.1. Let p be a prime, q = p 2 , X = F2 
p ⊂ F2 

q, D = Fp ⊂ Fq. For θ ∈ Fq, 
let πθ : F2 

q → Fq be defined by πθ(x1, x2) = x1 + θx2. Then set S = maxθ∈D |πθ(X)|. 
We have πθ(X) = Fp for all θ ∈ D, so S = p. Then we have |X| = p 2 = q, S = 
|D| = p = q 1/2 . 

So the sizes of the projections of X can be small even when X is large. However, 
the same cannot happen over Fp: 

Theorem 10.2 (Bourgain-Katz-Tao). Let X ⊂ F2 
p with |X| = p s for 0 ≤ s < 2. Let 

D ⊂ Fp with |D| = p t for 0 < t ≤ 1. Then S = maxθ∈D |πθ(X)| ≥ ps/2+(s,t) where 
(s, t) > 0. 

There is an example in C2 which is analogous to Example 10.1. In this example 
X = R2 ⊂ C2 . And there is a theorem called the Bourgain projection theorem 
which says that no set in R2 can behave similarly to this example. We will dicuss 
the Bourgain projection theorem in detail in a few lectures. We begin with the finite 
field setting which is somewhat cleaner. The setting of balls in R2 is analogous with 
some additional issues. 

Note that the key difference between Fp and Fq that allows an example like Exam-
ple 10.1 to exist while no such example exists over Fp is the existence of a subfield 
Fq. A way to quantify the properties of a subfield is a set X with small sum and 
product sets. As such, we should study the sizes of such sets. This study is called 
sum-product theory. 

Sum-product theory uses tools from additive combinatorics. The set of tools that 
go into the proof of Theorem 10.2 is very different from the tools that we have studied 
in projection theory so far. In this lecture, we introduce sum-product theory and 
some of the key tools from additive combinatorics. This is the first of four lectures 
on this area. Over the four lectures we will flesh out the different tools from the area 
and use them to prove the BKT projection theorem. 

10.1. Sum-product theory. 
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Notation 10.3. For A ⊂ Fp, let 

A + A = {a1 + a2 : ai ∈ A}, A · A = {a1a2 : ai ∈ A}. 
Also, let A⊕n = A + A + · · · + A   

n 

. 

If A is an arithmetic progression, then its sumset is only a little bigger than A. 
If A is a geometric progression, then its product set is only a little bigger than A. 
Erdos and Szemeredi conjectured that for any set of numbers A, either the sumset 
or the product set is much bigger than A. This principle has turned out to be crucial 
for modern developments in projection theory. We introduce this subject, including 
a whole different set of tools from combinatorial number theory building on work of 
Plunnecke, Ruzsa and Edgar-Miller. 

Lemma 10.4. If A ⊂ Fp, then either 

(1) A−A 
A−A = Fp, or 

(2) 
   (A·A)⊕3−(A·A)⊕3 

A−A 

   ≥ |A|2 . 

Remark. Some version of this trick goes back to the work of Edgar-Miller, and it 
was adapted by Bourgain-Katz-Tao and Garaev. 

Proof. First, note that if c ∈ A−A 
A−A , then |A + cA| = |A|2 . Indeed, if this was not the 

case then there would be some a1, a2, a1, a

2 ∈ A with a1 + ca2 = a1 + ca2. But this 

implies c = a
 
1−a1 

a2−a2
∈ A−A 

A−A . 

Next, note that if A−A 
A−A = Fp then there is some b ∈ A−A 

A−A with b + 1 ∈ A−A 
A−A . Indeed, 

we can set b + 1 to be the smallest element of Fp \ A−A 
A−A , which would imply b ∈ A−A 

A−A . 
Now, if A−A 

A−A = Fp, then we have    A + 

 
A− A 
A− A 

+ 1 

 

A 

   ≥ |A|2 , 

which implies 2 after putting the LHS over a common denominator.  

10.2. Freiman-Ruzsa theorem. One question to ask in sum-product theory is 
when the set A + A is small. 

Example 10.5. (1) If A = [L], then |A + A| ≤ 2|A|. 
(2) More generally, if A is an arithmetic progression A = {a + nd}n∈[L], then 

|A + A| ≤ 2|A|. 
(3) Even more generally, we can consider A = {a+n1d1 + · · ·+nrdr}ni∈[Li]. Then 

A + A ⊂ {2a + n1d1 + · · · + nrdr}2≤ni≤2Li , so |A + A| ≤ 2r|A|. In this case 
we call A a generalized arithmetic progression (GAP) of dimension r 
and volume L1 · · · Lr. 
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Theorem 10.6 (Freiman-Ruzsa). If A ⊂ Z and |A+A| ≤ K|A|, then A is contained 
in a GAP of dimension r(K) and vol ≤ V (K) · |A|. 

This is a deep theorem that we will not prove, and the quantitative bounds on 
r(K) and V (K) are weak. In the original paper, the bounds were of the form 
r(K) = exp(Kc), V (K) = exp(exp(Kc)), so the theorem is only meaningful if K is 
small. 

Conjecture 10.7. There is a meaningful bound if K = |A|δ for some δ > 0. 

10.3. Ruzsa triangle inequality. 

Theorem 10.8 (Ruzsa). Let Z be an abelian group and A, B, C ⊂ Z. Then |A||B − 
C| ≤ |A − B||A − C|. 

Corollary 10.9. If |A + A| ≤ K|A|, then |A − A| ≤ K2|A|. 

Proof. Use Ruzsa’s triangle inequality with A = A, B, C = −A. Then we have 

|B − C| = |(−A) − (−A)| = |A − A|, |A − B| = |A − C| = |A − (−A)| = |A + A|. 
So Ruzsa’s triangle inequality tells us that |A||A − A| ≤ |A + A|2 , which implies the 
corollary.  

Proof of Ruzsa triangle inequality. We will construct an injective map φ : A × (B − 
C) → (A − B) × (A − C). For all d ∈ B − C, fix some b(d) ∈ B, c(d) ∈ C with 
d = b(d) − c(d). Then set φ(a, d) = (a − b(d), a − c(d)). We need to show that φ 
is injective. Suppose φ(a, d) = (x, y). Then we will recover a, d from x, y and the 
choices of b(d), c(d). Note that we have y − x = b(d) − c(d) = d, so we can recover 
d. Then from d we know b(d), so we can recover a = x + b(d).  

10.4. Plunnecke inequality. 

Theorem 10.10 (Plunnecke). Let Z be an abelian group and A, B ⊂ Z with |A + 
B| ≤ K|A|. Then |B⊕m − B⊕n| ≤ Km+n|A|. 

Corollary 10.11. If |A + A| ≤ K|A| then |A − A| ≤ K2|A|, |A + A + A| ≤ K3|A|. 

Corollary 10.12. If |A − A| ≤ K|A| then |A + A| ≤ K2|A|. 

Proof. Use Plunnecke’s inequality with B = −A.  

Lemma 10.13. If A ⊂ Fp, |A| = ps for 0 ≤ s < 1, then |A3 − A3| ≥ ps+(s) for some 
(s) > 0. 

Proof. Let B = (A2)⊕3 − (A2)⊕3 , C = A − A. Then by Lemma 10.4 we have 
 B 
C 

  ≥ 
p s+γ(s) for some γ > 0. Now, assume for contradiction that |A3 − A3| ≤ K|A| where 
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K  1. Then we have |A3| ≤ K|A|, and since |A| ≤ |A3|, we have |A3 −A3| ≤ K|A3|. 
Then Plunnecke’s inequality implies 

|(A 3)⊕m − (A 3)⊕n| ≤ Km+n|A 3| ≤ Km+n+1|A|. 
In particular, this implies |B · C|, |A · B|, |A · C| ≤ KO(1)|A|. Then the Ruzsa triangle 
inequality (on Fp as a multiplicative set) implies 

|A| 
    B 
C 

   ≤ |A · B||A · C| ≤ K O(1)|A|2 , 

so we have p s+γ ≤ 
 B 
C 

  ≤ KO(1)|A| = KO(1)p s , which contradicts K  1.  

In fact, there is actually a stronger statement: 

Theorem 10.14 (Bourgain-Katz-Tao). If A ⊂ Fp with |A| = ps , then max(|A · 
A|, |A + A|) ≥ p s+(s) . 

Notation 10.15. We define PolyK (A) = (AK)⊕K − (AK )⊕K . 

Corollary 10.16. If 0 < s < t < 1, then there exists a K = K(s, t) such that for 
all A ⊂ Fp with |A| = ps , we have |PolyK (A)| ≥ pt . 

Proof. Apply Lemma 10.13 many times.  

The following proof is due to Petridis. 

Proof of Plunnecke’s inequality. The proof depends on a key lemma. 

Lemma 10.17. If |A + B| ≤ K|A|, then there exists a X ⊂ A such that for all 
C ⊂ Z we have 

|X + C + B| 
|X + C| 

≤ K. 

Proof. Choose X ⊂ A to minimize the value |X+B| 
|X| . Then set |X+B| 

|X| = K ≤ K. We 

will show by induction on |C| that |X+C+B| 
|X+C| ≤ K for all C ⊂ Z. 

For the base case, when |C| = 1 we have |X+C+B| 
|X+C| = |X+B| 

|X| = K. For the inductive 

step, let C  = C ∪ {c}, and assume that |X+C+B| 
|X+B| ≤ K. Then set 

Y = {x ∈ X : x + c + B ⊂ X + C + B}. 
Note that by construction we have Y + {c} + B ⊂ X + C + B. Now, let us bound 
|X + C  + B| and |X + C |. First, we have 

|X + C  + B| = |X + C + B| + |(X + {c} + B) \ (X + C + B)| 
≤ |X + C + B| + |(X + {c} + B \ (Y + {c} + B| 
= |X + C + B| + |X + B| − |Y + B|. 
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Next, we have 

|X + C | = |X + C| + |{x ∈ X : x + c ∈ X + C}| 
= |X + C| + |X| − |{x ∈ X : x + c ∈ X + C}| 
≥ |X + C| + |X| − |Y |. 

Recall that we have |X + C + B| ≤ K|X + C| and |X + B| = K|X|, and we also 
have |Y + B| ≥ K|Y | by the definition of X. So we have 

|X+C +B| ≤ |X+C+B|+|X+B|−|Y +B| ≤ K|X+C|+K|X|−K|Y | ≤ K|X+C |, 
completing the proof.  

Now, let us return to the proof of Plunnecke’s inequality. By the key lemma, there 
is some X ⊂ A such that |X + C + B| ≤ K|X + C|. Plugging in C = {c} yields 
|X + B| ≤ K|X|. Then plugging in C = B gives |X + B + B| ≤ K|X + B| ≤ K2|X|. 
Continuing in this fashion, we get |X + B⊕m| ≤ Km|X|. 
Now, Ruzsa’s triangle inequality implies 

|X||B ⊕m −B ⊕n| ≤ |X + B ⊕m||X + B ⊕n| ≤ Km+n|X|2 , 

so we get 
|B ⊕m −B ⊕n| ≤ Km+n|X| ≤ Km+n|A|. 

 
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11. Contagious structure in projection theory 

Thur March 20 
Suppose that X ⊂ Fq. Recall that the exceptional directions are directions θ so 

that πθ(X) is very small. In this class we explore the algebraic structure of the set 
of exceptional directions. A basic example is that X is a square grid. In this case, 
the exceptional directions are rational numbers with small numerator / denominator. 
(The smaller the height of the rational number, the smaller |πθ(X)| is. Notice that 
this set of exceptional directions has a lot of algebraic structure: the sum or product 
of two exceptional directions is also (pretty) exceptional. We call this contagious 
structure. Using combinatorial number theory, we show that for any set X, the 
set of exceptional directions has contagious structure. This idea builds on work of 
Edgar-Miller and was developed by Bourgain-Katz-Tao. 

This technique will play an important role in the proof of the Bourgain-Katz-Tao 
projection theorem. 

11.1. Contagious Structure Lemma. 

Lemma 11.1. If Z is an abelian group and A ⊂ Z, and 

|A − tA| ≤ K|A| and |A − t2A| ≤ K|A|, 

then |A − (t1 · t2)A| ≤ K2A. 

Proof. Note that |A − t2A| ≤ K|A| implies that |t1A − t1t2A| ≤ K|A|. Let B̄ = A, 
C̄ = t1t2A, Ā = A in Rusza’s inequality, so 

|t1A||A − t1t2A| ≤ |t1A − A||t1 − t1t2A|. 

Thus, |A||A − t1t2A| ≤ K2|A|.  

Lemma 11.2. If |A + tA| ≤ K|A| then |A − tA| ≤ K2|A|. 

Proof. By Rusza’s inequality, |A||A − tA| ≤ |A + A||A + tA|. By Plunnecke’s in-
equality, |A + A| ≤ K2|A|. Thus, |A||A − tA| ≤ K3|A|.  

Lemma 11.3. If |A + t1A| ≤ |A| and |A + t2A| ≤ K|A|, then 

|A + (t1 + t2)A| ≤ K 5|A|. 

Proof. Note that |A + (t1 + t2)A| ≤ |A + t1A + t2A|. By the main lemma, there exists 
X1 ⊂ A so for any C, we have |X1 + C + t1A| ≤ |X1 + C| and there exists X2 ⊂ A 
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so for any C, we have |X2 + C + t1A| ≤ |X2 + C|. 
|A + t1A + t2A| ≤ |x1 + x2 + A + t1A + t2A| 

≤ K|x1 + x2 + A + t2A| 
≤ K 2|x1 + x2 + A| 
≤ K 2|A + A + A| 
≤ K 5|A| 

 

Our goal today is to prove the following theorem. 

Theorem 11.4. If A ⊂ Fp, |A| = psA , D ⊂ Fp, |D| = psD , 0 < sA, sp < 1. Then, 
there exists (sA, sD) > 0, max(sA, sD) > 0, max(|A + tA|) ≥ psA+(sA,sD ) . 

Corollary 11.5. |A + A · A| ≥ psA+ . 

Now, let’s recall double counting result. 

Lemma 11.6. (Double Counting) 
Suppose X ⊆ F2

p, and D ⊆ Fp, then 

max 
t∈D 

|πt(X)|  min(|X|, |D|). 

Note that if sD > sA, then double counting implies theorem 11.4, so the hard cases 
are the cases in which 0 < sD < sA. Let’s also recall a corollary from the previous 
section. 

Lemma 11.7. If 0 < s < t < 1, then there exists k = k(s, t) so if A ⊆ Fp, |A| = p s 

then |polyk(A)| ≥ p t . 

The proof idea is to use lemma 11.7 to increase sD to be bigger than sA by taking 
sums and products and then use the contagious structure. 

Proof. By lemma 11.7, there exists K(sA, sD) so |polyk(D)| > psA+r . By double 
counting there exists u ∈ polyk(D) so |A + uA| > psA+r . But if maxt∈D |A + tA| ≤ 
K|A|, then the contagious structure says that 

max 
u∈polyk (D) 

|A + uA| ≤ Kc(k)|A| = Kc(sA,sD )|A| = Kc p s . 

However, this would imply that Kc ≥ pr which would imply that pr/c = p a contra-
diction.  

The above theorem 11.4 is a special case of the following theorem when we put 
X = A × A. 
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Theorem 11.8. (BKT) 
If X ⊆ F2 

p, |X| = p sX with 0 < sX < 2, and D ⊆ Fp with |D| = p sD such that 0 < sD. 

max 
t∈D 

|πt(X)| ≥ p |X| 
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12. Proof of Bourgain-Katz-Tao projection theorem 

Tues Apr 1 
In this section, we introduce the Balog-Szemeredi-Gowers theorem and use it to 

finish the proof of the Bourgain-Katz-Tao projection theorem. 
The Balog-Szemeredi-Gowers theorem is an important result from additive com-

binatorics which has many applications. 

12.1. Proof of BKT. Recall the Bourgain-Katz-Tao theorem for Fp: 

Theorem 12.1 (BKT). Let X ⊂ F2
p be a subset with size |X| = psX , 0 < sX < 2 

and D ⊂ Fp be a set of direction with |D| = psD , sD > 0. Then 

max 
t∈D 

|πt(X)|  p |X|1/2 

for  = (sX , sD) > 0. 

The same statement fails for nonprime field Fq, as one can see by taking (X, D) 
to be (F2

p, Fp) where q = pa . 
Our proof will be based on Theorem 12.1 in previous lectures, which we state here 

for reader’s convenience. 

Theorem 12.2. Let A, D be subsets of Fp with |A| = p sA , 0 < sA < 1 and |D| = p sD , 
sD > 0. Then 

max 
D 

|A + tA| ≥ p 1 |A| 

for 1 = 1(sA, sD). 

It can be viewed as a special case of BKT where X takes the special form A × A. 
Let’s try to prove BKT by contradiction using this theorem. Assume that SD(X)  
p|X|1/2 for  > 0 to be determined. Since the size of projections are invariant under 
projective transformations, we may assume 0, ∞ ∈ D without loss of generality. 

Let A = π0X ∪π∞X. Then X ⊂ A×A. By Theorem 12.1, we have maxt∈D |πt(A× 
A)|  p1 |A × A| ≥ p1 |X|1/2 with 1 = 1(sX /2, sD). We will win if the size of 
projections of A × A does not differ too much from that of X. But this is not always 
the case. 

Consider the following enemy scenario. Here the red plots are points of X and the 
blue plots are some random elements we added to form A × A. One can easily see 
that even if the size of X is comparable to the size of A×A, some of their projections 
may still be quite different. 

To be more precise, let X be the grid example X = [N ] × [N ]. Then it has 
small projections along rational directions. Now choose A = [N ] ∪ ˜ A to be the 
projection of X plus some unstructured ”garbage” ˜ A with |Ã| = N . For a generic 
choice of ˜ A it will cause large projections along most directions. To avoid this kind 
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X 
π 

A × A\X 

π(X) 

π(A × A\X) 

Figure 13. Enemy scenario 

of difficulties, it is necessary to remove the ”garbage” part of A. Fortunately, the 
BalogSzemerédiGowers theorem says this is always possible. 

Theorem 12.3 (BSG). Let X, A, B be subsets of an abelian group (G, +). For t ∈ G, 
let πt : G × G → G denote the projection operator (g1, g2) → g1 + tg2. Assume that 
|A|, |B| ≤ N , X ⊂ A × B and |X| ≥ K−1N2 , |πtX| ≤ KN for some t ∈ G. Then 
exists A ⊂ A, B ⊂ B such that |X  |  K−O(1)N2 , πt(A × B) ≤ KO(1)N where
X  = X ∩ (A × B). 

Assumeing this theorem, it is easy to prove BKT: 

Proof. (of BKT assuming BSG) Assume SD(X) ≤ p|X| with  > 0 t.b.d., {0, ∞} ⊂ 
D. Let A = π0X ∪ π∞X. By our previous discussion, maxt∈D |πt(A × A)|  p1 |A × 
A| ≥ p1 |X|1/2 with 1 depending only on sA, sD. Write |A| = N ≥ |X|1/2 . Then 
by assumption we have N2 ≤ p2|X|. Fix some t1 ∈ D \ {0, ∞} and apply BSG, we 
obtain A , B ⊂ A, X  = X∩(A×B) such that |X | ≥ p−O()N2 , |A+t1B

| ≤ pO()N . 
Since X  ⊂ A × B has small projection along one direction, we expect it to be 

highly structured and hence has small projections along many other directions. This 
is done by the following argument. Let t ∈ G. Consider the map 

πt 

 

A × 
−1 
t1 
A  
 

×X  → (A  − A ) × (A  − t1B ) × πt(Y ) 

given by  

a1 − 
1 
t1 
a2, (a, b) 

 

→ (a1 − a, a2 + t1b, a + tb). 



