18.156, Projection theory, problem set 2

The first goal of this problem set is to digest the Fourier analysis method in projection theory
in R2. The second goal is to work through some technical details from Fourier analysis that come
up in this area.

The problem set involves a little background reading. As you go along, if there are any Fourier
analysis topics you need to brush up on, I recommend the book Fourier analysis by Stein and
Shakarchi. The first section is just reading. The second section has two problems.

1. BACKGROUND READING

Smooth bump functions and their (inverse) Fourier transforms play a key role in our analysis.
In particular, we will construct a smooth bump function 17 adapted to a tube 7' C R? and analyze
its Fourier transform. We start by considering smooth bump functions adapted to the unit ball.

Smooth bump adapted to the unit ball

Suppose that 7(£) is a smooth function with compact support in B;. Then 1" is a Schwartz
function: it is smooth and rapidly decaying. The function 5" will not be compactly supported. For
many purposes, 1V is “morally” supported in a ball of radius < 1. The tail of 1V is sometimes a
nuisance in this field. Within this course, the tail rarely matters, although there are other topics
in Fourier analysis where the tail is really important.

We can choose n > 0. In general iV will be complex-valued. It is convenient to have examples
where 1 and 7V are both real and non-negative. There is a big supply of such examples coming
from a variant of convolution. This variant of convolution is worth knowing about.

First we recall regular convolution.

1) £9(6) = [ F@g(€ - @)
Regular convolution is related to the (inverse) Fourier transform by

(2) (f x9)"(z) = f"(z)g" (x)

In regular convolution, we “add up” f(wy)g(ws) over all pairs (w1, ws) with wy + we = £. In the
difference convolution, we “add up” f(w1)g(wz2) over all pairs (w1, ws) with w; — we = &:

) Fral€) = [ 1€ + gl
The analogue of (2) for difference convolution is

(4) (f%9)" (x) = f¥(x)g" ()

In particular, if f is real valued, so f = f, we have

(5) (f£)" (2) = f¥ (@) [V (2) = | (@)



If 1o () is a smooth non-negative bump function supported on By /2, then we can define 1 = no*no,
and we see that 7 is a smooth non-negative bump function on By and 1" is a smooth non-negative
Schwartz function on R%. So there are lots of examples.

If we make 79 supported in a smaller ball, say By /190, then we can check that nV(z) = |ng ()|?
is ~ 1 on By. We see this from the formula

ny (x) = / 10(£)e’™ e dg,

because the real part of e2™**¢ is positive when x € By and ¢ € Bi/100- In fact, ny (z) is close to
constant on By, and so is 0¥ (z) = |ny (z)|?.
We define 1, = V. To summarize, we have proved the following proposition.

Proposition 1. There is a Schwartz function 1, : R? — R with the following properties.
e g () >0 for all z.
o Yp (z) ~1 for all z € By.
e For any N > 1, |¢p, (7)] < Onlz|~™N.
o ), (€) is supported in the unit ball By .
e ¢, (£) >0 for all €.
o V5, (&) <1 for all €.

(The implicit constants in this discussion depend on the dimension d.)

Smooth bumps adapted to ellipsoids or rectangular solids

Suppose that £ C R? is an ellipsoid. We will now construct a smooth bump 9z adapted to F
by applying a change of variables to v, and study its Fourier transform.

Suppose that E is an ellipsoid with center . Then we can find an affine map p : R — R? so
that p(E) = B;. We define 95 by

(6) Yp(r) = s, (p(z))

The Fourier transform behaves nicely with respect to rigid motions, and so we can relate 1/AJE to
VB, .

Let Ey be the translate of ' which is centered at the origin. Define the dual ellipsoid E* by

E*={¢eR?:[¢ 2| <1forall x € Ep}.
Note that E* is centered at 0, regardless of where E is centered. We will show the following
properties of Yg.

Proposition 2. For any ellipsoid E C R%, the Schwartz function g : R — R has the following
properties.
e Yp(x) >0 for all x.
o Yp(x)~1 forallz e E.
e Let KE denote the concentric ellipsoid with the same center as E, magnified by a factor
K. For any N > 1, there is a constant Cy so that if v inKE, then |¢p(z)] < CyK V.
o (&) is supported in the dual ellipsoid E*.
[ ]

Y5, (E)| S E for all €.



The implicit constants depend on the dimenston d but not the ellipsoid E.

Proof sketch. The first three properties follow from the definition ¥ g(x) = g, (p(x)).

To study @E, we first study z/A)EO. Suppose that xg is the center of E. Then we can write the
affine map p in the form

p(x) = L7 (z — zp),
where L is a linear map and L(B;) = Ey. We have ¢g,(z) = ¢¥p, (L(z)). The Fourier transform
plays well with linear changes of variables, and so we get

Ve, (§) = det(L)Yp, (L7E).
Now L*¢ € Bj if and only if £ € E*, and so VfJEO is supported in E*. And det(L) = |Ep| and so
¥, obeys the last point. We also have ¢z, (£) > 0 for all €.
Finally, ¥g(x) = ¢¥g,(r — zg), and so

bp(§) = e g, ().
Therefore, 1 obeys the proposition as well.
|

Finally, if T is a rectangular solid, then we let E be an ellipsoid so that c4& C T C E and we
set Y = Y and T* = E*. Then Proposition 2 applies to 1 as well.

2. MAIN LEMMAS IN THE FOURIER METHOD

In this section, you will rigorously prove the main lemmas in the Fourier method for projection
theory that we sketched in class this week (in Lecture 3).

In this section, we set dimension d = 2, although the arguments apply in any dimension.

We need a setup from Littlewood-Paley theory. For any R > 1, we set up a partition of unity in
Fourier space:

1= Z nr(§),

1<r<R,r dyadic
where 7, > 0 and we have

e For 1 <r < R, #), is supported in the annulus {¢ : - < [£| < 1}
e 7 is supported in B(1/R)
e 7); is supported in {& : |£] > 1/10}.

For any function f, we write f =3 _ f,, where

7 foo= (mf) = fen

In analogy with our bounds for v in the last section, we have

(8) ) ()] S 72,
and for any N > 1 there is a constant Cy so that

(9) [ ()| S 2 C (|l /r) N



1. Suppose that T is a 1 X R rectangle, and let )7 be a smooth bump adapted to T as in Section
1. For any 1 < r < R, prove that |[¢r,[|3. ~r"'R.

2. Suppose that T3, T, are 1 x R rectangles, and let 11, and ¥, be the associated smooth bump
functions. Prove that for anye > 0, there is a constant C. so that the following holds. Either

/ Yy (2P, (2)de < C.R™1000,
or there exists a rectangle T with dimensions R¢r x RT€ so that Ty Ty 7

3. OPTIONAL EXPLORING FURTHER

We have explored projection theory for a set of unit balls in R? with different spacing conditions.
But the simplest case is when we have no spacing conditions. The set up is as follows.
e X is a set of disjoint unit balls in BIQ%.
e D C S'isa 1/R-separated set.
e S =5(X,D)=maxpep |m9(X)].
Given |X| and |D|, what is the minimum possible value of S(X, D)?
Work out some examples, make a conjecture, and try to prove it. The optimal answer is known
and it is possible to prove it using double counting arguments.
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