
18.156, Projection theory, problem set 3 

In the first problem, we study projections from Fd onto 1-dimensional subspaces. This is parallel q 

to the discussion in class in Lecture 6 on projections from Rd onto 1-dimensional subspaces. 

The setup of our problem involves projections and Fourier transform over finite fields. This is 
analogous to the situation in Euclidean space but with some minor differences, so we take a page 
to go through the setup carefully. 

Define the dot product on Fd as follows. If v, w ∈ Fd , then v · w = v1w1 + ... + vdwd ∈ Fq .q q 

Suppose V ⊂ Fd is a subspace. Defineq 

V ⊥ = {w|v · w = 0 for all v ∈ V }. 
Like in Euclidean space, we have dim V ⊥ + dim V = d and like in Euclidean space we have 

(V ⊥)⊥ = V . But unlike in Euclidean space, V ∩ V ⊥ can include non-zero vectors. (In particular, 
a non-zero vector v can be perpendicular to itself.) 

Recall that Fd/V ⊥ is the set of cosets of V ⊥ in Fd . We have dim(Fd/V ⊥) = dim V , even q q q 

though I don’t see any canonical identification between Fd/V ⊥ and V . If a ∈ Fd/V ⊥ , then a is aq qP 
subset of Fd , so we can writeq ... Now for any function f : Fd → C, we define the projection x∈a q 

πV : Fd/V ⊥ → C by q X 
πV f(a) = f(x). 

x∈a 

Recall that Grq(k, d) is the set of all k-dimensional subspaces V ⊂ Fd . As V varies over Grq(k, d),q 

V ⊥ varies over Grq(d − k, d), and πV varies over the set of all surjective homomorphisms from Fd 
q 

onto a k-dimensional vector space. 
This setup interacts well with the Fourier transform. Let’s recall the setup of the Fourier trans-

form and then see how it interacts with projections. 
Suppose that e : Fq → C∗ is a non-trivial homomorphism (from Fq with addition to C with 

2πi x 

multiplication). If q = p, then we could take e(x) = e p . 
Recall that if f : Fd → C, then f̂ : Fd → C is defined by q q X 

f̂(ξ) = f(x)e(−x · ξ). 
x∈F 

We have Fourier inversion and Plancherel: 

d
q 

f(x) = 
1 X 

f̂(ξ)e(x · ξ). 
qd 

ξ∈Fd
q X X1 |f(x)|2 = |f̂(ξ)|2 . 
qd 

x∈Fd
q ξ∈Fd

q 

Now suppose that g : Fd/V ⊥ → C. We can define ĝ : V → C as follows. First notice that ifq 

α ∈ V and a ∈ Fd/V ⊥ , then for all x ∈ a, x · α ∈ Fq is the same. So we can define a · α ∈ Fq. Thenq 
we define 
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X 
ĝ(α) = g(a)e(−a · α). 

a∈Fd
q/V ⊥ 

We have Fourier inversion and Plancherel: X1 
g(a) = ĝ(α)e(a · α). 

qdim V 
α∈V X X1 |g(a)|2 = |ĝ(α)|2 

qdim V 
. 

a∈Fd
q/V ⊥ α∈V 

1a. Prove that if f : Fd → C and V ⊂ Fd is a subpace and α ∈ V , thenq q 

dπV f(α) = f̂(α). 

As usual, write g = g0 + gh where g0 is a contant function and gh has mean zero. 

1b. Prove that 

AvgL∈Grq (1,d)k(πLf)hk2 
L2 . kfhk2 

L2 . 

1c. Here is an interesting special case of the above that is analogous to probability. Suppose 
that A ⊂ Fd with |A| = (1/2)2d . Show that2 

AvgL∈Gr2(1,d)Avga∈Fd 
2 /L

⊥ 

|A| 
. 2d/2πL1A(a) − 

2 
. 

Notice first that most of the functions πL1A are nearly constant. 
Also note that the bound in 1c has a flavor of probability, because if we randomly divide |A| ∼ 2d 

pebbles between two urns, then with probability 99%, the number of pebbles in each urn will be 
|A| + O(2d/2).2 

Food for thought. This is the beginning of an interesting interaction between high dimensional 
projection theory and probability theory. Notice that if f is the characteristic function of [0, 1]d ⊂ 
Rd , the projections of f onto the direction (1, ..., 1) describes the sum of d independent random 
variables each uniformly distributed in [0, 1]. By the central limit theorem this projection is almost 
a Gaussian. So the central limit theorem is related to projection theory. 

Problem 1c suggests that for a general object in high dimensions, most projections behave in a 
pseudorandom way. Keith Ball has developed the idea that if A ⊂ Rd is any convex set, then most 
of the projections of 1A are almost Gaussian. For an introduction, see the paper “The central limit 
theorem for convex bodies”, or Ball’s ICM talk https://www.youtube.com/watch?v=pJ282H9WB_Q 

2. Clustering and projection theory. R 
Suppose that f : R2 → R is a probability density function, meaning that f ≥ 0 and R2 f = 1. 
We will address the following type of question: if πLf looks like two clusters for each line L, 

does it follow that f looks like two clusters? Let’s make this question precise. 
Recall that for a subspace V ⊂ Rd , 

https://www.youtube.com/watch?v=pJ282H9WB_Q


3 

Z 
πV f(y) = f(y + z)dvolV ⊥ (z). 

V ⊥ 

For each angle θ ∈ S1 , there is a 1-dimensional subspace Lθ (equal to the span of θ). 
Suppose that for each θ in the upper right quarter of S1 , there are two points y1, y2 ∈ Lθ so that 

• |y1 − y2| > 100. R 
• For each j = 1, 2, πLθ f(y)dy ≥ 0.49|y−yj |≤1 

Does it follow that there are two points x1, x2 ∈ R2 so that 

• |x1 − x2| > 50. R 
• For each j = 1, 2, f(x)dx ≥ 0.4|x−xj |≤10 

Prove or give a counterexample. 

Optional exploration. Generalize the clustering problem above. What happens in higher dimen-
sions? What happens if we replace two clusters by N clusters? 
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