72 PROJECTION THEORY NOTES 

This map is clearly injective. Hence πt  

A × 
−1 
t1 
A  
   ≤ 

|A − A||A + t1B||πt(X )| 
|X | 

≤ p O() N
2 

|X |
|πt(X )|, 

where we used Plünnecke-Ruzsa to bound |A − A|. Therefore, 

max 
t∈D 

|πt(X )| ≥ p−O() max 
t∈D 

|X | 
N2 

|π−t/t1 (A  × A )| ≥ p 1−O()|X|1/2 

by Theorem 12.1. A contradiction if  is sufficiently small w.r.t. 1.  

12.2. Additive energy and robust estimates. Le A, B be finite subsets of an 
abelian group (G, +). Define the energy 

E(A, B) = |{a1, a2 ∈ A, b1, b2 ∈ B : a1 + b1 = a2 + b2}|. 
There is a close relation between E(A, B) and the size of the sumset A+B. Basically 
the energy counts the number of additive relations between A and B. Thus E(A, B) 
must be large if |A + B| is small. One may see this from the following proposition. 

Proposition 12.4. We have 

|A|2|B|2 ≤ |A + B|E(A, B) 

Proof. For z ∈ G, write rA,B(z) = |{(a, b) ∈ A × B : a + b = z}|. Then E(A, B) =  
A+B rA,B(z)

2 . By Cauchy-Schwarz, 

|A + B|E(A, B) ≥ 

  

A+B 

rA,B(z) 

 2 

= (|A||B|)2 . 

 

However, the converse if not true. Even if there are many additive relations be-
tween the elements of A, B, these subsets may still contain garbage with size com-
parable to the size of themselves which forces |A + B| to be very large. One may 
exhibit this by taking A = B ⊂ Z to be [N ]∪ (some random subset of Z with size 
N). Instead, we have the BSG theorem for energy below. 

Our previous results like Theorem 12.1 and BSG, BKT can also be formulated in 
terms of energy instead of cardinality. Let’s record some results here without proof. 
The proofs use variations of the ideas we have presented. First we recall the BKT 
theorem that we have proven. 

Theorem 12.5. [BKT] Let A, D be subsets of Fp with |A| = psA , 0 < sA < 1 and 
|D| = psD , sD > 0. Then there exists t ∈ D so that 

|A + tA| = |πt(A × A)| ≥ p 2|A|, 
for 2 = 2(sA, sD) > 0. 
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Theorem 12.6 (BSG var). Let A, B be subsets of (G, +) with |A|, |B| = N and 
E(A, B) ≥ K−1N3 . There exists A ⊂ A, B ⊂ B with |A|, |B| ≥ K−O(1)N such 
that |A + B | ≤ KO(1)N .

Theorem 12.7. [BKT 2] With the same setting of BKT, there exists t ∈ D such 
that for any subset Y ⊂ X with |Y | ≥ p−|X|, we have |πt(Y )| ≥ p|X|1/2 . 

Theorem 12.7 is a more robust version of Theorem 12.5. Proving more robust 
versions of this kind is important for applications in projection theory. 

Let’s remark that there are both advantages and disadvantages of working with 
energy. It makes the problem behaves better when passing to large subsets. But 
there is also a major drawback: Recall that P-R inequality yields the contagious 
structure of |A + tA| (see Lemma 12.x with 1 ≤ x ≤ 3). This is no longer the case 
for energy. Intuitively, to say that E(A, B) is large is equivalent to say that a large 
part of A is ”friendly” (has a lot of nontrivial additive relations) with a large part 
of B. Even if for each i there is a piece of A being friendly with tiA, they are not 
necessarily the same for each i. Consider the example A = [N ] ∪ t1[N ] ∪ t2[N ]. Then 
both E(A, t1A) and E(A, t2A) are large, but E(A, (t1 +t2)A) doesn’t need to be large 
in general. 



74 PROJECTION THEORY NOTES 

13. Proof of the Balog-Szemeredi-Gowers Theorem 

Thur Apr 3 
In this lecture we’ll prove the BSG theorem that we used in the proof of the BKT 

theorem. Here’s the statement again: 

Theorem 13.1 (Balog–Szemerédi–Gowers). Let A and B be subsets of an abelian 
group and suppose X ⊂ A × B. If |A|, |B| ≤ N , |X| ≥ K−1N2 , and |π1(X)| ≤ KN , 
then there are A ⊂ A and B ⊂ B such that |A + B | ≤ KO(1)N and |X | ≥ 
K−O(1)N2 , where X  = X ∩ (A × B). 

Here π1(X) = {a + b : (a, b) ∈ X}. 

Example 13.2. As subsets of Z, let A = B be the union of [N ] and some garbage. 
Let X be the union of any subset of [N ] × [N ] and a little garbage. Then π1(X) is 
small ( N), while |A + B|  N2 is large. We can take A = B = [N ]. 

The theorem was originally proved by Balog and Szemerédi, but in the bounds 
KO(1) was instead F (k) and K−O(1) was 1 

F (K) , and F (K) was some function with 
crazy growth. The bounds in the version stated above are due to Gowers. 

We will proceed by thinking of X ⊂ A × B as a bipartite graph with A on the left, 
B on the right, and an element (a, b) ∈ X representing an edge from a to b. Let 

PK (a, b) = #{paths of length K in the graph X from a to b}. 

Lemma 13.3. If A ⊂ A and B ⊂ B, and for any a ∈ A , b ∈ B , P3(a, b) ≥ P , 
then 

|A  + B | ≤ 
π1(X)3 

P 
. 

Proof. A path of length 3 from a to b goes from a to some b1 ∈ B, then to some 
a1 ∈ A, then to b. So (a, b1), (a1, b1), (a1, b) ∈ X and hence 

a + b1   
z1 

, a1 + b1   
z2 

, a1 + b    
z2 

∈ π1(X). 

We can write a + b = z1 − z2 + z3. Therefore 

#{(z1, z2, z3) ∈ π1(X)3 : a + b = z1 − z2 + z3} ≥ P3(a, b) ≥ P. 

Summing over A + B we get 

|A  + B | · P ≤ |π1(X)|3 . 

 

From now on, everything we prove will be a statement about bipartite graphs, i.e. 
we don’t need the addition law for anything that follows. 
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Lemma 13.4 (Key Lemma). If X ⊆ A × B and |X| ≥ K−1|A||B|, then there are 
A ⊂ A and B ⊂ B such that |X | ≥ K−O(1)|A||B| where X  = X ∩ (A × B) and 
for any a ∈ A , b ∈ B , 

P3(a, b) ≥ K−O(1)|A||B|. 

The BSG theorem is proved by combining Lemma 13.3 and the Key Lemma. 

13.1. Simple Bounds About PK (a, b). In this section, we have 

# edges = |X| =≥ K−1|A||B|, 
P := #paths of length  starting in A, 

P1 = |X| ≥ K−1|A||B|. 

Definition 13.5. For a ∈ A, the neighborhood of a is the set N(a) of points that 
share an edge with a. 

We can average over |A| to get 

Avga∈A P1(a, ·) = 
|P1| 
|A| 

≥ K−1|B|. 

To get an estimate for the average of P2, we use Cauchy-Schwarz to get 

P2 = 
 

b 

|N(b)|2 

≥ 
( 
 

b |N(b)|)2 

|B| 

≥ 
(K−1|A||B|)2 

|B| 
= K−2|A|2|B|. 

Averaging this get us 
Avga1,a2 

P2(a1, a2) ≥ K−2|B|. 
As an exercise, use similar methods to prove |P3| ≥ K−3|A|2|B|2 and 

Avga,b P3(a, b) ≥ K−3|A||B|. 

The Key Lemma says that P3(a, b) is at least a small fraction of the average for all 
a ∈ A , b ∈ B . 

Lemma 13.6 (Length 2). If X ⊂ A × B, |X| ≥ K−1|A||B|,  > 0, then there is a 
subset A ⊂ A such that |A| ≥ 1

2 K
−1|A| and P2(a1, a2) ≥ K−2|B| for (1 − 2)|A|2 

choices of (a1, a2) ∈ (A)2 . 
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Note that we cannot always take A = A, because there are graphs X where only 
1 
K
|A| vertices in A have an edge and there are also graphs with multiple connected 

components. What we will do is let A = N(b) for some b ∈ B. 

Definition 13.7. A pair (a1, a2) is -bad if P2(a1, a2) < K−2|B|. Let 
BP(b) = #{(a1, a2) ∈ N(b)2 : (a1, a2) is -bad}. 

Lemma 13.8 (P1). 
Eb|BP(b)| ≤ K−2|A|2 . 

Lemma 13.9 (P2). 
Eb|N(b)|2 ≥ K−2|A|2 . 

This says there’s only about an -fraction of bad pairs. 

Proof of P2. By Cauchy-Schwarz,  

b 

|N(b)|2 ≥ 
( 
 

b |N(b)|)2 

|B| 

≥ 
(K−1|A||B|)2 

|B| 
= K−2|A|2|B|. 

Divide by |B|.  

Proof of P1.  

b 

|BP(b)| = #{a1, a2, b such that (a1, b), (a2, b) ∈ X and P (a1, a2) ≤ K−2|B|} 

≤ |A| 2 K−2|B|. 

Divide by |B|.  

Proof of Length 2. Let A = N(b). Then by the previous two lemmas, 

E 

 

|N(b)|2 − 
1 
2
|BP(b)| 

 

≥ 
1 
2 
K−2|A|2 . 

So we can pick b to satisfy 

|N(b)|2 − 
1 
2
|BP(b)| ≥ 

1 
2 
K−2|A|2 

and let A = N(b). Then |BP(b)| ≤ 2|N(b)|2 .  

By discarding some a1’s, we can upgrade this. 
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Lemma 13.10 (2). If X ⊂ A × B, |X| ≥ K−1|A||B|, and  > 0, then there exists 
A2 ⊂ A such that |A2| ≥ 1

4 K
−1|A| and for every a ∈ A2, there are at most 10|A2| 

choices for a2 such that (a, a2) is -bad. 

We won’t prove this, but the idea is to let 

A2 = A  \ {a ∈ A  : (a, a2) is -bad for many a2 ∈ A }. 
The second part of the conclusion can be written as A = B(a)∪G(a), where |B(a)| ≤ 
10|A2| and for any a2 ∈ G(a), P2(a, a2) ≥ K−2|B|. 
Proof of Key Lemma. First, let 

A1 = {a ∈ A : |N(a)| ≥ 
1 
10 
K−1|A|}. 

Let 
X(A  , B ) := {(a, b) ∈ (A  × B ) ∩ X} = (A  × B ) ∩ X. 

Choose A ⊂ A be the A2 of Lemma 2. Let 

B  = {b ∈ B : |N(b) ∩ A | > 20|A  |} 

so 
|B(a)| ≤ 10|A |. 

For any a ∈ A , b ∈ B , we have 

P3(a, b) ≥ K−2|B|(|N(b) ∩ G(a)|) 
≥ K−2|B|(|N(b) ∩ A | − |B(a)|) 
  2 K−3|A||B| 

using |A|  K−1|A|. Now we just need to check |X(A , B )| ≥ K−O(1)|X|. Since
|A|  K−1|A|, A ⊂ A, N(a) ≥ 1 

10 K
−1|B| for a ∈ A , and |X(A , B)|  K−2|A||B|, 

so 

|X(A  , B \ B )| ≤ 20|A  ||B| 
≤ 20|A||B|. 

Let  = 1 
106 K

−2 , so |X(A , B \ B)|  |X(A , B)|. Hence 

|X(A  , B )| ∼ |X(A  , B)| ≥ K−O(1)|A||B|. 
 
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14. Bourgain’s projection theorem over R, part 1 

Tues Apr 8 
Over the next three lectures, we discuss Bourgain’s projection theorem over R. 

Bourgain’s projection theorem is analogous to the BKT projection theorem which 
we studied in the last four lectures, but with balls in R2 in place of points in F2

p. 
The proof ideas are analogous but there are some new issues in R2 . To motivate the 
statement of the theorem, we begin by recalling what we learned about the finite 
field case. 

14.1. Finite field case. Let us first recall the BKT projection theorem over Fp. 

Theorem 14.1 (Bourgain-Katz-Tao). Let 0 < t < 2, 0 < s ≤ 1 and p be a prime. 
Then there exists some  = (s, t) > 0 such that for all X ⊂ F2

p with |X| = pt and all 
D ⊂ Fp with |D| = ps , we have 

max 
θ∈D 

|πθX| ≥ p t/2+ 

and 

max 
θ∈D 

min 
Y ⊂X,|Y |≥p−|X| 

|πθY | ≥ p t/2+ . 

We proved the first part of this theorem in a previous lecture and made some 
comments about the second part. 

Remark 14.2. Note that if we instead consider  = 0 and |D| ≥ 2, then the bound 
becomes trivial. Indeed, for any θ1 = θ2, we have an injective map X → πθ1 X×πθ2 X, 
which implies maxθ∈D |πθX| ≥ |X|1/2 . 

14.2. Real case. Now, let us consider the analogous theorem for unit balls in R2 . 
Let R be some positive real number and let X ⊂ BR be a (not necessarily disjoint) 
union of unit balls. Let D ⊂ [0, 1] be a 1 

R
-separated set, and set πθ(x1, x2) = x1 +θx2 

like in the Fp case. 
Note that without any additional assumptions, the trivial bound in Remark 14.2 

does not hold in the real case. So to state Bourgain’s projection theorem we will 
need additional assumptions on X, D. 

Example 14.3. (1) Consider when X is a 1×R rectangle packed with unit balls. 
Then if we set D = [0, Rs] then we get max |πθX| ∼ Rs , so if s < t 

2
then we 

get max |πθ X| < Rt/2 .
(2) Let X = B(0, R1/2). Then |X| ∼ R and |πθX| ∼ R1/2 for all θ. So in this 

case we do not get max |πθX| ≥ Rt/2+ . 
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Theorem 14.4 (Bourgain). Let 0 < t < 2, 0 < s ≤ 1. Then there exist , η > 0, 
both functions of s, t, such that for all X with |X| = Rt , D with |D| = Rs , if for all 
x ∈ BR, r ≤ R, θ ∈ [0, 1], ρ ∈ [0, 1] we have 

|X ∩ B(x, r)| ≤ R η 
 r 
R 

 t 
|X|, |D ∩ B(θ, ρ)| ≤ R η ρs|D|, 

then there exists some θ ∈ D such that 

inf 
Y ⊂X,|Y |≥R−η |X| 

|πθY | ≥ Rt/2+ . 

Note that this theorem does not hold over C. Indeed, if we take X = BR ∩ R2 and 
D the set of real directions, then we get a similar counterexample to the Fp2 case. 

We would like to adopt the various inequalities we used in the Fp case (Ruzsa 
triangle inequality, Plunnecke inequality, Balog-Szemeredi-Gowers) to the real case. 

Carrying out this program, many of the steps work smoothly, but there are two 
particular steps that require new ideas. In these notes, we will identify these two 
steps and describe the new issue that arises and the idea to get around it. 

First we introduce a new notion of size of a set. 

Definition 14.5. Let X ⊂ Rd . Then for any δ > 0, the δ-covering number |X|δ 

is the smallest number of δ-balls needed to cover X. 

We make a few observations about delta covering numbers: 

• If X is 2δ-separated, then |X|δ = |X|. 
• If X is a union of δ-balls, then |X|δ ∼d δ

−d|X|. 
• Let Dδ = {δk + [0, δ)d , k ∈ Zd}. Then |X|δ ∼d |{Q ∈ Dδ, Q ∩ X = ∅}|. 

In lieu of this last observation, we define 

X(δ) = {k : (δk + [0, δ)d) ∩ X = ∅}, 
so we have |X|δ ∼ |X(δ)|. 

Now, the Ruzsa triangle inequality, Plunnecke inequality, and Balog-Szemeredi-
Gowers all hold for δ-covering numbers. For example, for the Ruzsa triangle inequal-
ity the statement is now 

|B|δ|A − C|δ  |A − B|δ|B − C|δ 

for all A, B, C ⊂ Rd . 
Recall the key idea for expanding sets over Fp: 

Lemma 14.6. There exists a polynomial Q such that given s ∈ (0, 1), there exists 
some (s) > 0 such that for all A ⊂ Fp with |A| = ps , we have |Q(A)| ≥ ps+ . 

Iterating this lemma, we could obtain all of Fp within some polynomial of A (that 
depends on s). In the proof of this lemma, the key idea was to consider the set 
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B = A − A 
A − A . If B = Fp, we could run an argument to imply the lemma, and if B = Fp, 

then there would be some x ∈ B such that x + 1 ∈ B, and we could use this x to 
prove the lemma. We would like to extend these ideas to the real case. 

However, there are some problems with the real case. This is the first set of issues 
in dealing with the real case. First, B can be unbounded, as the denominator A − A 
could be very small. Also, if A is a segment, then A + A, A · A are segments with 
|A + A|, |A · A| ∼ |A|, so we have no real growth when we take a polynomial of A. 
It is also not immediately clear what the equivalent of adding 1 to get from x ∈ B 
to x + 1 ∈ B is in the real case. Finally, R has subgroups of uncountable size, so we 
need to be able to “escape” such a subgroup. 

Definition 14.7. Let X ⊂ Bd(0, 1), δ ∈ (0, 1), s ∈ [0, d], C ≥ 1. Then X is a 
(δ, s, C)d-set if |X ∩ B(x, r)|δ ≤ Crs|X|δ for all x and all δ ≤ r ≤ 1. 

For Bourgain’s projection theorem, we will take C = δ−η . 

Lemma 14.8. There exists a polynomial Q such that given s ∈ (0, 1), there exists 
some (s) > 0 and η(s) > 0 such that for all A ⊂ [0, 1] with |A|δ = δ−s , if A a 
(δ, s, δ−η)-set, then |Q(A)|δ ≥ δ−s− . 

Proof idea. Pick some γ ∈ (0, 1). Then set 

B = { 
a1 − a2 

a3 − a4 
: ai ∈ A, |a3 − a4| > δ γ} ∩ [0, 1]. 

This γ will have to be chosen carefully to make the rest of the proof work, but we 
omit the details here. 

Lemma 14.9. Let B ⊂ [0, 1] be closed with 0, 1 ∈ B, and let ρ be the supremum of 
the lengths of the segments in [0, 1] \ B. Then there exists a b ∈ B such that either 
d( b 

2 , B) ≥ ρ 
5 or d(

b+1 
2 , B) ≥ ρ 

5
. 

Proof. Let B = B
2 ∪ B+1 

2 ⊂ [0, 1]. Then it suffices to show there is an element of 
B that is a distance ρ

5 away from B. Note that 1
2 ∈ B since 0 ∈ B, so the longest 

segment in [0, 1] \ B has length at most ρ
2 . Now, consider an interval of length ρ −  

in [0, 1] \ B, and consider the middle ρ
2 interval inside it. By the above this middle 

interval contains some point in B . But by construction this middle interval has 
distance at least ρ

5 from B, which completes the proof.  

Now, for ρ ∈ (0, 1), we have two cases. First, if B is ρ-dense in [0, 1], then we have 
an argument similar to the A −A 

A − A = Fp case in the finite field version of this lemma. 
Otherwise, by the above lemma there is some b ∈ B such that either b 

2
, b+1 

2 are far 
from B, in which case we can run an argument similar to the case in the Fp version 
where we have x ∈ B, x + 1 ∈ B.  
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Now we come to the second main issue in the real case. We have Lemma 14.8. 
Following the finite field case, we would like to iterate this lemma. However, there 
is an issue with this iteration, which is that we do not know whether Q(A) is a 
(δ, s + , δ−)-set, and in fact this is likely not true in general. Instead, we will use 
that Q(A) contains a (δ, s + , δ−)-set. It takes significant extra work to prove this 
fact. We will discuss the issues more next time. 

15. Bourgain’s Projection Theorem II 

April 10 

Definition 15.1. A (δ, s, C)d-set is a set X ⊂ Bd(0, 1) such that 

|X ∩ B(x, r)|δ ≤ Crs|x|δ. 

