
18.156, Projection theory, problem set 2 

The first goal of this problem set is to digest the Fourier analysis method in projection theory 
in R2 . The second goal is to work through some technical details from Fourier analysis that come 
up in this area. 

The problem set involves a little background reading. As you go along, if there are any Fourier 
analysis topics you need to brush up on, I recommend the book Fourier analysis by Stein and 
Shakarchi. The first section is just reading. The second section has two problems. 

1. Background reading 

Smooth bump functions and their (inverse) Fourier transforms play a key role in our analysis. 
In particular, we will construct a smooth bump function ψT adapted to a tube T ⊂ Rd and analyze 
its Fourier transform. We start by considering smooth bump functions adapted to the unit ball. 

Smooth bump adapted to the unit ball 

Suppose that η(ξ) is a smooth function with compact support in B1. Then η∨ is a Schwartz 
function: it is smooth and rapidly decaying. The function η∨ will not be compactly supported. For 
many purposes, η∨ is “morally” supported in a ball of radius . 1. The tail of η∨ is sometimes a 
nuisance in this field. Within this course, the tail rarely matters, although there are other topics 
in Fourier analysis where the tail is really important. 

We can choose η ≥ 0. In general η∨ will be complex-valued. It is convenient to have examples 
where η and η∨ are both real and non-negative. There is a big supply of such examples coming 
from a variant of convolution. This variant of convolution is worth knowing about. 

First we recall regular convolution. 

Z 
(1) f ∗ g(ξ) = f(ω)g(ξ − ω)dω 

Regular convolution is related to the (inverse) Fourier transform by 

(2) (f ∗ g)∨(x) = f∨(x)g ∨(x) 

In regular convolution, we “add up” f(ω1)g(ω2) over all pairs (ω1, ω2) with ω1 + ω2 = ξ. In the 
difference convolution, we “add up” f(ω1)g(ω2) over all pairs (ω1, ω2) with ω1 − ω2 = ξ: 

Z 
(3) f ∗̄g(ξ) = f(ξ + ω)g(ω)dω 

The analogue of (2) for difference convolution is 

(4) (f ∗̄ḡ)∨(x) = f∨(x)g∨(x) 

¯In particular, if f is real valued, so f = f , we have 

(5) (f ∗̄f)∨(x) = f∨(x)f∨(x) = |f∨(x)|2 
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If η0(ξ) is a smooth non-negative bump function supported on B1/2, then we can define η = η0 ̄∗η0, 
and we see that η is a smooth non-negative bump function on B1 and η∨ is a smooth non-negative 
Schwartz function on Rd . So there are lots of examples. 

If we make η0 supported in a smaller ball, say B1/100, then we can check that η∨(x) = |η0 
∨(x)|2 

is ∼ 1 on B1. We see this from the formula Z 
η∨ 2πixξdξ, 0 (x) = η0(ξ)e 

2πixξ because the real part of e is positive when x ∈ B1 and ξ ∈ B1/100. In fact, η0 
∨(x) is close to 

constant on B1, and so is η∨(x) = |η0 
∨(x)|2 . 

We define ψB1 = η∨ . To summarize, we have proved the following proposition. 

Proposition 1. There is a Schwartz function ψB1 : Rd → R with the following properties. 

• ψB1 (x) ≥ 0 for all x. 
• ψB1 (x) ∼ 1 for all x ∈ B1. 
• For any N ≥ 1, |ψB1 (x)| ≤ CN |x|−N . 

ˆ• ψB1 (ξ) is supported in the unit ball B1. 
ˆ• ψB1 (ξ) ≥ 0 for all ξ. 

• |ψ̂ 
B1 (ξ)| . 1 for all ξ. 

(The implicit constants in this discussion depend on the dimension d.) 

Smooth bumps adapted to ellipsoids or rectangular solids 

Suppose that E ⊂ Rd is an ellipsoid. We will now construct a smooth bump ψE adapted to E 
by applying a change of variables to ψB1 and study its Fourier transform. 

Suppose that E is an ellipsoid with center xE . Then we can find an affine map ρ : Rd → Rd so 
that ρ(E) = B1. We define ψE by 

(6) ψE (x) = ψB1 (ρ(x)) 

The Fourier transform behaves nicely with respect to rigid motions, and so we can relate ψ̂ 
E to 

ψ̂B1 . 
Let E0 be the translate of E which is centered at the origin. Define the dual ellipsoid E∗ by 

E ∗ = {ξ ∈ Rd : |ξ · x| ≤ 1 for all x ∈ E0}. 
Note that E∗ is centered at 0, regardless of where E is centered. We will show the following 

properties of ψ̂ 
E . 

