
18.156, Projection theory, problem set 5 

This problem set is about projections, convolution, and smoothing. These are core ideas in the 
course, and they come up in particular in the Renyi-Bombieri-Vinogradov theorem. 

Projections tend to make things smoother, and we have been exploring exactly how much. 
Convolution tends to make things smoother, although not always. And projections and convolutions 
can cooperate with each other. We will explore that on this problem set. 

1a. (Projections can make things smoother) Convolutions are related to counting the number of 
2 2solutions of equations such as m1 + ... + m = n mod p. Let S(n) be the number of solutions tor 

2m = n mod p. (So S(n) is 2 if n is a quadratic residue, 1 if n = 0, and 0 if n is a non-residue.) 
We write S∗r for S convolved with itself r times. On your own check that 

2 2S ∗r(n) = #{m1, ..., mr ∈ Zp : m1 + ... + m = n}.r 

We will study this using the Fourier transform in Zp. Recall that if f : Zp → C we have the 
conventions X 

−2πi aα 
pf̂(α) = f(a)e . 

a∈Zp X 
2πi aα 

pf(a) = 
1 

f̂(α)e . 
p 

α∈Zp 

√ 
It is known that Ŝ(0) = p and |Ŝ(α)| ≤ p for α 6= 0. Using this, prove that 

r/2k(S ∗r)hkL∞(Zp) ≤ p . 
r−1Also check that (S∗r)0 = p . 

So for r ≥ 3, the function S∗r is almost constant. In this situation, repeated convolution makes 
S smoother and smoother. 

1b. (Convolutions don’t always make things smoother). Suppose that m divides n and let 
G ⊂ Zn be the multiples of m. Check that 

1 ∗r 
G (n) = |G|r−11G(n). 

So in this case, repeated convolution does not make 1G any smoother. 
This is related to the fact that 1cG behaves quite differently from Ŝ. Let G0 ⊂ Zn be the multiples 

of n/m. Check that 

c1G(α) = |G|1G0 (α) 

2. (Projections and convolutions together) 
Suppose that X ⊂ [N ]. Consider πp1X : Zp → C. For a single prime p, it may not happen that 

convolving this function with itself many times makes it smoother. But if X is big enough, then 
for most primes p, convolving πp1X with itself many times does make it smoother. 

Let PN1/2 be the set of primes p ∼ N1/2 . You can use that |PN1/2 | ≈ N1/2 . 

On your own, check that if p ∈ PN1/2 , then 
1 
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(1) (πp1X ) 
∗r = |X|r/p ∼ |X|rN−1/2 .0 

a. Recall that for a prime p, Zp 
∗ = {a ∈ Zp, a 6= 0}. Using the idea of the proof of the large sieve, 

show that X 
k [1X k2 ) . N |X|.πp L∞(Z∗ 

p 

p∈P 
N 1/2 

Conclude that for 90 % of p ∈ PN1/2 , we have 

k [ 
) / N1/4|X|1/2πp1X kL∞(Z∗ . 

p 

(You can use that |PN1/2 | ≈ N1/2.) 

b. Now using the idea from problem 1, show that for 90 % of p ∈ PN1/2 , 

(2) k(πp1X )h 
∗rkL∞(Zp) / Nr/4|X|r/2 . 

1∗rUsing this, check that if |X| = Nα with α > 1/2, then most p ∈ PN1/2 , πp becomes smooth X 
when r is large enough. 

c. On the other hand, if |X| = Nα with α < 1/2, then there is no smoothing effect. Suppose 
α < 1/2. If X is an arithmetic progression of length Nα , then show that for each p ∈ PN1/2 , the 
support of (πp1X )

∗r has size . rNα , which is much smaller than p. 

d. The bound (??) can actually be improved a little, especially if r is small like r = 2. This is 
good practice for a common Fourier analysis tactic: noticing when L2 norms appear and estimating 
them with Plancherel. First recall that the large sieve inequality tells us that 

X 
(3) k(πp1X )hkL 

2 
2(Zp) . N1/2|X| 

p∈P 
N1/2 

By Plancherel, this is equivalent to the following estimate (which was part of the proof of the 
large sieve): 

X X 21 [(4) πp1X (α) . N1/2|X|, 
p

p∈P α∈Z∗ 
N 1/2 p 

If you look back at the proof you did in Part b, a quantity similar to the left-hand side of (??) 
appears, and so you can take advantage of this bound. In this way, you can improve (??) to the 
following. For 90 % of p ∈ PN1/2 , 

r−2 

|X|r/24(5) k(πp1X ) 
∗ 
h
rkL∞(Zp) / N . 

Optional exploration. In the example in 2c, X is an arithmetic progression and so 1∗r is itselfX 
very concentrated. This causes πp1

∗r to be concentrated. But what if 1∗r is not concentrated? Can X X 
1∗rwe get a better estimate for πp ?X 
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For a precise question, suppose that X ⊂ [N ] with |X| ∼ N1/2 , and suppose that k1∗ 
X 
2kL∞ / 1. 

For most p ∈ PN1/2 , can we prove a bound for k(πp1X )
∗2kL∞(Zp) which improves on (??)?h 

I don’t know the answer to this question. I’m curious about it and I’m not sure how difficult it 
is. 

This optional question is somewhat analogous to improving the Bombieri-Vinogradov theorem 
to the range q > N1/2 . In the setting of the Bombieri-Vinogradov theorem, we would want a similar 
estimate with multiplicative convolution instead of additive convolution. In that setup, we would 
have X ⊂ [N1/2] with |X| ≈ N1/2 and we would study 1X ∗ M 1X . Because a number n ≤ N has / 1 
factors, we automatically get k1X ∗ M 1X kL∞ / 1. Using the large sieve as in Bombieri-Vinogradov, 
we get the following bound, which matches (??) when r = 2: for most p ∈ PN 1/2 , 

(6) k(πp(1X ∗ M 1X ))hkL∞(Z∗) / |X|. 
p 

I believe that it is a difficult open question whether this bound can be improved. 
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