Remark 15.2. We think of a (δ, s, C) set as a set which is ’non-concentrated’ on 
the scale δ with degree s. 

Using this language we can rewrite the Bourgain projection theorem as. 

Theorem 15.3. Given 0 < t < 2, 0 < s ≤ 1, there exist ε, η > 0 such that 
If X ⊂ B2(0, 1) is a (δ, t, δ−η)2-set with |X|δ = δ−t and D ⊂ [0, 1] is a (δ, s, δ−η)1-

set. Then there exists some θ ∈ D such that 

min 
X⊂X 

|X|δ ≥δη |X|δ 

|πθX | ≥ δ− t 
2 −ε 

Last time we saw that there exists a polynomial Q such that for every 0 < s < 1 
there exists ε, η > 0 such that if A is a (δ, s, δ−η)1-subset of [0, 1] and |A|δ = δ−s then 
|Q(A)|δ ≥ δ−s−ε . Now we cannot yet iterate this because we do not know that Q(A) 
is a non-concentrated, in fact this is not true, but we can ask for Q(A) to contain a 
(δ, s + ε, δ−η) set (though with different ε, η). 

In these notes, we discuss some of the ideas to deal with this technical issue, 
although we don’t give a complete proof. 

Let us quickly confirm some properties of non-concentrated sets. 

Lemma 15.4. If X is a (δ, s, C)d-set then: 

(1) |X|ρ ≥ C−1ρ−s for all ρ ∈ [δ, 1]. 
(2) If Y ⊂ X and |Y |δ ≥ 1 

K
|X|δ then Y is a (δ, s, CK)1-set. 

Intuitively (i) tells us that if X is non-concentrated on scale δ then it is large on 
all scales at least δ, (ii) tells us that this concept is preserved under taking ’dense’ 
subsets. 
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Proof. (1) If X ⊂ 
 m 

i=1 B(xi, ρ) then 

|X|δ ≤ 
m 

i=1 

|X ∩ B(xi, ρ)|δ 

but we know that |X ∩ B(xi, ρ)|δ ≤ Cρs|X|δ so 

|X|δ ≤ mCρs|X|δ =⇒ m ≥ C−1 ρ−s . 

(2) This is even simpler since 

|Y ∩ B(x, ρ)|δ ≤ |X ∩ B(x, ρ)|δ ≤ Cρs|X|δ ≤ (CK)ρs|Y |δ 

 

Now due to this lemma if we want Q(A) to contains a (δ, s + ε, δ−η) set then it 
must be that |Q(A)|ρ ≥ ρ−s−ε ∀δ ∈ [δ, 1]. 
Now we notice two important things about the above property. 

• We don’t get this for free because A need not be a (ρ, s, δ−η)-set for ρ ∈ [δ, 1]. 
• This property is necessary but not sufficient. 

We can fix both of these problems with one framework, that of the ’uniform set’, 
which is very useful even outside of this theory. 

Assume that δ is some negative power of 2, we will denote by Dδ the set of δ-mesh 
cubes tiling Rd . For any given set X we denote by Dδ(X) the set of those cubes that 
intersect X. We then define |X|∗ 

δ := |Dδ(X)| and notice that |X|∗ 
δ ∼ |X|δ as we saw 

in the last lecture. 

Definition 15.5. Given Δ ∈ 1/N and m ∈ N, A set X ⊂ [0, 1]d is (Δ, m)-uniform 
if for any j ∈ {0, . . . , m − 1} and for any cube Q ∈ Dδ(X) we have 

|Q ∩ X|∗ 
Δj+1 = R j 

where Rj is independent of Q. 
The numbers Rj are called ’branching factors’ of X. 

R1 = 3 R2 = 2 R3 = 1 

Figure 14. A (1/2, 2)-uniform set with its 3 branching factors 
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We can see why these uniform sets are useful with the following lemma. 

Lemma 15.6. Let X ⊂ [0, 1]d be a (Δ, m)-uniform set and let δ = Δm . 
(a) If |X|ρ ≥ C−1ρ−s for all ρ ∈ {1, Δ, Δ2 , . . . , Δm}, then X is a (δ, s, OΔ(C))δ 

set. 
(b) If X is a (δ, s, C) set then X is also a (ρ, s, OΔ(C)) for all ρ ∈ [δ, 1]. 

If we believe this, and we know that A and Q(A) are both uniform, then that 
immediately solves both our problems and lets us continue the proof. Before we 
explain how to make A and Q(A) uniform let us prove this lemma. 

Proof. (a) Let ρ = Δj and Q some cube in DΔj (X). We clearly have the recursive 
relation |X ∩ Q|Δi+1 = Ri|X ∩ Q|∗ 

Δi which when iterated gives us 

|X ∩ Q|∗ 
Δm = R j R j+1 · · · Rm−1|X ∩ Q|∗ 

Δj 

but we know that |X ∩ Q|∗ 
Δ j = 1 precisely because Q is a Δj cube. We thus have 

|X ∩ Q|∗ 
Δm = 

R0R1 · · · Rm−1 

R0R1 · · ·R j−1 
, 

Now the numerator here is precisely |X|∗ 
Δm and the denominator is |X|∗ 

Δj so by 
assumption we have |X|∗ 

Δ j  C−1ρ−s which gives us 

|X ∩ Q|∗ 
Δm  Cρs|X|∗ 

Δm . 

This shows that X is a (δ, s, C)δ set at scales 1, Δ, . . . , Δm . For the scales in between 
we can sandwich them between two powers of Δ, this loses us an extra factor of at 
most OΔ(C). 

(b) Again let ρ = Δj0 , then for any j with 0 ≤ j ≤ j0, let Q be some square in 
DΔj (X) then we have again 

|X ∩ Q|Δj0 = 
R0 · · · Rj0−1 

R0 · · ·R j−1 
= 

|X|∗ 
ρ 

|X|∗ 
Δj 

 Cρs|X|ρ 

where in the last step we applied the previous lemma for (δ, s, C) sets. Again the 
sandwiching gives us an extra factor of OΔ(C).  

Now we learn an important tool, which is the method to make any set uniform. 

Lemma 15.7 (Uniformization). Let δ = Δm , X ⊂ [0, 1]d , and let µ be an arbitrary 
sub-additive set function (eg. µ(B) = |B|δ). Then there exists a subset Y ⊂ X such 
that Y is (Δ, m)-uniform and 

µ(Y ) ≥ 

 

2d ln 

 
1 
Δ 

−m 

µ(X) = δ−σµ(X) 

where σ = 
ln(2 ln 1 

Δ
) 

ln 1 
Δ 

. 
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Note that as Δ → 0 we have σ → 0 so we can make this power arbitrarily small 
by picking Δ at the end. 

Proof. We will construct a uniform subset by thinking of X as a tree, and pruning 
it from the leaves to make it uniform. We will do this step by step, first we set 
Xm = X, then at each step, from Xj we construct Xj−1 by removing enough mass 
from level j to make it uniform. 

To do this let Xj−1, = {Q ∈ DΔj−1 (X) : |Q ∩ X|∗Δj ∈ [2 , 2+1]} where  ranges 
between 0 and d ln 1 

Δ
. This splits Xj into d ln 1 

Δ
different pieces across which we 

have similar magnitude branching on level j. Then because we have a sub-additive 
function 

µ(X j) ≤ 

d ln 1
Δ 

=0 

µ(X j−1,). 

so we can pick the ’largest’ piece and lost at most a factor of d ln 1Δ. Assume that 
Xj−1, is that piece, we set Xj−1 to be the Xj−1, where at level j we removed enough 
of the set to get the branching factor to be exactly 2 . Since the branching factors 
are all within a factor of 2 away from 2 this loses us at most half of the ’measure’ 
of Xj−1, so that 

2d ln 
1 
d
µ(X j−1) ≥ d ln 

1 
d
µ(X j−1,) ≥ µ(X j) 

iterating this process m times gives us exactly the lemma.  
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X2 

X1,0 X1,1 

µ(X2,0) = 8, µ(X2,1) = 14 

X1 

X0,0 X0,1 

µ(X0,0) = 4, µ(X0,1) = 10 
X0 

Figure 15. Applying uniformization with Δ = 1/2 and m = 2 to a set. 

Now we return to our original goal. We recall that A is a (δ, s, C)-set. By Lemma 
14.8 from last lecture, we know that |Q(A)|δ ≥ δ−s−ε , where Q is a fixed polynomial. 
However, we don’t yet know whether Q(A) contains a (δ, s + , C ) set, and so we 
cannot iterate. 

Using the uniformization lemma, we can reduce to the case that A is uniform. In 
this case, we know that A is a (ρ, s, C) set for all ρ ≥ δ. Now, by Lemma 14.8, we 
know that |Q(A)|ρ ≥ ρ−s−ε for all ρ ≥ δ. If we knew that Q(A) was uniform, then 
it would follow that Q(A) is a (δ, s + , C ) set with a reasonable C  . However, just 
because A is uniform, it does not tells us that Q(A) is uniform. 
The main enemy here is that |Q(A)|ρ may be large, and |Q(A)|δ may be large, but 

it could still happen that there is a subset B ⊂ Q(A) so that |B|ρ  |Q(A)|ρ and 
yet |Q(A) \ B|δ  |Q(A)|δ . (It’s a good exercise to draw a picture of this scenario.) 
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This enemy scenario sounds somewhat bizarre and even unlikely, but it takes a 
fair amount of work to rule it out. And it involves somewhat changing the outline of 
the proof. We will discuss these somewhat technical but yet important issues next 
time. 
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16. Bourgain’s projection theorem III 

April 15 
Let us review the problem where we left off last time. Suppose that A is a (δ, s, C)-

set. Lemma 14.8 tells us that there is a fixed polynomial Q so that |Q(A)|δ ≥ δ−s . 
We would like to iterate this lemma to prove a stronger lemma, which we now state. 

Lemma 16.1. For each s > 0 and each  > 0, there is a polynomial P = P s, so 
that, if A is a (δ, s, C) set, then |P (A)|δ ≥ δ−1+ . 

However, we cannot prove Lemma 16.1 just by iterating Lemma 14.8, because we 
don’t yet know whether Q(A) contains a (δ, s + , C ) set. 

Using the uniformization lemma, we can reduce to the case that A is uniform. In 
this case, we know that A is a (ρ, s, C) set for all ρ ≥ δ. Now, by Lemma 14.8, we 
know that |Q(A)|ρ ≥ ρ−s−ε for all ρ ≥ δ. If we knew that Q(A) was uniform, then 
it would follow that Q(A) is a (δ, s + , C ) set with a reasonable C  . However, just 
because A is uniform, it does not tells us that Q(A) is uniform. 
The main enemy here is that |Q(A)|ρ may be large, and |Q(A)|δ may be large, but 

it could still happen that there is a subset B ⊂ Q(A) so that |B|ρ  |Q(A)|ρ and 
yet |Q(A) \ B|δ  |Q(A)|δ . (It’s a good exercise to draw a picture of this scenario.) 
Recall that the map Q is a polynomial map from Rk to R for some k. And recall 

that Q(A) is shorthand for Q(Ak). In Lemma 14.8, we showed that the entire image 
Q(Ak) is large: |Q(Ak)|δ ≥ δ−s−ε . To deal with this technical problem, it is very 
helpful to have a more robust estimate. 

Lemma 16.2. There is a polynomial Q : Rk → R so that the following holds. If A 
is a (δ, s, C) set and X ⊂ Ak with |X|δ  |Ak|δ, then |Q(X)|δ ≥ δ−s−ε . 

In Subsection 16.1, we will sketch how the robust lemma, Lemma 16.2, implies 
Lemma 16.1. Then in Subsection 16.2, we will sketch the proof of Lemma 16.2. 

In these sketches, we will deal with an important technical issue in the theory : 
formulating theorems in a robust way. We will see that more robust estimates are 
more useful – for instance because they work better in iteration. So having a more 
robust estimate is really useful. But on the other hand, we will see that the more 
robust estimate in Lemma 16.2 does not follow from simple tweaks to our previous 
Lemma 14.8. It requires a really new input – the Balog-Szemeredi-Gowers theorem. 
This part further develops the ideas from Lecture 12 where we introduced BSG. 

16.1. Why robust estimates are useful. Let us begin on the positive side and 
discuss how to use Lemma 16.2. Suppose that A is uniform and A is (δ, s, C). We 
will use Lemma 16.2 to show that Q(A) contains a (δ, s + /2, C ) set. Such a result 
can then be iterated to prove Lemma 16.1. 
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We are going to build a (δ, s + /2, C) subset of Q(A). Let us recall the definition 
of a (δ, s, C) set. A set S is (δ, s, C) if, for every ball B(x, r) we have 

|S ∩ B(x, r)|δ ≤ Crs|S|δ. 
We are going to build a set which is (ρ, s, C) for every ρ ∈ [δ, 1]. So for every 

ρ ∈ [δ, 1], and every ball B(x, r), out set will obey 

(27) |S ∩ B(x, r)|ρ ≤ Crs|S|ρ. 
Consider a sequence of scales 1 > ρ1 > ρ2 > ... > ρN = δ. Assume these scales are 

very close together. 
First consider |Q(A)|ρ1 . Since A is uniform, we know that A is (ρ1, s, C) and so 

|Q(A)|ρ1 ≥ ρ−s− 
1 . Cover Q(A) with disjoint intervals I1 of length ρ1. We will pick 

some of these intervals I1 to include in B. Initially, we include all of them, but as 
we continue through the construction, we will remove bad intervals. 

We pick a small parameter η > 0 with η < . 
Next we consider scale ρ2. We know that A is (ρ2, s, C) and so |Q(A)|ρ2 ≥ ρ− s− 

2 . 
Cover Q(A) with disjoint intervals I2 of length ρ2. Now we notice how many intervals 
I2 lie in each interval I1. We say that an interval I1 is bad if 

|Q(A) ∩ I1|ρ2 > ρ s+−η 
1 |Q(A)|ρ2 . 

(Notice that a bad interval I1 is a ball B(x, r) that violates (27) with ρ = ρ2. ) 
The number of bad intervals I1 is at most ρ−(s+−η) 

1 . Next define X1,bad ⊂ Ak by 

X1,bad = {(a1, ..., ak) ∈ A k : Q(a1, ..., ak) lies in a bad interval I1}. 
Our robust estimate Lemma 16.2 tells us that |X1,bad|ρ1  |Ak|ρ1 . Since A is 

uniform, this also tells us that for every ρ ≤ ρ1, 

|X1,bad|ρ  |A k|ρ. 
Define X1 = Ak \ X1,bad. 
Applying Lemma 16.2, we also see that 

(28) |Q(X1)|ρ1 ≥ ρ−s− 
1 

(29) |Q(X1)|ρ2 ≥ ρ−s− 
2 

Typically, we have |Q(X1)|ρ2 ≈ |Q(A)|ρ2 . We will focus on that special case in 
this sketch. (If |Q(X1)|ρ2  |Q(A)|ρ2 , then we redefine bad intervals and repeat the 
argument above.) 
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We claim that Q(X1) obeys (27)with dimension s = s +  − η, in the special case 
where r and ρ are either 1 or ρ1 or ρ2. There are three cases here. If r = 1 and 
ρ = ρ1, (27) boils down to (28. If r = 1 and ρ = ρ2, then (27) boils down to (29). 
And if r = ρ1 and ρ = ρ2, then (27) boils down to the definition of a good interval: 

|Q(X1) ∩ I1|ρ2 = |Q(A) ∩ I1|ρ2 ≤ ρ s+−η 
1 |Q(A)|ρ2 ≈ ρ s+−η 

1 |Q(X1)|ρ2 . 

Now we continue by the same method working through all the scales ρj. In this 
way, we will find a subset X = XN ⊂ Ak so that Q(XN ) obeys (27) at all the scales 
r, ρ of the form ρj. Since these cover essentially all scales, this finishes our proof 
sketch that Q(A) contains a (δ, s + /2, C ) set. 

16.2. How to prove robust estimates. In this Subsection, we will outline the 
proof of Lemma 16.2. 

We first encountered the issue of robust estimates in the proof of the Bourgain-
Katz-Tao projection theorem in Lecture 12. Recall that in the previous lecture, we 
had proven that if A ⊂ Fp with |A| = psA and D ⊂ Fp with |D| = psD with 0 < 
sA, sD < 1, then there exists t ∈ D so that |πt(A × A)| ≥ psA+ for  = (sA, sD) > 0. 
We wanted to replace the product set A × A by a general set X ⊂ F2

p and to prove 
that there exists t ∈ D so that |πt(X)| ≥ p|X|1/2 . By changing variables we could 
assume that our direction set D included horizontal and vertical projections, and 
then we could reduce to the case that X ⊂ A1 × A2 with |X| ≥ p−2|A1||A2|. So we 
only needed to make our previous estimates a little more robust, extending from the 
case when X is an honest product A × A to the case when X is a large subset of a 
product A1 × A2. 
But we found that this extension was not straightforward. It required a signficant 

new idea. The key idea to make this extension work is the Balog-Szemeredi-Gowers 
theorem. The BSG theorem can be used in a similar way in the proof of Lemma 
16.2. 

To prove the more robust estimate Lemma 16.2, we use the BSG theorem and 
follow some of the ideas from Lecture 12. We will ultimately prove Lemma 16.2 with 
k = 3 and with polynomial Q̃(a1, a2, a3) = a1 + a2a3. 
We sketch the steps of this argument. Each step is similar to proofs we have done 

in the last lectures. It is a good exercise to fill in the details of these arguments. 
The first step is to prove that if A is a (δ, s, C) set, then there is an a ∈ A so that 

(30) |A + aA|δ ≥ δ−s−ε 

By Lemma 14.8, we know that there is a polynomial Q so that |Q(A)|δ ≥ δ−s−ε , and 
it’s not hard to show that Q(A) is a (δ, s, C) set. Using a careful double counting 
argument, we can then show that there exists b ∈ Q(A) so that |A + bA|δ ≥ δ−s− . 
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And then using the contagious structure argument, based on Plunnecke-Ruzsa, we 
can find a ∈ A so that |A + aA|δ ≥ δ−s− . This argument is similar to Lecture 11. 

The second step is to upgrade this estimate by proving that there is some a ∈ A so 
that if X ⊂ A × A is a large subset, then |πa(X)|δ  δ−s− . More precisely, we would 
prove that there is some η > 0 so that if |X|δ ≥ δη|A × A|δ, then |πa(X)|δ  δ−s− . 
This upgrade is based on Balog-Szemeredi-Gowers and a symmetry argument, as in 
Lecture 12. 

With just a little more work, we can prove that almost all a ∈ A have the good 
property in the second step. To prove this upgrade, we set Agood ⊂ A to be the set 
of a ∈ A with the good property in the second step, and we set Abad = A \ Agood. If 
Abad is a large subset of A, then we can get a contradiction by applying our previous 
results to Abad. 

All together, we see that if Q̃(a1, a2, a3) = a1 + a3a2 and ˜ X ⊂ A × A × A is a large 
subset, then |Q̃(X̃)|δ ≥ δ−s− . This finishes our proof sketch for Lemma 16.2. 
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17. Random walks on finite groups I 

April 17 
In the next several sections, we will discuss applications of projection theory to 

different areas. First we will discuss random walks on finite groups. Then we will 
discuss the distribution of orbits in homogeneous dynamics. 