Proposition 2. For any ellipsoid E ⊂ Rd , the Schwartz function ψE : Rd → R has the following 
properties. 

• ψE (x) ≥ 0 for all x. 
• ψE (x) ∼ 1 for all x ∈ E. 
• Let KE denote the concentric ellipsoid with the same center as E, magnified by a factor 
K. For any N ≥ 1, there is a constant CN so that if x 6 inKE, then |ψE (x)| ≤ CN K

−N . 
• ψ̂ 

E (ξ) is supported in the dual ellipsoid E∗ . 
• |ψ̂ 

B1 (ξ)| . |E| for all ξ. 
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The implicit constants depend on the dimension d but not the ellipsoid E. 

Proof sketch. The first three properties follow from the definition ψE (x) = ψB1 (ρ(x)). 
ˆ ˆTo study ψE , we first study ψE0 . Suppose that xE is the center of E. Then we can write the 

affine map ρ in the form 

ρ(x) = L−1(x − xE ), 

where L is a linear map and L(B1) = E0. We have ψE0 (x) = ψB1 (L(x)). The Fourier transform 
plays well with linear changes of variables, and so we get 

ψ̂ 
E0 (ξ) = det(L)ψ̂ 

B1 (L ∗ ξ). 
ˆNow L∗ξ ∈ B1 if and only if ξ ∈ E∗ , and so ψE0 is supported in E∗ . And det(L) = |E0| and so 

ψ̂ 
E0 obeys the last point. We also have ψ̂ 

E0 (ξ) ≥ 0 for all ξ. 
Finally, ψE (x) = ψE0 (x − xE ), and so 

ˆ −2πixE ·ξ ˆψE (ξ) = e ψE0 (ξ). 

Therefore, ψ̂ 
E obeys the proposition as well. 

� 

Finally, if T is a rectangular solid, then we let E be an ellipsoid so that cdE ⊂ T ⊂ E and we 
set ψT = ψE and T ∗ = E∗ . Then Proposition 2 applies to ψT as well. 

2. Main lemmas in the Fourier method 

In this section, you will rigorously prove the main lemmas in the Fourier method for projection 
theory that we sketched in class this week (in Lecture 3). 

In this section, we set dimension d = 2, although the arguments apply in any dimension. 
We need a setup from Littlewood-Paley theory. For any R ≥ 1, we set up a partition of unity in 

Fourier space: X 
1 = ηr(ξ), 

1≤r≤R,r dyadic 

where ηr ≥ 0 and we have 
1• For 1 < r < R, η̂r is supported in the annulus {ξ : ≤ |ξ| ≤ 1 }.10r r 

• η̂R is supported in B(1/R) 
• η̂1 is supported in {ξ : |ξ| ≥ 1/10}.P 

For any function f , we write f = fr, where r � �∨ 
(7) fr := ηrf̂ = f ∗ η∨ 

r 

In analogy with our bounds for ψ in the last section, we have 

−2(8) |η∨(x)| . r ,r 

and for any N ≥ 1 there is a constant CN so that 

(9) |η∨(x)| . r −2CN (|x|/r)−N .r 
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1. Suppose that T is a 1 × R rectangle, and let ψT be a smooth bump adapted to T as in Section 
1. For any 1 ≤ r ≤ R, prove that kψT,rk2 ∼ r−1R.L2 

2. Suppose that T1, T2 are 1 × R rectangles, and let ψT1 and ψT2 be the associated smooth bump 
functions. Prove that for any� > 0, there is a constant C� so that the following holds. Either Z 

≤ C�R
−1000ψT1,r(x)ψT2,r(x)dx , 

r × R1+�or there exists a rectangle T̃  with dimensions R� so that T1, T2 ⊂ T̃ . 

3. Optional exploring further 

We have explored projection theory for a set of unit balls in R2 with different spacing conditions. 
But the simplest case is when we have no spacing conditions. The set up is as follows. 

• X is a set of disjoint unit balls in BR 
2 . 

• D ⊂ S1 is a 1/R-separated set. 
• S = S(X, D) = maxθ∈D |πθ(X)|. 

Given |X| and |D|, what is the minimum possible value of S(X, D)? 
Work out some examples, make a conjecture, and try to prove it. The optimal answer is known 

and it is possible to prove it using double counting arguments. 
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