18.156, Projection theory, problem set 3

In the first problem, we study projections from IFZ onto 1-dimensional subspaces. This is parallel
to the discussion in class in Lecture 6 on projections from R? onto 1-dimensional subspaces.

The setup of our problem involves projections and Fourier transform over finite fields. This is
analogous to the situation in Euclidean space but with some minor differences, so we take a page
to go through the setup carefully.

Define the dot product on IFg as follows. If v, w € IFflI, then v - w = viwy + ... + vqwq € Fy.

Suppose V' C Fg is a subspace. Define

VE ={wlv-w=0forallveV}.

Like in Euclidean space, we have dimV+ + dimV = d and like in Euclidean space we have
(V4L = V. But unlike in Euclidean space, V N V+ can include non-zero vectors. (In particular,
a non-zero vector v can be perpendicular to itself.)

Recall that F¢/V+ is the set of cosets of V* in FS. We have dim(F?/V+) = dimV, even
though I don’t see any canonical identification between F¢/V+ and V. If a € F¢/V+, then a is a
subset of Fg, so we can write ) . ... Now for any function f : Fg — C, we define the projection

Ty IFg/VJ' — C by

mvfla) = f(x).
zTEa

Recall that Gr,(k, d) is the set of all k-dimensional subspaces V' C IFZ. As V varies over Gry(k, d),
V4 varies over Gry(d — k,d), and my varies over the set of all surjective homomorphisms from Fg
onto a k-dimensional vector space.

This setup interacts well with the Fourier transform. Let’s recall the setup of the Fourier trans-
form and then see how it interacts with projections.

Suppose that e : F, — C* is a non-trivial homomorphism (from F, with addition to C with
multiplication). If ¢ = p, then we could take e(z) = ™7,

Recall that if f : IFZ — C, then f : ]Fg — C is defined by

F©) =" f@e(-z-¢).

z€Fd

‘We have Fourier inversion and Plancherel:
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Now suppose that ¢ : IFg/VJ- — C. We can define § : V — C as follows. First notice that if
a€eVandae€e FZ/VL, then for all z € a, -« € F, is the same. So we can define a- o € F;. Then
we define
1



g(a) = Z gla)e(—a - a).

a€lfd/vV+

We have Fourier inversion and Plancherel:

9(0) =~y 3 dla)ela- ).

acV

S g = qd%v S Jg(a)

a€lfd/vV+ acV
la. Prove that if f : ]Fg — Cand V C Fg is a subpace and a € V, then
v i(a) = f(a).
As usual, write g = go + g where gg is a contant function and g, has mean zero.

1b. Prove that

Avgrear,@al(mLHalie S IfullZ--

lc. Here is an interesting special case of the above that is analogous to probability. Suppose

that A C Fg with |A| = (1/2)2%. Show that
Al a2
AVELcaro(1,d)AV8acre 1t mrla(a) — > S 297,

Notice first that most of the functions 7714 are nearly constant.

Also note that the bound in 1c has a flavor of probability, because if we randomly divide |A| ~ 2¢
pebbles between two urns, then with probability 99%, the number of pebbles in each urn will be
Al 0@42).

Food for thought. This is the beginning of an interesting interaction between high dimensional
projection theory and probability theory. Notice that if f is the characteristic function of [0,1]¢ C
R?, the projections of f onto the direction (1,...,1) describes the sum of d independent random
variables each uniformly distributed in [0, 1]. By the central limit theorem this projection is almost
a Gaussian. So the central limit theorem is related to projection theory.

Problem 1c suggests that for a general object in high dimensions, most projections behave in a
pseudorandom way. Keith Ball has developed the idea that if A C R? is any convex set, then most
of the projections of 14 are almost Gaussian. For an introduction, see the paper “The central limit
theorem for convex bodies”, or Ball’s ICM talk https://www.youtube.com/watch?v=pJ282H9WB_Q

2. Clustering and projection theory.

Suppose that f : R? — R is a probability density function, meaning that f > 0 and f]R2 f=1

We will address the following type of question: if 7y f looks like two clusters for each line L,
does it follow that f looks like two clusters? Let’s make this question precise.

Recall that for a subspace V C R,


https://www.youtube.com/watch?v=pJ282H9WB_Q

m i) = [ T+ 2oty (2)

For each angle § € S!, there is a 1-dimensional subspace Ly (equal to the span of ).
Suppose that for each 6 in the upper right quarter of S', there are two points y1, 4> € Lg so that
e |y1 — y2| > 100.

e For each j = 1,2, fly*yj|<1 7L, f(y)dy > 0.49

Does it follow that there are two points x;, 5 € R? so that

° |l‘1 —:Cz| > 50.
e For each j =1,2, f|w_w.|<1of
51<

Prove or give a counterexample.

(x)dx > 0.4

Optional exploration. Generalize the clustering problem above. What happens in higher dimen-
sions? What happens if we replace two clusters by N clusters?
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