We here apply projection theory to studying the behavior of random walks on a 
finite group. Let G be a finite group and µ be a probability measure on G. A random 
walk starting at g0 is defined as a sequence of random variables (gn)n≥0 such that 
gn+1 = gng with probability µ(g). Essentially, at every step, a random element is 
chosen from G using µ, and then the current state is right multiplied by the chosen 
element. The guiding question is how evenly distributed the random walk is after 
K steps. We now develop several formal definitions to phrase this question more 
precisely. First, define a convolution of functions f1, f2 : G → C in the standard 
way: 

(31) f1 ∗ f2(g) = 
 

g1,g2∈G:g1g2=g 

f1(g1)f2(g2) 

We now view the random walk as a Markov chain with transitions given by a linear 
operator Tµ defined as 

(32) Tµf = f ∗ µ 

When f is viewed as a probabilty distribution of a state gn, Tµf gives the prob-
ability distribution of gn+1. When the random walk starts at a state g0, that is 
equivalent to starting with initial probability distribution δg0 . Then after one step 
the probability distribution is Tµδg0 , so the probability of state g0h is 

Tµδ g0 (g0h) = 
 

g1g2=g0h 

δ g0 (g1)µ(g2) (33) 

= δ g0 (g0)µ(h) = µ(h) (34) 

After K steps, the probability distribution of the random walk position gK is 
TK 
µ δg0 . This leads to the first question, which is to estimate the L2 norm 

(35) ||T K 
µ δ g0 − 

1 
|G| 

||L2 

or alternatively, other Lp norms. The 1/|G| term is the average value of the 
distribution over all of G, so the Lp norms are measures of the regularity of the 
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distribution. Since Tµ is a linear operator, we can approach this by examining the 
singular values of Tµ. The squares of the singular values are the eigenvalues of the 
matrix T T 

µ Tµ where T T 
µ is the transpose. When T is symmetric, the singular values 

are the same as the eigenvalues, but in general they are different. 
We first show the following lemma: 

Lemma 17.1. 

(36) ||T µf ||L2 ≤ ||f ||L2 

Proof. 

Tµf(g) =f ∗ µ(g)(37) 

= 
 

g1g2=g 

f(g1)µ(g2) (38) 

= 
 

g2 

f(gg−1 
2 )µ(g2) (39) 

We then define the right multiplication operator Rg so that Rgf(h) = f(hg−1) 
Then applying the triangle inequality and the translation invariance of the L2 norm, 

||T µf ||L2 =|| 
 

g2 

µ(g2)R g2 f ||L2 (40) 

≤ 
 

g2 

µ(g2)||R g2 f ||L2 (41) 

≤||f ||L2 (42) 

 

Then since Tµ1 = 1, 1 is the largest singular value of Tµ. We now define the 
subspace 

L 2(G)0 = {f ∈ L 2(G) : f, 1 = 0} 

where ,  is the standard inner product with the counting measure on G. We can 
then analyze the restriction of Tµ 

Tµ : L 2(G)0 → L 2(G)0 

This restriction quotients out the trivial singular value 1 and allows us to examine 
the next singular value, which governs the decay rate of the Lp norms. Denote σ1(Tµ) 
as the largest singular value of Tµ restricted to L2(G)0. Then we can quantitatively 
express the decay of the L2 norm in terms of the following proposition: 
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Proposition 17.2. 

||T K 
µ δ g0 − 

1 
|G| 

||L2 ≤ |σ1(Tµ)|K 

Proof. Note that 

δ g0 − 
1 
|G| 

, 1 = 0 

so 

δ g0 − 
1 
|G| 

∈ L 2(G)0 

Then Tµ maps δg0 − 1 
|G| to L2(G)0, so the claim follows from the fact that the 

largest singular value of a linear operator is also its operator norm.  

This proposition leads to the second guiding question, which is to estimate σ1(Tµ). 
The proposition shows that an estimate on σ1(Tµ) is sufficient to give an estiamte 
on the decay of the L2 norm. We additionally remark that since we are using the 
counting measure, the L∞ norm is bounded by the L2 norm, so this gives an estimate 
of the L∞ norm as well. 
We now examine the group G = SL2(Fp) where p is prime. The case where µ is 

the uniform measure on a subset A of G was studied by Selberg. For convenience, 
define TA ≡ TµA to be the operator corresponding to the measure on A. In particular, 
Selberg studied the particular set 

A = 

 
1 ±1 
0 1 


, 

 
1 0 
±1 1 

 

which has four elements. Selberg essentially proved the following theorem about 
this case: 

Theorem 17.3. There exists a universal constant c > 0 so that for every prime p, 
then 

(43) σ1(TA) ≤ 1 − c 

The theorem that Selberg actually proved is about the smallest eigenvalue of the 
Laplacian on a hyperbolic surface Xp whose geometry is closely related to SL2(Fp) 
with the generating set A above. Using modern techniques such as Cheeger’s in-
equality, it is not difficult to translate between Selberg’s eigenvalue bound and the 
mixing bound in Theorem 17.3. 

Before discussing the proof of Selberg’s theorem, we recall the connection between 
mixing estimates and isoperimetric inequalities on graphs. For a finite group G and 
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a subset A ⊂ G define a graph C(G, A) = (V, E) with set of vertices V indexed by 
G and an edge (g1, g2) ∈ E if g−1

1 g2 ∈ A, or equivalently there exists a ∈ A such that 
g2 = g1a. Therefore the nodes that are connected by edges are the nodes that can 
be connected by a single step of the random walk. Now for two subsets S, T ⊂ V , 
define 

E(S, T ) ≡ {(g1, g2) ∈ S × T : (g1, g2) ∈ E} 

or equivalently, E(S, T ) = E ∩ S × T . We now consider the following proposition: 

Proposition 17.4. If S is a subset of G, then 

(44) |E(S, Sc)| ≥ (1 − σ1(TA))
|A||S||Sc| 

|G| 
Proof. We first prove that 

(45) E(S, S c)| = |A|TA1S, 1Sc  

which follows from the following computation: 

TA1S(g) = 
1 
|A| 
 

a∈A 

1S(ga
−1) 

TA1S(g), 1Sc  = 
 

g∈G 

1 
|A| 
 

a∈A 

1S(ga
−1 )1Sc (g) 

Note that 1S(ga−1)1Sc (g) = 1 if ga−1 ∈ S and g ∈ Sc , which is equivalent to the 
statement (ga−1 , g) ∈ E(S, Sc), which shows equation 45. We then decompose 1S 

into a constant and mean zero part as 

1S = 
|S| 
|G| 

+ 1(S− 
|S| 
|G|

) 

Applying this decomposition to 1Sc as well gives 

TA1S, 1Sc  =TA 

 
|S| 
|G| 

+ 1S − 
|S| 
|G| 

 

, 1 − 
|S| 
|G| 

+ 1Sc − (1 − 
|S| 
|G|

) 

= |S| 
|G| 

+ TA 

 

1S − 
|S| 
|G| 

 

, 1 − 
|S| 
|G| 

+ 1Sc − (1 − 
|S| 
|G|

) 

This then decomposes into the inner products of the constant and the non-constant 
terms. The inner product of the constant terms is 
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|G| |S| 
|G| 

(1 − 
|S| 
|G| 

) = 
|S||Sc| 
|G| 

The inner product of the non-constant terms is 

TA 

 

1S − 
|S| 
|G| 

 

, 1Sc − (1 − 
|S| 
|G| 

) 

Applying Proposition 17.2 and Cauchy Schwartz gives the upper bound 

σ1(TA)||1S − 
|S| 
|G| 

||L2 ||1Sc − (1 − 
|S| 
|G| 

)||L2 = σ1(TA)
|S||Sc| 
|G| 

Then combining the terms from the constant and nonconstant parts gives 

TA1S, 1Sc  ≥ (1 − σ(TA))
|S||Sc| 
|G| 

Multiplying by A and applying equation 45 then gives the desired result: 

E(S, S c) ≥ (1 − σ(TA))
|A||S||Sc| 

|G| 
 

Without loss of generality S can be chosen so that |S| ≤ |G|/2. Then if σ(TA) ≤ 1 

E(S, Sc)  |S| 
where the implicit constants depend on A. This property of a subset of vertices 

and its complement sharing a large number of edges is known as an expander graph. 
Note that when A is a subset of a proper subgroup H of G, then the set of elements 
generated by A is at most H. The distribution will therefore never become uniform 
after repeatedly applying TA, which implies that σ1(TA) = 1. 

The original proof of Selberg’s theorem was difficult and relied on the Riemann 
hypothesis for curves over a finite field. Around 1990, Sarnak and Xue gave a more 
elementary proof (with slightly weaker bounds on the constants). We will discuss 
some of the ideas in that proof. The first idea has to do with the representation 
theory of the group SL2(Fp)/ Consider the following proposition: 

Proposition 17.5. If ρ : SL2(Fp) → U(d) is a nontrivial representation of SL2(Fp) 
mapping to the unitary group with d dimensions, then d ≥ p+1 

2 
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Proof. This proof relies on the existence of the elements 

u = 

 
1 1 
0 1 

 

and 

v = 

 
1 0 
1 1 

 

These elements generate SL2(Fp), and are tranposes of each other, so without loss 
of generality we assume that ρ(u) = e. u and v have the property that they are 
conjugate to powers of themselves. In particular:  

a 0 
0 a−1 

 
1 1 
0 1 

 
a−1 0 
0 a 

 

= 

 
1 a 2 

0 1 

 

= u a 2 

The conjugates of v similarly are powers of v. Then because representations pre-
serve conjugacy classes, ρ(u) must be conjugate to ρ(u)a

2 
. Since conjugate matrices 

have the same eigenvalues, then ρ(u) and ρ(u)a
2 
must have the same set of eigen-

values. ρ(u) has order p, so its eigenvalues must be roots of unity of order p, or 
equivalently of the form e2πin/p for integer n. Then the eigenvalues of ρ(u)a

2 
, and 

equivalently of ρ(u), are of the form e 2πia
2n/p . Since this is true for arbitrary a, 

a single nontrivial eigenvalue e2πin/p generates all eigenvalues corresponding to a2n 
mod p. ρ(u) is by hypothesis not the identity, so must have at least one eigenvalue 
not equal to 1. Since there are p−1 

2 distinct nonzero quadratic residues (and 1 is 
an eigenvalue of ρ(u)), then ρ(u) has at least p+1 

2 distinct eigenvalues, and so has 
dimension at least p+1 

2 . This completes the proof.  

We now apply this proposition to prove a further proposition. 

Proposition 17.6. Let µ be a measure on SL2(Fp). Then 

σ1(Tµ)
2p + 1 

2 
≤ |SL2(Fp)| ||u||2 

L2 

In particular, since |SL2(Fp)| ∼ p3 , this implies 

σ1(Tµ)  p||u||L2 

Proof. Note that σi(Tµ)2 is the ith eigenvalue of TµT ∗ 
µ . Since TµT

∗ 
µ is a right action, 

its eigenspaces have a left G action Lgf(h) = f(g−1h), which is nontrivial except 
for the constant functions. Each action on an eigenspace induces a representation of 
SL2(Fp), which is unitary because 
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L gf, h = 
 

∈G 

f(g−1 )h() 

= 
 

∈G 

f()h(g) 

=f, L g−1 h 

Therefore the representation must have dimension at least p+1 
2 , so the singular 

values must value multiplicity at least p+1 
2 . Then because the Frobenius is invariant 

under unitary operations, and since TµT ∗ 
µ is symmetric it is diagonalizable by a 

unitary transformation: 

p+ 1 
2 

σ1(Tµ)
2 ≤ 

 

i with multiplicity 

σi(Tµ)
2 

= 
 

g1,g2 

|(Tµ)g1,g2 |2 

= 
 

µ(g1g
−1 
2 )

2 

=|SL2(Fp)| 
 

g 

µ(g)2 

=|SL2(Fp)| ||µ||2 
L2 

 

Then returning to the case that µ = µA for a subset A 

||µA||2 
L2 = 

1 
|A|2 

|A| = 
1 
|A| 

This together with proposition 17.6 implies the following corollary: 

Corollary 17.7. 

σ1(TA)
2  

p 2 

|A| 

This bound is only nontrivial when |A|  p2 . The bound is tight in the sense 
that there are sets A with |A| ∼ p2 and with σ1(TA) = 1. Indeed, if A is a proper 
subgroup of SL2(Fp), then σ1(TA) = 1. The subgroup of upper triangular matrices 
in SL2(Fp) has cardinality ∼ p2 . 
Therefore, this estimate implies that every proper subgroup of SL2(Fp) has cardi-

nality  p2 . We state this result as a corollary. 



98 PROJECTION THEORY NOTES 

Corollary 17.8. If H is a proper subgroup of SL2(Fp) then |H|  p2 . 

Proof. If H is a proper subgroup, then σ(TH ) = 1, which implies that p2/|H|  1. 
Multiplying both sides by |H| gives the desired result.  

(Note that the order of SL2(F)p is p(p − 1)(p + 1), so this corollary is not a 
consequence of Lagrange’s theorem. ) 

To get further bounds for σ1(TA) we will need to take account of other features of 
A besides just the cardinality of A. We will explore how to do in the next lecture. 
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18. Random walks on finite groups II 

April 22 
Setup: 

• Let G be a finite group. 
• µ : G → R is a probability measure on G, i.e., µ(g) ≥ 0, 

 
g∈G µ(g) = 1. 

• Starting with g0 ∈ G, let ht ∈ G, t = 1, 2, . . . be sampled according to µ, and 
define the random walk on G by gt = gt−1 · ht, t = 1, 2, . . . . 

Question: how evenly distributed is gK on G for large K? 
To state our question more precisely, we introduce some definitions. For two 

functions f1, f2 : G → C, define 

f1 ∗ f2(g) = 
 

g1,·g2=g 

f1(g1)f2(g2) , ∀g ∈ G . 

Define the operator Tµ : 2(G) → 2(G) by Tµf = f ∗ µ. It is straightforward to 
check that for any K, TK 

µ δg0 is the distribution of gK defined as above. Our main 
question is to estimate 

T K 
µ δ g0 − 1 

|G| 12(G) 

for large K ∈ N. 
We start with some easy observations. 

Lemma 18.1. T µ1 = 1, and T µf2(G) ≤ f2(G), ∀f ∈ 2(G). 

Proof. The first claim can be checked straightforwardly. For the second claim, we 
define the right shift operator Rg : 2(G) → 2(G) by 

Rg f(h) = f(f · g−1) , ∀f ∈  2(G), g, h ∈ G . 

It is easy to check that Rg : 2(G) → 2(G) is an isometry, and it holds that 

Tµf = f ∗ µ = 
 

g∈G 

µ(g)R g f , ∀f ∈  2(G) . 

Therefore, it follows from the triangle inequality that 

Tµf2(G) ≤ 
 

g∈G 

µ(g)R g f2(G) = f2(G) .  

Denote 2(G)0 as the orthogonal complement of the constant functions in 2(G). 
One can verify that Tµ maps 2(G)0 to itself. Denote by σ1(Tµ) the largest singular 
value of the operator Tµ : 2(G)0 → 2(G)0. 

Lemma 18.2. For any K ∈ N, it holds that 
T K 

µ δ g0 − 1 
|G| 12(G) ≤ σ1(Tµ)

K . 
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Proof. Write δ g0 = 1 
|G| 1 + (δ g0 )h, where (δ g0 )h = δ g0 − 1 

|G| 1 ∈ 2(G)0. We have for any 

K ∈ N, T K 
µ δ g0 = 1 

|G| 1 + TK 
µ (δ g0 )h, and thus 

T K 
µ δ g0 − 1 

|G| 12(G) ≤ T K 
µ (δ g0 )h2(G) ≤ σ1(Tµ)

K (δ g0 )h2(G) ≤ σ1(Tµ)
K .  

For a subset A of G, we denote µA = 1 
|A| 1A and abbreviate TµA as TA. Of particular 

interest of us is the following concrete example: let G = SL2(Fp) where p is a large 
prime and 

Asel = 

 
1 ±1 
0 1 

 

, 

 
1 0 
±1 1 

 

⊂ SL2(Fp) . 

We will focus on the following theorem of Selberg. 

Theorem 18.3. There exists a universal constant c > 0 such that, for every p, 
σ1(TAsel ) ≤ 1 − c. 

In general, for a pair (G, A) where A is a subset of the group G, we are interested 
in σ1(TA). This is not only because it is related to the mixing of random walks on 
G with steps in A (see Lemma 18.2), but also because the spectral gap 1 − σ1(TA) 
reflects a certain expansion property of the corresponding Cayley graph. 

More precisely, for A ⊂ G that is symmetric and generates G, we define C(G, A) as 
the graph with vertices corresponding to the elements of G, and with edges (g1, g2) ∈ 
E if there exists a ∈ A such that g2 = g1 · a. Note that A generates G, which implies 
that C(G, A) is connected. Moreover, for a subset S ⊂ G, we denote E(S, Sc) as the 
set of edges (g1, g2) ∈ E such that g1 ∈ S and g2 ∈ Sc . 

Lemma 18.4. For any S ⊂ G, it holds that 

|E(S, S c)| ≥ (1 − σ1(TA))
|A||S||Sc| 

|G| 
. 

Proof. It is straightforward to check that 

|E(S, Sc)| = |A|TA1S, 1Sc  

= |A| |S| |G| 1, 
|Sc| 
|G| 1 + |A|TA(1S)h, (1Sc )h 

≥ 
|A||S||Sc| 

|G| 
− σ1(TA)(1S)h2(G)(1Sc )h2(G) 

≥ (1 − σ1(TA))
|A||S||Sc| 

|G| 
.  

Combining Lemma 18.2 with Theorem 18.3, we obtain that for any S ⊂ G = 
SL2(Fp) with |S| ≤ |G| 

2 , in the graph C(SL2(Fp), Asel), 

E(S, Sc) ≥ 
c|A||S| 

2 
. 
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For a large graph H = (V, E), we say H is an expander graph, if there exists a 
universal constant c > 0 such that for any S ⊂ V with S ≤ |V | 

2 , E(S, S
c) ≥ c|E||S| 

|V | . 
The above result indicates that C(SL2(Fp), Asel) is a sparse expander graph (here 
sparse means that the graph has average degree O(1)). While Selberg did not state 
his theorem exactly in the form above, his work is in a sense the first proof of the 
existence of sparse expander graphs. In what follows we fix a large prime number p 
and let G = SL2(Fp). We now discuss the proof of Theorem 18.3. We will not give 
a complete proof, but we will discuss some of the ideas in the proof, following the 
approach developed by Sarnak-Xue in the early 1990s. 
2-bound. We claim the following 2-estimate of σ1(Tµ). 

Theorem 18.5. There exists a universal constant C > 0 such that 

σ1(Tµ)
2 ≤ Cp 2 µ 2 

2(G) . 

We begin with a lemma on non-trivial representations of G = SL2(Fp). 

Lemma 18.6. Let ρ : G → U(d) be a non-trivial representation of G, then d ≥ p−1 
2 . 

Proof. Consider the following two elements in G: 

u = 

 
1 1 
0 1 

 

, v = 

 
1 0 
1 1 

 

. 

It is easy to check that u, v generates G. Since ρ is non-trivial, without loss of 
generality we may assume that ρ(u) = Id. Note that  

a 0 
0 a−1 

 
1 1 
0 1 

 
a−1 0 
0 a 

 

= 

 
1 a 2 

0 1 

 

, ∀a ∈ F∗ 
p . 

This implies that u is conjugate to ua
2 
for any a ∈ F∗

p. Let Λ be the multi-set of 
eigenvalues of ρ(u), we have Λ = Λa2 

, ∀a ∈ F∗
p. On the other hand, since up = 1, 

we have Λ ⊂ {z ∈ C, zp = 1}. Moreover, one can check that Λ = {1, . . . , 1}, as this 
would imply that ρ(u)p = Id (unless ρ(u) = Id). Consequently, we can pick λ ∈ Λ 
such that λ = 1. Then, the p−1 

2 distinct elements λa
2 
, a ∈ F∗

p all lie in Λ. We conclude 
that d ≥ |Λ| ≥ p−1 

2 , as desired.  

