18.175: Lecture 35 Ergodic theory

Scott Sheffield

MIT

1

Birkhoff's ergodic theorem

Birkhoff's ergodic theorem

- Say that A is **invariant** if the symmetric difference between φ(A) and A has measure zero.
- Observe: class \mathcal{I} of invariant events is a σ -field.
- ► Measure preserving transformation is called **ergodic** if *I* is trivial, i.e., every set *A* ∈ *I* satisfies *P*(*A*) ∈ {0,1}.
- Example: If Ω = ℝ^{0,1,...} and A is invariant, then A is necessarily in tail σ-field T, hence has probability zero or one by Kolmogorov's 0 − 1 law. So sequence is ergodic (the shift on sequence space ℝ^{0,1,2,...} is ergodic.
- Other examples: What about fair coin toss (Ω = {H, T}) with φ(H) = T and φ(T) = H? What about stationary Markov chain sequences?

Birkhoff's ergodic theorem

Birkhoff's ergodic theorem

• Let ϕ be a measure preserving transformation of (Ω, \mathcal{F}, P) . Then for any $X \in L^1$ we have

$$\frac{1}{n}\sum_{m=0}^{n-1}X(\phi^m\omega)\to E(X|\mathcal{I})$$

a.s. and in L^1 .

- Note: if sequence is ergodic, then E(X|I) = E(X), so the limit is just the mean.
- Proof takes a couple of pages. Shall we work through it?
- ► There's this lemma: let A_k be the event the maximum M_k of X₀ and X₀ + X₁ up to X₁ + ... + X_{k-1} is non-negative. Then EX₀1_{A_k} ≥ 0 is non-negative.

- Typical starting digit of a physical constant? Look up Benford's law.
- Does ergodic theorem kind of give a mathematical framework for this law?

MIT OpenCourseWare http://ocw.mit.edu

18.175 Theory of Probability Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.