The above lemma says that any non-trivial representation of G = SL2(Fp) has 
dimension at least of order p. This lower bound is order tight: consider the subgroup 
U of G: 

U = 

 
a t 
0 a−1 

 

, a ∈ F∗ 
p, t ∈ Fp 

 

, 

which has size of order p2 . We have G acts on G/U induces a non-trivial represen-
tation with dimension of order p. 
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Before proving Theorem 18.5, we first introduce some notations. For µ : G → R, 
define µ ∗(g) = µ(g−1),∀g ∈ G. One can check that T ∗ 

µ , the adjoint of Tµ, equals Tµ∗ . 
Moreover, TµT ∗ 

µ = TµTµ∗ = Tµ∗µ∗ . Denote ν = µ ∗ µ ∗ . 

Proof of Theorem 18.5. Let V ⊂ 2(G)0 be the eigenspace of Tν = TµT ∗ 
µ that cor-

responds to the eigenvalue λ1(Tν) = σ1(Tµ)2 . Consider the left shift operator Lg : 
2(G) → 2(G) defined by Lgf(h) = f(g−1h),∀f ∈ 2(G), g, h ∈ G. It is straightfor-
ward to check that Lg commutes with Tν , and thus Lg maps V to itself. Since V 
does not contain any constant function, Lg induces a non-trivial representation of G 
on V . By Lemma 18.6, we have dim(V ) ≥ p−1 

2 , and thus λ1(Tν) has multiplicity at 
least p−1 

2 . Therefore, by the trace formula we have 

p− 1 
2 

σ1(Tµ)
2 = 

p− 1 
2 

λ1(Tµ) ≤ 
 

i 

λi(Tν) = Tr(Tν ) 

= Tr(T µT ∗ 
µ ) = 


g1,g2∈G 

T 2 
µ,g1,g2 

= |G| 
 

g∈G 

µ(g)2 = |G|µ 2 
2(G) . 

Since |G| ∼ p3 , the desired result follows.  

As a corollary, we see that for any set A ⊂ G with |A| ≥ 2Cp2 , it holds that 
σ1(TA)

2 ≤ Cp2µA22(G) ≤ 1/2. Note that for U the subgroup of G defined as above, 
we have |U | ∼ p2 and σ1(TU ) = 1. This example also shows that the result of 
Theorem 18.5 is order-tight. 

We say µ is symmetric if µ = µ ∗ (i.e. µ(g) = µ(g−1)). When µ is symmetric, 
we have Tµ is self-adjoint and thus σ1(Tµ)K = λ1(Tµ)K = λ1(TK 

µ ) = λ1(Tµ∗K ) = 
σ1(Tµ∗K ). Applying Theorem 18.5, we obtain that for any K ∈ N, it holds that 

σ1(TAsel )
K ≤ Cp 2 µ∗K 

Asel 
 2 
2(G) . 

Our plan is to pick K = C0 log p for some universal constant C0 > 0, and show that 
µ ∗K 

Ase; 
2 
|ell2(G) ≤ p −2.1 . This would imply that σ1(TAsel ) ≤ 1 − c for some universal 

c = c(C,C0) > 0. 
Lifting to SL2(Z). Consider the projection πp : Z → Fp, which induces a group 

homomorphism Πp : SL2(Z) → SL2(Fp). Let M be a probability measure on SL2(Z) 
and we let µ = Πp(M) be its push-forward onto SL2(Fp). It holds that Πp(M

∗K ) = 
µ ∗K for any K ∈ N. Therefore, to understand µ ∗KAsel 

for large K ∈ N, we may try to 
first understand M∗K 

Asel 
, where MAsel = 1 

4
1Asel , and then understand how it projects 

onto SL2(Fp). 
Some good features about SL2(Z): 
(1) SL2(Z) is virtually free, meaning that it has a finite index free subgroup. 
(2a) SL2(Z) ⊂ SL2(R) closely related to Lie groups. 
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(2b) SL2(Z) acts nicely on the H2 hyperbolic plane. 
Intuition about convolution on SL2(Z): As a warm-up, consider the convolu-

tion on Z. Let µ = 1 
2
(δ1+δ−1). By the central limit theorem, µK can be approximated 

by Gaussian, which intimately relates to the heat kernel on R. In light of this, we 
might hope that for a probability measure M on SL2(Z), there is some central limit 
theorem for matrices, and the convolution M∗K would be related to the “heat kernel” 
on SL2(R). 
Consider the “ball” in SL2(R) with radius T , defined as follows: 

BT := 

 
a b 
c d 

 

∈ SL2(R) : a 2 + b 2 + c 2 + d 2 ≤ T 2 

 

. 

Moreover, we denote BT (Z) := BT ∩ SL2(Z). 

Lemma 18.7. For T large, we have |BT (Z)| ≈ T 2 . 

Proof sketch. We need to count the solutions of ad−bc = 1, a, b, c, d ∈ Z, a2 +b2 +c2 + 
d2 ≤ T 2 . For a typical pair (a, d) ∈ [−T, T ]2 , the number of pairs (b, c) ∈ [−T, T ]2 

such that bc = ad−1 is at least 1, and at most T o(1) . This suggests |BT (Z)| ≈ T 2 .  

Vague statement: for large K, M∗K is roughly equally distributed on BT (Z), where 
T ∼ exp(c(M) · K). 

Let us see how a statement of this form about random walks on SL2(Z) leads to 
a spectral gap in SL2(Fp). 

Lemma 18.8. If µ is symmetric, then µ ∗K 22(G) = µ ∗2K (I), where I ∈ G is the 
identity element. 

Proof. By definition we have 

µ ∗K  2 
2(G) = 

 

g∈G 

µ ∗K (g)2 = 
 

g∈G 

µ ∗K(g)µ ∗K (g−1) = µ ∗2K (I) .  

This leads us to examine µ ∗K 
Asel 

2 
2(G) = µ∗2K 

Asel 
(I), where I ∈ SL2(Fp) is the identity. 

We can relate this to a measure on SL2(Z). To set this up, let Γp ⊂ SL2(Z) be the 
pre-image of I ∈ SL2(Fp) under Πp, i.e., 

Γ p := 

 

a, b, c, d ∈ Z, ad − bc = 1, 

 
a b 
c d 

 

≡ 

 
1 0 
0 1 

 

(mod p) 

 

Now we have 
µ∗K 

Asel 
 2 
2(G) = µ∗2K 

Asel 
(I2) = Π p(M ∗2K 

sel (I)), 

and by the vague statement, we expect 

Π p(M ∗2K 
sel (I2)) ≈ 

|Γ p ∩ BT (Z)| 
|BT (Z)| 
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where T ∼ log p. Since SL2(Fp) has size of order p3 , it is natural to expect that for 
large T , Γp ∩ BT (Z) occupies nearly a p−3-fraction in BT (Z). The following lemma 
shows that this is indeed the case. 

Lemma 18.9. For T > p 2 , it holds that |Γ p ∩ BT (Z)|  p−3T 2 . 

Proof. For any 

 
a b 
c d

 

∈ Γp, we have p | b, p | c, and thus p2 | bc = ad − 1. 

Meanwhile, we have p | a−1, p | d−1, which implies p2 | (a−1)(d−1) = ad−a−d+1. 

Altogether we conclude that p2 | a + d − 2. In light of this, we see that for 


a b 
c d


∈ 

Γp ∩ BT (Z), a ∈ [−T, T ] has at most O(p−1T ) choices, and given a, d satisfies 
d ≡ −2−a (mod p2) has at most O(p−2T ) choices (here we use the fact that T > p2). 
Finally, given a, d, b, c satisfies bc = ad − 1 has at most T o(1) choices. Combining 
things together, we obtain the desired bound.  

Proof sketch for Theorem 18.3. Assuming the vague statement about random walks 
on SL2(Z) we can now assemble our ingredients to give a proof sketch of Selberg’s 
theorem. 

We pick K such that T ∼ exp(c(Msel)K) ∼ p1.1 , and thus K ≤ C0 log p for a 
universal constant C0 > 0. By the vague statement and Lemmas 18.8, 18.9, we have 

µ∗K 
Asel 

 2 
2(G)  

|Γ p ∩ BT (Z)| 
|BT (Z)| 


p−3T 2 

T 2 
= p−3 . 

Applying Theorem 18.5, we obtain that σ1(TAsel )
K  p−1 . This yields that σ1(TAsel ) ≤ 

1 − c for some universal constant c > 0.  

Connection to hyperbolic geometry 
Selberg’s theorem is closely connected to hyperbolic geometry. In fact, Selberg’s 

original theorem was about the eigenvalues of the Laplacian on certain hyperbolic 
manifolds. The hyperbolic manifold perspective also gives a nice approach to the 
vague statement in the proof sketch above. In this short section, we briefly introduce 
these ideas. 

Recall that SL2(Z) acts isometrically on H2 . Let X(p) = H2/Γp. If p is large, 
then the action is properly discontinuous, and so X(p) is a hyperbolic surface. It 
is a complete surface with finite area and with some cusps. Note that X(p) is a 
cover of X(1), and the group of deck tranform of X(p) is SL2(Fp). So the “large 
scale geometry” of X(p) is closely related to the geometry of the Cayley graph of 
SL2(Fp) with generators A, where A is the reduction mod p of some set of generators 
of SL2(Z). For instance, we could take A = Asel. 
Consider the spectrum of the Laplacian of X(p). We have 0 lies in the spectrum, 

but above 0 there is a gap. Denote λ1(X(p)) the smallest positive eigenvalue of 
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the Laplacian of X(p). Selberg proved that λ1(X(p)) ≥ 3 
16 and conjectured that 

λ1(X(p)) ≥ 1
4 − o(1). Because of the close connection between the geometry of X(p) 

and the geometry of the Cayley graph of SL2(Fp), it is not too hard to show that 
a lower bound for λ1(X(p)) is equivalent to an upper bound for σ1(TA), with A as 
above. 

The proof we sketched above can be translated into hyperbolic geometry using 
the heat kernel. The heat kernel describes a diffusion process on a Riemannian 
manifold, and it is a continuous analogue of a random walk. The heat kernel on a 
Riemannian manifold is written as Ht(x, y), where t represents time, and x, y live in 
the Riemannian manifold. The probabilistic interpretation is that Ht(x, y)dvoly is 
the probability distribution for the position of a particle that started at x and then 
diffused for time t. 

We write Ht,X(p) for the heat kernel on X(p). We think of Ht,X(p) as analogous to 
µ ∗k in the proof sketch above, with t analogous to k. 
First big step: Prove that Ht,X(p) is roughly evenly distributed on X(p). We will 

discuss the proof of this more below. 
In particular, we prove that there is a constant C0 so that if t = C0 log p and 

x ∈ X(p), and for t = C0 log p, then 

Ht,X(p)(x, y) 2 
L2 
y 
≤ p−2.1 . 

This is analogous to proving that µ ∗k2 
L2(SL2(Fp) 

≤ p−2.1 . There is a close con-
nection between the mixing properties of the heat kernel and the eigenvalues of the 
Laplacian on a Riemannian manifold. This connection is analogous to the trace 
formula that we used in the finite group setting. On a closed manifold, the for-
mula has a simple form closely parallel to the formulas we used above. If we let 
0 = λ0 < λ1 ≤ λ2 ≤ ... be the spectrum of the Laplacian on a compact Riemannian 
manifold M , then we have  

j 

e−2tλj = 
 

M 
H2t(x, x)dvol = 

 

M×M 
Ht(x, y)

2 dxdy. 

Since X(p) is not compact, its spectral theory is a little more complicated, but 
this is a technical detail. This part of the proof is less elementary in the hyperbolic 
setting than in the finite group setting, but it is basically analogous. 

Since SL2(Fp) acts isometrically on X(p), each eigenspace is a representation of 
SL2(Fp). The main case is when the representation on the λ1 eigenspace is non-
trivial. Then it has dimension at least (p − 1)/2 and so we get 

p− 1 
2 

e−2tλ1 ≤ 
 

M×M 
Ht(x, y)

2 dxdy. 
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Then the first big step gives us, with t = C log p, 

p− 1 
2 

e−2tλ1 ≤ 
 

M×M 
Ht(x, y) 

2 dxdy  p 3 p−2.1 

and so e−2tλ1 ≤ p−.1 , and so λ1 ≥ c > 0 uniformly in p. 
Now we return to the first big step. 
We write Ht,X(p) for the heat kernel on X(p) and Ht,H for the heat kernel on 

the hyperbolic plane. These two heat kernels are closely connected: Ht,X(p) is the 
pushforward of Ht,H by the covering map Πp : H → X(p). In other words, if Πp(x̃) = 
x and Πp(ỹ = y), then 

H t,X(p)(x, x) = 
 

γ∈Γp 

H t,H(γ˜ x, ỹ). 

In particular, to do the first big step, we have to estimate 

H2t,X(p)(x, x) = 
 

γ∈Γp 

H2t,H(γ˜ x, x̃). 

This is analogous to estimate M∗k(Γp) in the proof sketch above. This was a key 
moment in the proof sketch above where we made a vague statement. This part 
of the proof is easier in the hyperbolic context because there is a simple explicit 
formula for Ht,H. Using this explicit formula and Lemma 18.9, it is fairly easy to 
prove the desired bounds for H2t,X(p). So this part of the proof is actually easier in 
the hyperbolic setting than in the finite group setting. 
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19. Random walks on finite groups III 

April 24 
We discuss how projection theory appears in the work of Bourgain-Gamburd. 

Builds on work of Helfgott, Hrushovski, and Larsen-Pink. 
We did not make notes for this lecture. A detailed reference is in Tao’s class notes 

https://terrytao.wordpress.com/2012/01/13/254b-notes-4-the-bourgain-gamburd-expansion-
machine/ and https://terrytao.wordpress.com/2012/02/05/254b-notes-5-product-theorems-
pivot-arguments-and-the-larsen-pink-non-concentration-inequality/ 

https://terrytao.wordpress.com/2012/02/05/254b-notes-5-product-theorems
https://terrytao.wordpress.com/2012/01/13/254b-notes-4-the-bourgain-gamburd-expansion
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20. Homogenenous Dynamics I 

April 29 
There has been recent striking work applying projection theory to homogeneous 

dynamics. We will try to give a friendly introduction to the field of homogeneous 
dynamics and how projection theory can help understand it. 

In this lecture we introduce homogeneous dynamics and then explain in a simple 
example how projection theory connects to dynamics. In the next lecture, we flesh 
out this simple example. After that, we give a brief survey of the recent work 
connecting homogeneous dynamics and projection theory. 

First we introduce homogeneous dynamics. Let G be a Lie group and Γ a discrete 
subgroup. The space X = G/Γ is called a homogeneous space, because the group G 
acts on G/Γ, and for each x ∈ X, the orbit Gx = X. If H ⊂ G is a subgroup, then we 
can study the orbits Hx inside of X. We focus on the case that Γ has finite covolume, 
meaning that X has finite volume. One important example is when G = SLn(R) 
and Γ = SLn(Z). In this case, the space X = SLn(R)/SLn(Z) parametrizes the 
lattices in Rn with unit covolume. Here we could choose H to be a lower-dimensional 
subgroup, such as the diagonal matrices or the upper triangular matrices. Since H 
has infinite volume and X has finite volume, Hx “wraps around and around inside 
of X”. There are examples where Hx is dense. There are other examples where Hx 
is contained in a lower dimensional submanifold inside of X. How might Hx look in 
general? 

In this discussion, we have to be careful about left actions and right actions. An 
element of G/Γ is a coset of the form hΓ where h ∈ G. The group G acts on the 
left on G/Γ, so an element g ∈ G maps the coset hΓ to the coset g−1hΓ. (The 
inverse here makes it a left action and is traditional, but it’s not that important in 
our discussion.) 

The simplest example is G = SL2(R), and Γ = SL2(Z). Let m be a right invariant 
metric on G, which induces a metric on G/Γ. The left action of G on G/Γ distorts 

the metric but it preserves the volume. Define U = { 

 
1 t 

1 

 

t∈R 

} and ut = 

 
1 t 

1 

 

A typical problem of homogeneous dynamics is to study the orbit U · x in G/Γ for 
x ∈ G/Γ. 

Theorem 20.1. (Hedlund 30’s) 
U · x is either periodic or dense. 

These questions are interesting in their own right and they also have applications 
to other areas of math. We describe one application to number theory. 

Let Q(x1, · · · , xn) be a quadratic form. 
Question: How is Q(Zn) distributed? 
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Conjecture 20.2. (Oppenheim) If n ≥ 3, the signature of Q is mixed, and the 
coeffiencts of Q are not contained in Zα for any α, then Q(Zn) is dense in R. 

This conjecture was proven by Margulis in the 1980s. Raghunathan observed that 
the Oppenheim conjecture is related to homogeneous dynamics, and the proof uses 
this connection. Suppose that n = 3, which is the hardest case. Since the signature 
of Q is mixed, we can assume that it has signature (2, 1). Then there is a linear 
change of variables that converts Q to a standard quadratic form of signature (2, 1), 
such as Q1(x) = x21 + x22 − x23. This linear change of variables converts Z3 to some 
lattice Λ, and so we have Q(Z3) = Q1(Λ). 

The key point is that the quadratic form Q1 has many symmetries. In particular, 
SO(2; 1) ⊂ SL(3; R) preserves the quadratic form. Therefore, for any h ∈ SO(2, 1), 
we have 

Q(Z3) = Q1(Λ) = Q1(hΛ). 

Thus we are led to study the SO(2, 1)-orbit of Λ in the space of lattices. The space 
of lattices in Rn is Xn = SLn(R)/SLn(Z). If SO(2, 1)Λ is dense in X3, then Q(Z3) 
is dense in ∪Λ∈X3 (Q1(Λ)) = R. 
Margulis showed that SO(2, 1)Λ is dense in X3 except for some very special lattices 

Λ. When SO(2, 1)Λ is not dense in X3, Margulis showed that it must be a lower-
dimensional homogeneous space contained in X3. In terms of the original problem, 
this scenario implies that the quadratic form Q has coefficients in Zα for some α ∈ R. 

The Lie group SO(2, 1) is a 3-dimensional Lie group. It contains a 1-dimensional 
unipotent subgroup U ⊂ SO(2, 1). Most of the work in the proof is to show that UΛ 
is either dense or is contained in a lower-dimensional homogeneous subspace of X3. 
This can be viewed as a higher dimensional generalization of Hedlund’s theorem, 
although the proof is much more difficult and involves new ideas. Ratner extended 
this work to a very general theorem that applies to all G/Γ and all unipotent orbits. 

In these notes, we will sketch how projection theory leads to bounds related to the 
geometry of the orbits U · x in SL2(R)/SL2(Z). While this will not lead to a full 
proof of Hedlund’s theorem, it will give some interesting information. Then we will 
discuss why it is more difficult to understand unipotent orbits in higher dimensional 
homogeneous spaces like SL3(R)/SL3(Z). Finally, we will discuss some recent work 
applying projection theory to help understand unipotent orbits in higher dimensions. 

It’s important to note that Hedlund’s thoerem is special for the unipotent group 
U . For the subgroup D of diagonal matrices, an orbit Dx may be neither periodic 
nor dense. For instance, the Hausdorff dimension of the closure of Dx may be strictly 
between 1 and 3. It is important to understand what is special about the unipotent 
group. In our discussion, the special feature will be the way the unipotent group 
interacts with the diagonal group. We need a little notation to state this interaction. 
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Define ar = 

 
er 

e−r 

 

. After some calculation, we see that 

aruta
−1 
r = ue 2r t.

Denote U [0,T ]x = {utx}t∈[0,T ]. Note that 

U [0,T ]x = aRU [0,1] a
−1 
R x 

where e2R = T . Also note that if R = Jr, aR = aJ 
r . 

Goal: Understand how ar acts on unipotent orbits. 
We first spend some time visualizing how ar acts on X. Then we will use this 

geometric information to prove bounds about how ar acts on unipotent orbits. For 
this geometric discussion, it may be useful to look at the class video on the OCW 
page. 

We write Lg for the left action of g on G or on G/Γ. So Lg(h) = g−1h and 
Lg(hΓ) = g−1hΓ. (The inverse is traditional and makes it a left group action, but is 
not too important for us.) We write Rg for the right action of g on G. So Rg(h) = hg. 
Since the metric m is right invariant, the map Rg : G → G preserves m. However, 

Lg : G → G does not preserve m. The mapping La−1 
r 

does not preserve m. For any 
h ∈ G, La −1 

r
maps ThG to Ta −1 

r h G. This mapping always has singular values e2r , 1, 
and e−2r . The singular vectors are vexp, v0, vcomp ∈ ThG. Here vcomp is the singular 
vector with singular value e−2r and we call it the compressing direction. 
We shall consider a tube in the fundamental domain for G/Γ. By choosing coor-

dinates on the tube, we can identify it with D2 × [0, 1] and put coordinates x, t with 
x ∈ D2 and t ∈ [0, 1]. We choose the coordinates so that each vertical line x × [0, 1] 
is a piece of a U orbit, and so that ut(x, t1) = (x, t + t1). 
When we apply La−1 

r 
to the this tube, some directions get stretched and some 

directions get compressed. The tangent direction to the U orbits is stretched – the 
tangent direction is exactly vexp. So the compressing direction vcomp is perpendicular 
to the orbits. Now the key geometric point is that the compressing direction is 
twisting relative to the unipotent orbits. The following picture illustrates how La−1 

r 

acts on slices of the tube at various heights t. 
If we slice the tube at a given height t, we get a disk. The map La −1 

r 
approximately 

smooshes this disk to an ellipse. The direction vcomp is the direction of the original 
tube which is smooshed in this process. In the picture, at t = 1, the direction vcomp is 
vertical and at t = 0 the direction is horizontal. As t goes from 0 to 1, the direction 
vcomp twists gradually. 
In the picture, there are three unipotent orbits. The three dots in each disk 

represent where the unipotent orbit intersects that disk. So we see that at height 
t = 0, two of the orbits get smooshed close together. On the other hand, at height 
t = 1, the action of La −1 

r 
does not smoosh the orbits close together. The key point is 
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L a−1 
r 

t = 0 

L a−1 
r 

t = 1 

Figure 16. Action of La −1 
r 

on slices of the tube at various heights t. 

that at most heights t, the action of La −1 
r 

does not smoosh the orbits together very 
much. 



112 PROJECTION THEORY NOTES 

21. Homogeneous Dynamics II 

May 1 
In this lecture, we give some more details about how projection theory can help 

understand homogeneous dynamics. We sketch proofs in a simple case. Then we 
discuss recent work by Lindenstrauss-Mohammadi which uses projection theory to 
prove quantitative bounds in Ratner-type equidistribution theorems. The projection 
theory that appears here is related to some recent problems in projection theory 
raised by Fassler-Orponen. 

We pick up from the end of the last lecture. At the end of the last lecture, we 
drew a picture to illustrate how La −1 

r 
acts on the space X = SL2(R)/SL2(Z). The 

key point in the picture is that the compressing direction vcomp is twisting relative 
to the unipotent orbits. 

To start this lecture, we formulate precisely what we mean when we say that 
vcomp is twisting and indicate how to compute and prove this twisting using matrix 
computations. Then we explain how to use this twisting to prove bounds about an 
orbit Ux. 

We call vcomp(t) ∈ Tutg0 the direction that was compressed when we apply La−1 
r 
, 

i.e. the smallest singular value vector for dLa −1 
r 
. We also define an orbit vector vorb(t) 

such that ut(g0 + v0) = utg0 + vorb(t). The moral the the story is that at each 
point there is an orbit vector and a compression vector and the angle between them 
is changing. 

Let us first compute vcomp at g0 ∈ G. Here vcomp = vcomp,g0 ∈ Tg0 G is the smallest 
singular vector for dLa −1 

r
: Tg0 G → Tar g0 G. 

To study this we make use of the fact that m is right invariant. So the singular 
values and vectors of La −1 

r 
are closely related to those of 

R(ar g0)−1 ◦ L a−1 
r 

◦R g0 h = arhg0(arg0)
−1 = arha

−1 
r = Car h. 

Here Car : G → G mean conjugation by ar. Note that Car : e → e. dCar : TeG  

dCar 

 
a b 
c d 

 

= 

 
e r 

e−r 

  
a b 
c d 

  
e−r 

e r 

 

. 

Recall: Orthonormal basis for TeG : 

n = 

 
0 1 
0 0 

 

, ñ = 

 
0 0 
1 0 

 

, d̃ = 

 1 √ 
2 

0 
0 − 1 √

2 

 

After some calculation, we see that 

dCar (n) = e 2r n, dCar (ñ) = e−2r ñ, dCar (d) = d 

Thus, Rg0 (ñ) is the singular vector of dLa−1 
r 

at g0 with singular value e−2r . In other 
words 
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v comp,g0 = R g0 (ñ). 
Next we want to study v comp(t) = v comp,utg0 . Plugging in, we get 

v comp(t) = Rutg0 (ñ) = ñutg0. 
For comparison, we consider a vector that tracks the orbits of U . We define an 

orbit vector vorb(t) such that 

ut(g0 + v0) = utg0 + vorb(t). 
If we use coordinates so that the orbits are vertical lines {x} × [0, 1], then in these 

coordinates vorb(t) will be constant in t. Solving the equation above, we see that 

vorb(t) = utv0. 

If vorb(0) = v0 = vcomp(0) = (̃n)g0, then we would have 

vorb(t) = ut ̃(n)g0. 
Comparing formulas for vcomp(t) and vorb(t) we see that they are not the same. 

And so the compression direction is twisting relative to the orbits. 
Tracking the spread of an orbit 

U [0,T ]x = aRU [0,1] a
−1 
R x. 

Put ˜ x = a−1
R x and assume that ˜ x is not deep in the cusp. This implies that U · x is 

not close to being periodic. Let R = Jr and put Uj = ajrU[0,1]x̃. Define |X|δ to be 
the nubmer of δ balls needed to cover X. Goal: Estimate |Uj|δ in terms of j, δ, r. 
Define Xj to be the top layer of Uj, then |Uj|δ = δ−1|Xj|δ. We say that we are in 
the very spread situation if |Uj|δ ∼ δ−3 and |Xj|δ ∼ δ−2 . 
Using the Key Picture 

Lemma 21.1. If e2r = δ. Then, 

|X j+1|δ ∼ 
 

t∈δZ 
0≤t≤1 

∼ δ−1 Avg0≤t≤1|πtX j|δ. 

Let ft be La −1 
r 

restricted to time t. ft looks like the projection map πt (see Fig-
ure 18). ft is not linear but is smooth. 

We now bring into play a rather simple projection estimate. 

Proposition 21.2. If X ∈ B2 
1 , then 

Avgθ∈S1 |πθX|δ  |X|1/2 
δ . 
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t 

δ 

. . . 

. . . 

L a−1 
r 

1 

e−2r 

X 

πtX π 
# of balls in a strip 
= |πtX j|δ 

Figure 17. Proof sketch for the projection estimate. 

ft πt 

δ 

1 

Figure 18. ft is almost a projection. 

The sharp case for this example is shown in Figure 19. 
The proof for πt holds for ft as well. 

Corollary 21.3. 

|X j+1|δ  δ−1|X j|1/2 . 

Proof. |Xj+1|δ  δ−1Avgt|ftXj|δ  δ−1|Xj|1/2 
δ .  

Suppose |X0|δ = 1, then |X1|δ  δ−1 , |X2|δ  δ−3/2 , |X3|δ  δ−7/4 · · · 

Remark 21.4. This proof sketch shows that Xj is well spread, but it doesn’t show 
that the orbit is dense. 
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XπθXρ 

B1 

Figure 19. Example with X = Bρ ⊂ B1, we see that |X|δ ∼ (ρ
δ )

2 

and |πθ(X)|δ ∼ ρ
δ 

This finishes our discussion of homogenenous dynamics ni SL2(R). Next we con-
sider higher dimensions. Hedlund’s theorem was extended to higher dimensions by 
Dani, Margulis, and Ratner. One key result in the theory is Ratner’s theorem. A 
special case of Ratner’s theorem says that if U ⊂ SLn(R) is a unipotent subgroup, 
and X = SLn(R)/SLn(Z), then the closure of an orbit Ux is either all of X or is a 
lower-dimensional homogeneous space. 

As one concrete example, we can consider, G = SL3(R), Γ = SL3(Z). Put, 

U = 

⎡ ⎣1 t t 2 

0 1 t
0 0 1 

⎤ ⎦ 

The orbit closures in this situation were studied by Margulis in connection with 
the Oppenheim conjecture about the values of quadratic forms. 

Ratner’s theorem gives the best possible qualitative information about orbit clo-
sures in great generality. But there are interesting open questions about quantitative 
information. We can consider a finite piece of the orbit of the form U[0,T ]x. In terms 
of T , it would be interesting to describe how this piece of orbit is distributed in X. 
Recently, Lindenstrauss, Mohammadi, and collaborators proved strong quantitative 
bounds about the distribution of U[0,T ]x in certain Lie groups. Together with Wang 
and Yang they gave strong quantitative bounds for the unipotent group U ⊂ SL3(R) 
mentioned above, establishing a strong quantitative version of the Oppenheim con-
jecture. 

In the course of this work, they found a new connection between homogeneous 
dynamics and projection theory. The discussion above applies their ideas in the 
much simpler case of SL2(R). 
In the last short section, we explain what is similar and what is different in SLn(R) 

for n ≥ 3. 



116 PROJECTION THEORY NOTES 

The initial setup with diagonal matrices and unipotent matrices is quite similar. 
To study the group U ⊂ SL3(R) above, we set 

ar = 

⎡ ⎣e r 0 0 
0 1 0
0 0 e−r 

⎤ ⎦ 

Then we have 

aruta
−1 
r = Uer t, 

which is closely analogous to the setup in SL2(R). 
Next we can study the action of La−1 

r
. We can study the singular value of La−1 

r
by 

studying the singular value of Car . They are 

e−2r , e−r , e−r , 1, 1, e r , e r , e 2r . 

The direction tangent to U is a singular vector with singular value er . The per-
pendicular space is 7-dimensional. 

Recall that in the SL2(R) case, the singular values of La −1 
r 

were e2r , 1, e−2r , and 
the tangent vector to U is singular vector with singular value e2r . The perpendicular 
space is 2-dimensional, and the singular values for that space are 1 and e−2r . 
The first difference in SL3(R) is that the perpendicular space is higher dimensional 

and it has more different singular values. A linear map with singular values 1 and e−2r 

can be approximated by a projection. In 7 dimensions, a linear map with singular 
values 1, 1, 1, 1, e−r , e−r , e−r can be approximated by a projection from R7 onto a 
4-dimensional subspace. But here, we have to deal with a linear map with singular 
values e−2r , e−r , e−r , 1, 1, er , e2r . This linear map is not approximately a projection. 
However, this is not the most serious issue. 

Our key geometric input is that as t varies, the linear map on the perpendicular 
space twists. In the case of SL2(R), we get a 1-parameter family of linear maps. Each 
linear map is almost a projection, and so we almost get the whole set of projections 
from R2 to a 1-dimensional space. For U ⊂ SL3(R), the variable t still lives in R 
because the group U is 1-dimensional, and so we get a 1-parameter family of linear 
maps on R7 . These linear maps are a bit more complicated than projections, but 
suppose for a moment that we had a 1-parameter family of projections from R7 to 4-
dimensional subspaces. This 1-parameter family is still a very small subset of all the 
projections from R7 to 1-dimensional subspaces. This is the most serious difference 
between SL2(R) and SL3(R). 
This leads to a problem called the restricted projection problem, which was posed 

by Fassler-Orponen. In the restricted projection problem, instead of considering all 
the projections from Rn to k-dimensional subspaces, we consider only a smooth lower 
dimensional family of projections. There are many different choices we could make 
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for this smooth family, leading to many different problems. The simplest interesting 
example occurs in three dimensions. 

Question 21.5. (Fassler-Orponen 2013) 
For θ ∈ S2 ,, let πθ : R3 → θ⊥ be the orthogonal projection. Let γ be curve in S2 . If 
X ⊆ B3 , and X is a (δ, s, C) set, estimate Avgθ∈γ|πθ(X)|δ. 

The answer depends on whether γ lies in an equator or not. 

Example 21.6. Let γ be the equator and X a δ×1×1 slab. Then, Avgθ∈γ|πθ(X)|θ ∼ 
δ−1 . 

An equator is a geodesic in S2 and so it has zero extrinsic curvature in S2 . We say 
that γ ⊂ S2 is non-degenerate if it has non-zero extrinsic curvature at every point. 
For non-degenerate curves, there are much stronger estimates. 

Theorem 21.7. (Gan-Guo-Guth-Harris-Maldague-Wang) 
If X ⊆ B3 is a (δ, 2, C) set and γ is non-degenerate. Then, Avgθ∈γ|πθ(X)|δ ≥ 
Cδ

−2+ for any  > 0. 

The proof is based on decoupling in Fourier analysis. 
Results about the restricted projection problem in the spirit of the theorem above 

were used as tools in the work on quantitative Ratner theorems. Here is a sample 
theorem in this direction: 

Theorem 21.8. (Lindenstrauss, Mohammadi, Wang, Yang, vague statement) There 
is a constant c > 0 so that the following holds. If G = SL(3, R), Γ = SL(3, Z). U 
as above and U · x is not close to a proper homogeneous subspace, then, U[0,T ]x is 
T −c-dense in (G/Γ). 

One key step in the proof of this theorem is that, for δ = T −c , 

|U [0,T ]x|δ ≥ cδ
−(dim G+) . 

Part of the proof of this key step follows the ideas we have outlined, but with the 
restricted projection theorem in place of the simple projection theorem that we used 
above. 

The full proofs of the results we have discussed in homogeneous dynamics require 
more tools and ideas from homogeneous dynamics. But hopefully these notes give 
an idea of how tools from projection theory can help to study dynamics. 

There is some other recent work in this area by Benard-He and Benard-He-Zhang, 
applying tools from projection theory to study random walks on homogeneous spaces. 
The introductions to those papers are a good next step for further reading. 
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22. Sharp Projection Theorems I: Introduction and Beck’s Theorem 

May 6 
In the last two years, Orponen-Shmerkin and Ren-Wang proved the Furstenberg set 

conjecture. As a special case, this gives a sharp projection theorem in R2 , completely 
answering the questions in projection theory first raised by Kaufman in the 1960s. It 
can also be viewed as a harmonic analysis cousin of the Szemeredi-Trotter theorem. 
I think it is a remarkable result, and this work was one of my main motivations to 
teach this class. 

The full proof of the Furstenberg set conjecture spans several long papers. It is 
too long and too technical to give the full proof in these lectures. But in the last 
three lectures we will discuss some of the ideas of the proof. 

We begin this section by restating the Szemeredi Trotter theorem, an important 
sharp theorem in projection theory. 

Theorem 22.1 (1982). Let E be a set of points in R2 . Pick some integer S > 1. 
For every x in E, let Lx be a set of S lines passing through x. Define L = 

 
x∈E Lx. 

Then 

(46) |L|  min(|E| · S, |E|1/2 S 3/2) 

This theorem is discussed in more detail earlier in these notes. It is one of the earlier 
examples of a sharp theorem in projection theory. The Furstenberg set conjecture 
is a continuous analogue of this theorem, in which points are replaced by δ-balls 
and lines are replaced by δ-tubes. To state it, we first recall the (δ, s, C) spacing 
condition. 

Definition 22.2. A set E ⊂ Rd contained in the unit ball centered at the origin is 
(δ, s, C) if 

(47) |E ∩ Bx(r)|δ ≤ Crs|E|δ 

for all balls of radius r with r ≥ δ centered at arbitrary points x, where | · |δ is the 
δ-ball covering number. 

The following theorem by Orponen, Shmerkin, Ren, Wang (OSRW) gives an anal-
ogous statement to the Szemeredi Trotter theorem for (δ, s, C) sets (this statement 
is also known as the Furstenberg conjecture (or FC)) : 

Theorem 22.3. [Furstenberg Conjecture, OSRW (2024)] Let E ⊂ R2 be a (δ, t, C) 
set. Define a δ tube as a 1 × δ rectangle in the plane. For every x ∈ E, let Tx be 
a set of δ tubes in R2 passing through x. For each x, let Dir Tx ⊂ S1 be the set of 
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directions of the δ tubes in Tx. Assume that for all x ∈ E, Dir Tx is a (δ, s, C) subset 
of S1 . Define 

T = 
 

x 

Tx 

Then for every  > 0 

(48) |T| ≥ cC
−O(1)δ  min(δ−t−s , δ−t/2−3s/2 , δ−1−s) 

where c is a constant depending on . 

Denote the three cases of the minimum value, A, B, and C, in order. The first 
two cases of the minimum value are analogous to the cases of the Szemeredi Trotter 
theorem. In case A, each point has many lines passing through it, and each line 
passes through only one point. The second case corresponds to a grid of points with 
lines corresponding to rational angles. 

The third case is new in the setup with δ-balls and δ-tubes. Notice that if we 
randomly pick a δ-ball in B2(1) and a δ-tube in B2(1), the the probability that the 
δ-ball intersects the δ-tube is ∼ δ. To get an example in this third case, we randomly 
pick a set E consisting of δ−t δ-balls and a set T consisting of δ−1−s δ-tubes. For each 
x ∈ E, we define Tx to be the set of T ∈ T so that x ∈ T . With high probability, 
for every x ∈ E, |Tx| ≈ δ−s . Moreover, for any η > 0, with high probability the set 
E will be (δ, t, δ−η) and each Dir Tx will be (δ, s, δ−η). 

22.1. History of the Furstenberg conjecture. The first set of methods that were 
applied are classical methods, due to Kaufman, Falconer, and Wolff. These consisted 
of double counting arguments and Fourier methods. 

Double counting methods give sharp bounds when the first term in Theorem 22.3 
dominates, which happens when s ≥ t. 

Fourier methods give sharp bounds when the third term in Theorem 22.3 domi-
nates, which happens when s + t ≥ 2. 

When the second term dominates, classical methods are not sharp. One of their 
key deficiencies that they cannot distinguish between R and C. As the Furstenberg 
conjecture is false in C, it is essential to use methods that distinguish the two spaces. 

The second set of methods, from 2000 to 2022 was  improvements. These methods 
began with Bourgain’s projection thoerem in 2000, and showed bounds that were  
better than the trivial or classical bounds. For instance, these methods were used to 
show that if t = 1 and s = 1/2, then 

|T|  C−O(1)δ−1− 
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for some tiny but explicit  > 0. Without the , this bound is trivial, but the 
 improvement was a large step forward. In particular it was the first result to 
distinguish R from C. 

In 2021, Orponen and Shmerkin pushed these methods further, proving a very 
general -improvement result. 

Theorem 22.4. [Orponen-Shmerkin (2021)] Under the same hypotheses as Theorem 
22.3, for every 0 < s < t there is  > 0 so that 

(49) |T|  δ−2s− 

In this situation, the classical method gives the lower boundf |T|  δ−2s and this 
theorem improves the classical bound by . The proof uses Bourgain’s projection 
thoerem, as well as other ideas. 

The main progress in the second stage consisted of proving  improvements in 
more and more general situations. This last theorem of Orponen-Shmerkin was an 
important step in that direction. However, thoughtout this second phase, the value 
of  remained quite small. 

The third phase is based on repeatedly applying the  improvement results to reach 
a sharp result. The result by OSRW is a key example of these methods. 

It is striking and surprising that it is possible to bootstrap the -improvement 
theorems to get sharp bounds, and I think this is one of the main ideas to take away 
from the recent work in projection theory. In this class and the next class, we will 
try to explain how it works. 

We begin in this class with the simplest example I know in which an -improvement 
can be bootstrapped to get a sharp bound. The result is an analogue of Beck’s 
theorem from combinatorial geometry, and we begin by stating Beck’s theorem. 

Theorem 22.5 (Beck). Let E be a set of points in R2 and for any line , assume 
that  intersects at most half of the points in E. i.e. 

| ∩ E| ≤ 
1 
2
|E| 

For every x ∈ E, let Lx,E be the set of lines passing through x that also pass through 
an additional point in E, i.e. 

L x,e = { :  is a line passing through x such that | ∩ E| ≥ 2} 

Then for every x 

|Lx,E|  |E| 
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Proof sketch. We assume that the lines in each Lx,E are uniform, that is each Lx,E 

contains approximately the same number of lines, and each point has approximately 
the same number of lines passing through it. This implies that 

|E ∩ | ∼ 
|E| 

|Lx,E| 
for each  and each x. Let S ∼ |Lx,E| be the number of lines through each point. 

Also let L = ∪x∈ELx,E. 
Double counting shows that 

|E| · S ∼ |L| · |E|/S 

The left hand side is the number of points multiplied by the number of lines per 
point, so is the total number of lines multiplied by the number of points per line. 
The right hand side is number of lines multiplied by |E|/S, which is the number of 
points per line. The two sides are therefore equal. By manipulating the equation, 
we get 

|L| ∼ S 2 

On the other hand, the Szemeredi Trotter theorem tells us that 

|L|  min(S|E|, S 3/2|E|1/2). 
Since |L| ∼ S2 , this implies that 

S  |E| 
the desired conclusion.  

Note that to obtain this conclusion, a weaker version of Szemeredi Trotter is suf-
ficient. We only need to know that if 

|E|  S 

then 

|L|  S 2 

This weaker version of Szemeredi-Trotter is only an  improvement of a double 
counting bound. This bound is analogous to the bound in Theorem 22.4. Using 
Theorem 22.4, Orponen, Shmerkin, and Wang were able to prove a continuum ana-
logue of Beck’s theorem. Here is the statement. 
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Theorem 22.6. [Continuum Beck’s Theorem, OSW (2023)] Choose η > 0 and let 
E be a (δ, u, C) set in the plane such that for all ρ × 1 rectangle R, 

|E ∩ R|δ ≤ Cρ η|E|δ 

Then for most x ∈ E, 

|Lx,E|δ  δ  min(δ−u , δ−1) 

(Here Lx,E is a set of lines through the point x. We define the distance between 
two such lines as the angle between them, and so we can define |Lx,E|δ.) 

This theorem is sharp. And the result is false over C. It is one of the first sharp 
theorems in projection theory which distinguishes R from C. 

The proof is based on the proof of Beck’s theorem, but there is a new issue in this 
setting, and a new idea to deal with the issue. Here we give only a proof sketch, 
explaining the new issue and the new idea. 

Suppose we try to imitate the proof of Beck’s theorem using Theorem 22.4 in 
place of the Szemeredi-Trotter theorem. In order to apply Theorem 22.4, we need to 
assume that each Lx,E is a (δ, s, C) set for some s. By doing some uniformization, 
we can reduce to the case that all the sets Lx,E are similar to each other: |Lx,E| is 
roughly constant in x and every Lx,E is a (δ, s, C) set for the same s, C. 
As above, we let L = ∪x∈ELx,E. We let T be the set of δ-tubes formed by thickening 

the line segments of L. Several lines may thicken to essentially the same δ-tube T ∈ T. 
We let Tx be the set of tubes of T passing through x. So we have |Tx| ∼ |Lx,E|δ. 

A version of the same double counting argument as above shows that 

|T| ∼ |Tx|2 ∼ |Lx,E|2 
δ . 

On the other hand, Theorem 22.4 tells us that if 0 < s < min(u, 1) then 

|T|  δ−2s− 

for some small  = (s, u). Comparing the last two equations, we see that 

|Lx,E|δ  δ−s− 

We state what we have learned as a lemma. 

Lemma 22.7. If 0 < s < min(u, 1), and a typical set Lx,E is (δ, s, C), then 

|Lx,E|δ  δ−s− 

Let us reflect on the lemma. If Lx,E is (δ, s, C), then it follows that |Lx,E|δ  δ−s . 
This lemma improves on that trivial bound by an . However, it looks far from the 
sharp bound in Theorem 22.6. 
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Orponen, Shmerkin, and Wang proved Theorem 22.6 by a bootstrapping argument, 
where Theorem 22.4 is used not just once but many times at many different scales. 

We now sketch this bootstrapping argumen. Suppose that Lx,E is uniform and 
(δ, s, c) for s, where 0, s < min(u, 1). Then Lx,E is (ρ, s, C) for ρ ≥ δ. The lemma 
then implies that for every ρ, 

|Lx,E|ρ  ρ−s− 

for every ρ ≥ δ. From the assumption that Lx,E is a uniform set, Lx,E is therefore 
a (δ, s + , C) set. To summarize, we now have a stronger lemma: 

Lemma 22.8. If 0 < s < min(u, 1), and if a typical set Lx,E is uniform and (δ, s, C), 
then a typical Lx,E is (δ, s + , C ) where  = (s, u) > 0. 

The hypothesis in Theorem 22.6 that E does not concentrate too much in rectan-
gles shows that each Lx,E is a (δ, η, C) set. Starting with this assumption, we can 
then apply Lemma 22.8 repeatedly. As we keep iterating, the value of s will approach 
min(u, 1). 

We should note that this proof sketch was not a complete proof. The technical 
work that is missing is to make precise what we mean when we say that Lx,E is 
typical. This requires some careful uniformizing and pigeonholing. 

I was very impressed when Theorem 22.6 was proven, because it gives the sharp 
answer to a natural question in projection theory and distinguishes R from C. On 
the other hand, it was not at all clear to me whether these ideas would lead to sharp 
answers to more difficult problems like the Furstenberg set conjecture. Here is one 
issue. In the combinatorial geometry world, it was well known that an -improvement 
to Szemeredi-Trotter implies Beck’s theorem, and that Beck’s theorem is sharp. The 
proof of the continuum Beck’s theorem builds on this observation. But on the other 
hand, no one knows how to bootstrap an -improvement to Szemeredi-Trotter in 
order to prove the full Szemeredi-Trotter theorem. So it was not all clear whether 
to expect that we could bootstrap the -improvement estimate in Theorem 22.4 in 
order to prove the Furstenberg set conjecture. In fact, it would be fair to stay that 
this strategy sounded very doubtful to me. 

As we will see, OSRW did prove the Fustenberg set conjecture, and bootstrapping 
theorem 22.4 played a key role. 

22.2. Outline of OSRW proof of Furstenberg conjecture. We now begin to 
discuss the proof of the Furstenberg set conjecture, just at the level of a very broad 
outline. 

The proof is split into cases based on the spacing of the set E. I believe this 
division into cases is a second major takeaway from the recent work. Until recently, 
most proofs in projection theory applies for all (δ, s, C) sets. But different (δ, s, C) 
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sets can have quite different spacing properties. And it turns out that depending on 
the way a set E is spaced, different tools are helpful to bound the projection theory 
of E. 
The best language for describing the spacing of E is the language of branching 

functions and uniform sets. First by a pigeonholing argument, we can reduce to the 
case where E is a uniform set with δ = Δm for some large m. Recall that the uniform 
condition on E means that for any dyadic Δj cube Q with j an integer between 1 
and m, then 

|E ∩ Q|δj+1 ∼ R j 

where 1 ≤ Rj ≤ Δ−2 is a branching number that determines the spacing of E. 
The sequence of branching numbers Rj gives very precise information on “the way 

E is spaced”. Notice that recording the sequence of branching numbers contains a 
lot more information than a single number s that would appear if we said that E is 
a (δ, s, C) set. 

To build intuition, it is well worth a little time to draw sets with a few different 
branching functions. Here are two different cases that turn out to play an important 
role in the story. 

AD regular case. For every j, Rj ∼ Δ−t . In this case, the set E is a (δ, t, C) set. 
But not all (δ, t, C) sets are AD regular. 

Well spaced case. In this case, Rj = Δ−2 for j ≤ m and Rj = 1 for j > m. The 
number of points in the set E is Δ−2m , and these points are as well-separated as 
possible. If we choose t so that δ−t = Δ−2m , then the set E is a (δ, t, C) set. But it 
looks very different from an AD regular set. 

Among (δ, t, C) sets, the AD regular set is the most compressed (the distances 
between points are as small as possible). And the well spaced case is the most 
spread out. 

There is also a continuum of cases in between. 
One important feature of the proof is that there are different tools for the AD 

regular case and the well spaced case. 
In 2024, Orponen-Shmerkin proved the AD regular case of the Furstenberg set con-

jecture. Their proof uses a bootstrapping argument and uses the continuum Beck 
theorem. It could be described as an elaborate bootstrapping argument which uses 
the -improvement in Theorem 22.4 many times. (Recall that there is no known 
bootstrapping argument to deduce Szemeredi-Trotter from a weaker -improvement 
version of Szemeredi-Trotter. But Orponen and Shmerkin showed that the AD reg-
ular case has a lot of special structure, and in this case the sharp estimate does 
ultimately follow from an -improvment version.) 
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Somewhat earlier, Guth-Solomon-Wang proved that well spaced case of the Fursten-
berg set conjecture. The proof is based on Fourier methods. 

At this point, the Furstenberg conjecture had been proven in two extreme cases 
by very different methods. But there were many other cases in between these. 

A little later in 2024, Ren and Wang proved the full Furstenberg set conjecture. 
They used a multiscale argument which breaks the problem into several different 
scales. And they showed that, if the sequence of scales is picked carefully, then 
each scale can be controlled using either the AD regular case or a Fourier method 
generalizing the GSW method. 

In the next two lectures, we will survey these developments, spending one lecture 
on the AD regular case, and one lecture on the rest of the proof. 
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23. Sharp Projection Theorems II: AD Regular Case 

May 8 
A set E is called AD regular if the spacing of the set E behaves similarly at all 

scales. AD regular sets include classical fractals such as the Cantor set. Orponen 
and Shmerkin proved the AD regular case of the Furstenberg set conjecture. We 
discuss their proof and how the self similar spacing comes into play. 

Recall that we want to prove the following: 

Theorem 23.1 (OSRW). If E ⊂ R2 is a (δ, t, C)-set and for all x ∈ E, Tx is a set 
of δ-tubes going through X, Dir(TX ) is a (δ, s, C)-set, with TX uniform, |Tx| ∼ δ−s , 
and s > 0, then 

|T| ≥ cδ
 C−O(1) min 

 
δ−s−t , δ− t 

2
− 3s 

2 , δ−1−s 
 
. 

When δ−s−t is the minimum, call this case A. When δ− t 
2
− 3s 

2 is the minimum, call 
this case B. And if δ −1−s is the minimum, call this case C. 
In case A, s ≥ t and the result follows by double counting. In case C, s + t ≥ 2, 

and we can deduce the theorem using the Fourier method. This leaves case B, which 
is the essentially new content of this theorem. 

It will be a little easier to think about things in terms of 

R(E, T) := “typical number of δ-balls of E on a typical tube of T”. 
More precisely, 

R(E, T) = 
|E|δ−s 

|T| 
. 

We will be interested in the AD-regular case. Suppose E is uniform. Let δ = Δm 

(m large). Then 
|E ∩ QΔj |Δj+1 ∼ B j, 

where Bj is the branching number, for all dyadic cubes QΔj intersection E. 

Definition 23.2. E is (δ, t, C)-AD-regular if 

1 
C 
(Δ J )−t ≤

     
J 

j=1 

B j

     ≤ C(Δ J )−t . 

Let 

RAD(s, t, δ, C) = max 
E, T obey hypotheses of theorem, E is (δ, t, C)-AD-regular 

R(E, T). 

We won’t worry about C, so we’ll just set C = 1. The argument works if C  1. 
And we’ll abbreviate the above to RAD(δ). Then in terms of these quantities, the 
theorem in the AD-regular case is 
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Theorem 23.3. [OS] 

RAD(s, t, δ)  max 
 
1, δ−

t
2 δ 

s
2 , δ 1−t 

 
. 

The AD regular case seems like a very special case, but as we’ll see, this is a very 
important case that is crucial to proving the theorem. Breaking into cases was an 
important step to proving the general theorem. 

The AD regular case is special because it interacts in a very nice way with mul-
tiscale arguments. This gives us special tools for studying the AD regular case. If 
E is an AD regular set, of dimension t then if we take E ∩ B(x, ρ) and rescale it 
to diameter 1, we get an AD regular set of dimension t. In contrast, if E is just a 
(δ, s, C) set, and if we take E ∩ B(x, ρ) and rescale it to diameter 1, then we can say 
much less about it. This feature of AD regular sets leads to the following key lemma. 

Lemma 23.4 (Submultiplicative Lemma). If δ = δ1δ2, δ1, δ2 < 1, then 

RAD(δ)  RAD(δ1)RAD(δ2). 

Proof Sketch. The idea is to take a set E of δ-balls and T of δ-tubes and thicken it 
to set E1 of δ1-balls and a set T1 of δ1-tubes. We can also restrict E and T to a 
δ1-ball and magnify it. Then we’ll get a set E2 of δ2-balls and a set T2 of δ2-tubes. 
Then (E1, T1) and (E2, T2) satisfy the hypotheses, and 

RAD(δ) ≤ (number of δ1-balls in a δ1-tube) 

· (number of δ-balls in a δ-tube within one δ1-ball) 

≤ RAD(δ1)RAD(δ2). 

 

(1) If E and Tx are uniform and E is (δ, t), then E1 is (δ1, t). If Tx is (δ, s), then 
T1,x is (δ1, s). If E is AD-regular then so is E1. 

(2) Because E is AD-regular, E ∩ Bδ1 magnifies to a set that is (δ2, t) and AD-
regular. 

This is why we need to work with AD-regular sets. 
Remark. This lemma is analogous to a submultiplicative lemma from decoupling 

theory in Fourier analysis. In both cases, multiscale analysis turns out to be very 
powerful. Beyond that, it’s not clear to me whether the two theories are parallel. 

Next we give several applications of the submultiplicative lemma and then discuss 
some of the ideas in the proof of Theorem 23.3. 

23.1. Brute force proof. One can give a brute force proof of the AD-regular OS 
theorem. For some specific δ0, check by brute force 

RAD(s, t, δ0) ≤ max(1, δ 
− t 

2 
0 δ 

s 
2 
0 , δ 

1−t 
0 )δ− 

0 
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δ1 

E1 

E 

T1 

T 

Figure 20. Submultiplicative lemma 

for some  > 0. There are essentially only finitely (but a very very large number!) 
many cases for a fixed δ0, so this can theoretically be check by brute force. Then we 
can use the submultiplicative lemma many times to get 

RAD(s, t, δ 
2 
0) ≤ max(1, (δ 2 

0)
− t 

2 (δ 2 
0) 

s 
2 , (δ 2 

0)
1−t )(δ 2 

0)
− 

and so on. 
On the one hand, the brute force part is completely unmanageable, and so this 

is not a realistic of proof. Nevertheless, it is interesting to note that in principle 
one can prove a nearly sharp Furstenberg estimate in the AD regular case just by 
using the simple submultiplicative lemma and brute force. Most deep questions in 
math cannot be easily reduced to a (hopelessly large) brute force computation. I 
think this argument, while it is impractical, still suggests that the AD regular case 
of Furstenberg may be especially approachable. 

23.2. General AD vs Projective AD. Theorem 23.3 is related to projection the-
ory but it is more general. 

Definition 23.5. We say (E, T) is projective if Dir(Tx1 ) = Dir(Tx2 ) for any 
x1, x2 ∈ E. 

Let 

RAD,proj(δ) = max 
(E, T) satisfy hypotheses, E is AD-reg, (E, T) projective 

R(E, T). 

Then clearly RAD,proj(δ) ≤ RAD(δ). 
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Notice that from the proof of the submultiplicative lemma, if we let δ1 = δ2 = 
√ 
δ, 

then the small ball problems are all projective: We can only distinguish the angles 
of tubes for the small ball up to ∼ 

√ 
δ, so they are the angles of the larger 

√ 
δ-tubes. 

So 

RAD(δ)  RAD(δ 
1/2)RAD,proj(δ 

1/2) 

 RAD(δ 
1/4)RAD,proj(δ 

1/4)RAD,proj(δ 
1/2) 

 . . . 

So to prove the theorem, it suffices to check the projective case. 
We also note that the proof of the submultiplicative lemma applies to the projective 

case giving 

Lemma 23.6 (Submultiplicative Lemma, projective version). If δ = δ1δ2, δ1, δ2 < 1, 
then 

R AD,proj(δ)  R AD,proj(δ1)R AD,proj(δ2). 

23.3. Sketch of the proof for the AD regular case. When Pablo Shmerkin 
was visiting me, he described to me the philosophy of the proof in a way that has 
stuck with me. He said, “The goal of the proof is get an -improvement to the 
submultiplicative lemma.” 

Let us state this in a precise way. Let us write RHS(δ) for the right-hand side of 

Theorem 23.3, so RHS(δ) = max 

1, δ− t 

2 δ 
s 
2 , δ1−t 


. 

Lemma 23.7 (-improvement to submultiplicative lemma). Fix s, t. For every α > 0 
there is some  > 0 so that either 

R AD,proj(δ 
1/2)  δ−α RHS, 

or 

R AD,proj(δ)  δ  R AD,proj(δ 
1/2)2 . 

Given this lemma, a simple iteration argument shows that RAD,proj(δ)  RHS. 
To prove the lemma, we have to examine the situation when the submultiplicative 

lemma is almost sharp in the sense that 

R AD,proj(δ)  δ  R AD,proj(δ 
1/2)2 . 

So what does it mean for the submultiplicative lemma to be (almost) sharp? Let’s 
recall a little bit of the setup of the submultiplication lemma. We have E a set of δ 
balls and T a set of δ-tubes, and we want to estimate R(E, T), they typical number 
of δ-balls of E in a δ-tube T ∈ T. We let T1 be the set of δ1/2-tubes formed by 
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Figure 21. Top: Submultiplicative Lemma is Not Sharp, Bottom: 
Submultiplicative Lemma is sharp 

thickening tubes of T, and we let E1 be the set of δ1/2-balls formed by thickening 
balls of E. Given the spacing conditions of E and of Tx, we see that each tube of 
T intersects  RAD,proj(δ

1/2) thick balls of E1. And we see that the restriction of T 
to a ball of radius δ1/2 intersects at most RAD,proj(δ

1/2) δ-balls of E. This gives the 
submultiplicative bound RAD,proj(δ)  RAD,proj(δ

1/2)2 . If the argument is tight, then 
each step must be tight. In particular, for a typical tube T that intersects a typical 
ball ˜ B ∈ E1, we must have |T ∩ ˜ B ∩ E|δ ∼ RAD,proj(δ

1/2 . 
So in the two pictures below, E must resemble the bottom picture in the following 

figure. 
In this picture, you may see a hint of a product structure. We’re going to make 

this precise. Let T1 ∈ T1 be a δ1/2 tube. We are going to study E ∩ T1. Choose 
coordinates so that T1 is described by 0 < x2 < δ1/2 , 0 < x1 < 1. Let A be the 
projection of E ∩ T1 on the x2 axis and let B be the projection of E1 ∩ T1 on the x1 

axis. Now we see that E ∩ T1 ⊂ A × B. 
The set A × B is a union of horizontal rectangles of dimensions δ1/2 × δ. When 

the submultiplicative lemma is sharp, then a fraction  1 of these rectangles contain 
≈ RAD,proj(δ

1/2) δ-balls of E. Let X ⊂ A × B be the union of rectangles that do 
contain ≈ RAD,proj(δ

1/2) δ-balls of E. 
Now we study the projection of E ∩ T1 onto almost vertical lines. Suppose that 

|c| ≤ δ1/2 , and let c be the line at angle c from the x2 axis. Let πc : R2 → c be 
orthogonal projection. Notice that since |c| ≤ δ1/2 , we have 

πc(E) ∩ B δ1/2 = πc(E ∩ T1) = πc(X). 
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We are studying the projective case of the Furstenberg set problem. So let D ⊂ S1 

be the set of directions in which we are projecting. Let C ⊂ D be the subset of D 
corresponding to projections onto lines c with |c| ≤ δ1/2 as above. 

When we choose the tube T1, we can arrange that A = π0(X) has typical size, and 
therefore we get 

|πc(X)|δ  |A|δ for all c ∈ C. 
Because we are assuming that the submultiplicative lemma, the set X is almost 

a product set. Using a cousin of the Balog-Szemeredi-Gowers theorem called the 
asymmetric BSG theorem, it is possible to reduce to the case that X is a product 
set, X = A × B. Now we have 

|A + cB|δ  |A|δ for all c ∈ C. 
At this point, we can use Plunnecke-Ruzsa to get stronger inequalities of the form 

|A + c1B + c2B + c3B|δ  |A|δ for all c ∈ C. 
The full details of this argument are somewhat complicated, and we do not give 

them here. First one needs to determine the spacing properties of A, B, C. To 
discuss this, it is convenient to first change coordinates. The set A is a set of δ-
intervals inside of B(δ1/2). It is natural to rescale A to a set of δ1/2 intervals inside 
[0, 1]. Similarly, we can rescale C to a set of δ1/2-intervals inside [0, 1]. Let us set 
ρ = δ1/2 . After rescaling, we have that |A + cB|ρ  |A|ρ for all c ∈ C. 
The spacing properties of A, B, C fall into different cases. The most interesting 

case is when 
• A is a (ρ, a)-set with |A| ∼ ρ−a . 
• B is a (ρ, b)-set with |B| ∼ ρ−b . 
• C is a (ρ, c)-set with |C| ∼ ρ−c . 
• For any c ∈ C, |A + cB|ρ  |A|ρ. 

Orponen-Shmerkin formulated and proved a projection estimate called the ABC 
sum product estimate. 

Theorem 23.8. (ABC sum product theorem, Orponen-Shmerkin) 
Under the hypotheses in the bullet points above, a ≥ b + c. 

This theorem is sharp: if a = b + c there is a natural example that satisfies the 
hypotheses above, given by 

A = [0, 1] ∩ δaZ, 

B = [0, 1] ∩ δ bZ, 
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C = [0, 1] ∩ δcZ. 
Using the ABC sum product theorem and some computation, Orponen-Shmerkin 

check that E,T must obey the conclusion of the Furstenberg set conjecture. 
We will not prove the ABC sum product theorem here, but we make a few com-

ments about it. 
The proof of the ABC sum product theorem is based on two key inputs. One key 

input is the continuum Beck theorem from the last lecture. The ABC sum product 
theorem would be false over C. Orponen-Shmerkin reduce it to continuum Beck 
theorem, our first example of a sharp projection theorem distinguishing R from C. 
The second key input is from additive combinatorics. The setup of the ABC sum 
product theorem involves sum sets, and so Plunnecke-Ruzsa and other tools from 
additive combinatorics naturally come into play, as we hinted above. These tools 
give us a lot of leverage, and they allow the reduction from ABC sum product to 
continuum Beck. 

The ABC sum product theorem can be considered as a special case of the Fursten-
berg set conjecture. (The Furstenberg set conjecture directly implies the ABC sum 
product theorem.) But it is a special case with extra structure, especially the prod-
uct structure, which makes it more accessible to tools from additive combinatorics. 
The ABC sum product theorem has an analogue over prime fields, and the finite field 
analogue has a short proof using additive combinatorics, even though the analogue 
of the Furstenberg set conjecture over prime fields remains open. 

To finish, let us summarize the ideas we have discussed about the AD regular case. 
• In the AD regular case, we have the submultiplicative lemma. 
• The submultiplicative lemma allows us to reduce to the AD regular projection 
case. 

• In a worst case example, the submultiplicative lemma must be sharp, and 
this forces E to have some product structure. 

• This product structure lets us use tools from additive combinatorics like 
Plunnecke-Ruzsa. 

• With these tools, Orponen-Shmerkin reduce the problem to the continuum 
Beck theorem. 

• As we discussed in the last lecture, the continuum Beck theorem reduces 
to the Orponen-Shmerkin projection theorem, an -improvement on a simple 
double counting argument. And this theorem in turn reduces to the Bourgain 
projection theorem. 
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24. Sharp Projection Theorems III: Combining different scales 

May 13 
Last lecture, we discussed some of the ideas in the proof of the AD regular case of 

the Furstenberg conjecture by Orponen-Shmerkin. 
Building on their work, Ren and Wang proved the full Furstenberg conjecture. 

They used the AD regular case as a black box. The rest of the proof depends on two 
ideas, which we will explore in this lecture. 

• Using a Fourier method in the well-spaced case. 
• Combining different scales. 

24.1. Well spaced case. For the well-spaced case, we want to have some sort of 
Geometric Measure Theory version of the SzemerediTrotter (theorem ??). Let us 
remind ourselves what the classic theorem looks like in our setting. 

Theorem 24.1. If E ⊂ R2 is a set of N points and LR(E) the set of R-rich lines, 
then 

|LR(E)|  
N2 

R3 
+ 
N 
R 

Guth-Solomon-Wang proved an analogue of this theorem in the well spaced case. 

Theorem 24.2 (GSW). Let E ⊂ R2 be a set of N δ-balls with E ⊂ B1 which is 
well-spaced, in the sense that |E ∩ BN−1/2 |δ  1. 
Let TR(E) be a set of δ-tubes which are essentially distinct with |T ∩ E|δ ≥ R. 
Assume also that R > δ−εδ|̇E|δ. Then 

|TR(E)|  
N2 

R3 
. 

When we compare the two theorems two things stand out to us. 

• First we no longer have a N 
R term. In Szemeredi-Trotter, the N/R term 

dominates only when R > 
√ 
N which isn’t possible in the well-spaced case 

since each line intersects roughly 
√ 
N squares. 

• The second difference is that we do need to assume some lower bound on R. 
To see why this is necessary, let us consider a random δ-tube T , then the 
expected number of balls on the line is 

E[|T ∩ E|δ] ∼ δ|E|δ. 
If R is equal to δ|E|δ, then an average tube will be R-rich, and so |TR(E)| 
can be comparable to the total number of essentially distinct δ-tubes (about 
δ−2). In this regime, the theorem is not true. But if we increase R slightly, 
then we get the sharp bound in the theorem. It is quite remarkable that 
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there is such a sharp phase transition once we increase R past the richness of 
a random tube. 

Proof sketch. We will now sketch the proof of this theorem, the tools we will need 
are the Fourier Method, Double Counting, and Playing with different scales. 

Using the Fourier method as in Lecture 4, you can prove that under the hypothesis 
of the theorem, we get that 

|TR(E)|  δ−1|E|δR−2 = δ−1 NR−2 . 

(This is a good exercise on the techniques we have studied in the class.) 
Now in the special case where R = δ−εδ|E|δ then δ−1 ≈ N 

R so 

δ−1 NR−2 = 
N2 

R3 
, 

which exactly matches the theorem. This special case is when R takes the smallest 
value allowed by our hypotheses. Unfortunately, this breaks down when we increase 
R. However, this bound gets better as we increase δ, that is if we increase the width 
of our tubes. 

Recall that |E|δ = N . We know δ−εδ|E|δ = δ−δN ≤ R ≤ N1/2 . We set the scale 
parameter ρ such that ρ · N ∼ R. This way 

δ < ρ = 
R 
N 
< N− 1

2 

We are going to study Eρ, the ρ-neighborhood of E. Now we want to understand 

1 

N−1/2 

Figure 22. An example of a well spaced set with N points, along 
with its Eρ neighborhood in red 

δ-tubes that hit a lot of balls, but now that we have thickened our set, it makes sense 
to study thickened tubes intersecting our set. We define 

TR̃(Eρ) = {ρ-tubes Tρ : |Tρ ∩ Eρ|ρ ≥ R̃}. 
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Now we can again apply the Fourier method, and we get the bounds 

|T ̃R(Eρ)|  ρ−1|E|δ R̃
−2 = 

N2 

R · R̃2 
. 

where we importantly used the fact that |E|ρ = |E|δ = N because our set is well-
spaced. In particular, if we pick ˜ R = R then 

|TR(Eρ)|  
N2 

R3 
. 

Now one might think that we are now done, but this isn’t quite the case. Recall that 
originally we want to count thin δ-tubes, where as this rescaling result gives us a 
bound for thick ρ-tubes. While each δ-tube can be expanded to give a single ρ-tube, 
each ρ-tube can contain many δ-tubes and so we are not quite done yet. So we need 
to estimate the number of R-rich δ-tubes contained in a R̃-rich ρ-tube. 

For a given tube ρ-tube Tρ, we define 

TR(E, Tρ) = {δ − tubesT : |T ∩ E|δ ≥ R, T ⊂ Tρ}. 
By using an inductive argument, we can reduce to the case that for each δ-tube 

T ∈ T the δ-balls in E ∩T are not concentrated on one side. The tubes in the picture 
below obey this two ends condition. 

ρ 
δ 

Here is the rough idea of the inductive argument. If the balls in a typical T concen-
trate in a much shorter tube Tshort ⊂ T , then we study those shorter tubes and use 
an induction on scale. 

Using the two ends condition, we can bound the number of thin tubes in each fat 
tube as follows. 

Lemma 24.3. Suppose that E is a well spaced set in B1 ⊂ R2 in the sense that 
|E| ∼ N and |E ∩ B(x, N−1/2|  1. Suppose that δ ≤ ρ ≤ N−1/2 . Suppose Tρ is a 
ρ-tube with |Tρ ∩ E|ρ ∼ R̃, and suppose that each δ-tube T ∈ TR(E, Tρ) obeys the two 
ends condition. Then 
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|TR(E, Tρ)|  
R̃2 

R2 
. 

Proof. We apply double counting to the set 

{(T, x1, x2) ∈ TR(E, Tρ) × E × E : x1, x2 ∈ T near opposite ends } 

For each T ∈ TR(E, Tρ) we have  R2 choices of x1, x2, so the cardinality is at 
least |TR(E, Tρ)|R2 . On the other hand, given x1, x2 there is  1 choice of T , and so 
the cardinality is  R̃2 .  

Now to solve our original problem, we can dyadically sum over ˜ R and apply Lemma 
24.3. This gives us 

|TR(Eδ)| ≤ 
 

R̃>R, dyadic 

|T ̃R(Eρ)| · |TR(E, Tρ)| 

 
 

R̃>R, dyadic 

N2 

R · R̃2 
· R̃

2 

R2 

 
N2 

R3 

 

It can be instructive to check where we used each hypothesis of the result. 

• The well-spaced hypothesis was only used to control the rescaled size |E|ρ of 
E, and a slightly weaker version was used for the Fourier analysis. 

• The lower bound on R was necessary for the Fourier analysis part. It was nec-
essary to assume because otherwise the lower frequencies of the characteristic 
functions of the tubes dominate and we get a bad bound. 

Another thing that is interesting is that it seems oddly coincidental that the lower 
bound given by simple examples matches the upper bound given by this argument. 
There are several proofs of Szemeredi-Trotter, but in each case it feels like something 
of a coincidence that the upper bounds match examples and are therefore sharp. 
There are many cousin problems to Szemeredi-Trotter where lines are replaced by 
circles or parabolas or other curves, and in most of those problems the upper and 
lower bounds are far from matching. 

24.2. Combining scales. So far, we have discussed proofs for two special cases of 
the Furstenberg conjecture: the AD regular case and the well spaced case. Ren and 
Wang realized that the general conjecture can be proven by dividing the range of 
scales [δ, 1] into pieces, and using one of these two techniques on each piece. This 
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multiscale argument is short and elegant and it may have other applications. It builds 
on multiscale arguments developed by Keleti-Shmerkin and Orponen-Shmerkin. 

Before we describe it, let’s recall the main theorem. 

Theorem 24.4 (OSRW). Let E be a (δ, t) set in B1 ⊂ R2 and |E| = δ−t . 
For every x ∈ E let Tx be a (δ, s) set of tubes passing through x with |Tx| = δ−s . Set 
T = 

 
x∈E Tx. 

Let R = |E ∩ T |δ be the size of a typical intersection between the tubes and E. 
Then R  max( 1

A 

, δ −sδ− t 
2  

B 

, δ 1−t  
C 

). 

A B C 

Figure 23. The 3 regimes of the OSRW theorem, A - unrelated balls 
with many tubes through each, B - an integer grid of balls, C - ran-
domly picked tubes 

[The picture C isn’t quite what would be perfect. There should be many δ-balls 
in the picture, so many that every tube hits many δ-balls. ] 

We have already used many tools and techniques to prove this theorem for specific 
cases and regimes. Let us quickly document these. 

(1) In the case where A dominates, i.e. s ≥ t, this is true by D.C. 
(2) In the case where C dominates, i.e. s + t ≥ 2, this is true by the Fourier 

method. 
(3) In the case where B dominates we have s < t < 2 − s. In this case we do not 

yet know if the theorem holds. However, we proved it for two special cases: 
• If E is AD-regular, we proved this last class (theorem 23.3). 
• If E is well-spaced, which we just showed. 

The last idea of the proof which comes from Ren and Wang, comes in two steps. 
First they relax the well-spaced condition in the result we proved to a semi-well-
spaced set, which we will define in a moment. Secondly they put together the known 
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regimes by using a multiscale approach and a variant of the submultiplicative lemma 
we used for the AD-regular case. 

Let ρ be a scale parameter with δ < ρ < 1. Let us assume now that E is a general 
uniform set. So Eρ is a collection of ρ-balls, and E contains about the same number 
of δ-balls in each ρ-ball of Eρ. 

Tρ 

Tδ B 

Figure 24. Multiscale argument 

Now R(Eδ, Tδ) is the number of δ-balls of Eδ that are in Tδ. From the diagram we 
can compute this by first calculating the number of ρ-balls contained in Tρ, which 
we will denote R(Eρ, Tρ). Then if we call one of these balls B, then for each such 
ball we take all the short segments of δ-tubes and see how many δ-balls each of them 
hits, we will call this R(EB, TB). We thus have 

R(Eδ, Tδ)  R(Eρ, Tρ) · R(EB, TB) 

But now we can rescale B to B1, so we will assume from now on that EB is a set of 
δ 
ρ
-balls, and TB is a set of δ 

ρ
-tubes. 

We started with one scale δ, and using this multi-scale argument we broke it up 
into two similar problems with scales ρ and δ 

ρ
. We can choose ρ freely. And we can 

then keep doing this splitting, breaking the problem into many subproblems. We 
hope to arrange that we can solve each of these subproblems with the tools we have. 
At that point we will also hope that we can multiply the bounds together to get a 
sharp bound for the original problem. 
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Now to discuss these scaling argument we will use the language of the branch-
ing function of a uniform set. Because we are concerned with scaling we will 
reparametrize the function by setting f : logδ(ρ) → log 1 

δ 
|Eρ|, with domain [0, 1]. 

What do we know about f? 

(1) f is trivially increasing, since |E| = δ−t we have that f(0) = 0 and f(1) = t. 
(2) Because E is a (δ, t) set we know that f(x) ≥ t · x for all x ∈ [0, 1]. 
(3) Because we are in 2 dimensional Euclidean space, we can always cover a 

Cρ ball with C2 smaller ρ balls and so our function satisfies f(x + Δx) ≤ 
f(x) + 2Δx, i.e. is 2-Lipschitz. 

All of these properties give us a range of ’admissable’ branching functions, which we 
can represent in the following graph. 

0 1 
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t 
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logδ ρ 

log 1
δ 
|Eρ| 

Figure 25. An example of a branching function (blue). The two 
known cases of an AD-regular set and a Well-spaced set bound an 
admissible region in which the function can lie (red). The semi-well-
spaced case corresponds to any function lying above the green dashed 
line. 

Using this language we can define what a semi-well-spaced set is. A well spaced 
set is formed on the graph with two lines of slope 2 and 0 which meet in the middle. 
We then slightly weaken this to have two lines of slope 2 − s and s. Any branching 
function above this new graph corresponds to a semi-well-spaced set. Ren and Wang 
adapted the Fourier method to prove the Furstenberg conjecture in the semi-well-
spaced case. 
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Now how does our multiscale argument interact with this branching function? 
The branching function of Eρ corresponds to the branching function of E on scales 
[0, logδ(ρ)]. Similarly, if B is a ball of radius ρ, then the branching function of 
EB corresponds to the branching function of E restricted to [logδ(ρ), 1]. In essence 
the multiscale argument splits our branching function into two pieces which we can 
analyze separately. 

In our graph this looks like splitting the graph into a left and a right part. The 
left part corresponds to the branching function of Eρ and the right describes the 
branching function of EB. Because the branching function of Eδ can be recovered 
from the two pieces by placing them side by side, we will call this the Concatenation 
method. Let us work out an explicit example. 

0 1 
0 

t 

Sl
op
e 
= 
t 1 

Slo
pe 

= t2 

logδ ρ 

log 1
δ 
|Eρ| 

Consider a branching function as above, by splitting at ρ corresponding to where 
the two lines meet, we get 

δ−t = |Eδ| = |Eρ||EB| = ρ−t1 · 
 
δ 
ρ 

−t2 

Now let us try to estimate R(Eδ, Tδ) using this splitting. We already know that 

R(Eδ, Tδ) ≤ R(Eρ, Tρ)R(EB, TB), 

Now we have two scenarios that can happen depending on the values t1, t2. 
• s < t1, t2 < 2−s. In this case we can estimate both R(Eρ, Tρ) and R(EB, TB) 
by the B bound in the theorem. This gives us 

R(Eρ, Tρ)R(EB, TB) ≤ ρ 
s
2ρ− t1

2 

 
δ 
ρ 

 s
2 
 
δ 
ρ 

− t2
2 

= δ 
s
2 δ−

t
2 , 
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where we used the equation for δ−t we had above. This is exactly the bound 
we want when t is in the B regime. 

• 2 − s < t1 and t2 < s. Now when we bound R(Eρ, Tρ) we get the C bound 
of the theorem, and when we bound R(EB, TB) we get the A bound of the 
theorem. This gives us 

R(Eρ, Tρ)R(EB, TB) ≤ ρ 1−t1 · 1  δ 
s
2 δ−

t
2 . 

Unfortunately, in this regime, we do not get the desired bound. 
What can we learn from this? We can assume from the start that s < t < 2 − s, so 
that we are in scenario B. When we split our branching function in pieces, we want 
each piece to be in scenario B, and we want to be able to analyze each piece. So we 
want each piece to be in scenario B, and we want each piece to be either AD regular 
or semi-well-spaced. 

The last argument of the theorem is then to show that such a decomposition is 
always possible. 

Lemma 24.5. If f : [0, 1] → R is 2-Lip, increasing with f(1) = t, f(x) ≥ t · x and 
s < t < 2 − s. 
Then there is a decomposition [0, 1] = 

 
I (plus some tiny leftovers) where on each 

interval I either 
• f is almost linear with slope tI , s < tI < 2 − s. 
• f is semi-well-spaced. 

We do not show the full proof here, but an interesting tool used here is the 
Radamacher theorem. Because our function is 2-Lipschitz our function must be 
differentiable almost everywhere. Thus as we split into smaller and smaller pieces, 
our pieces will look more and more like constant slope functions, i.e. the AD-regular 
case. We then use the semi-well-spaced case to get rid of the slopes that are outside 
our range. 

This lemma was the last tool in our outline and finishes our sketch of the proof of 
the Furstenberg conjecture. 
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