18.175: Lecture 35
 Ergodic theory

Scott Sheffield

MIT

Outline

Recall setup

Birkhoff's ergodic theorem

Outline

Recall setup

Birkhoff's ergodic theorem

Definitions

- Say that A is invariant if the symmetric difference between $\phi(A)$ and A has measure zero.
- Observe: class \mathcal{I} of invariant events is a σ-field.
- Measure preserving transformation is called ergodic if \mathcal{I} is trivial, i.e., every set $A \in \mathcal{I}$ satisfies $P(A) \in\{0,1\}$.
- Example: If $\Omega=\mathbb{R}^{\{0,1, \ldots\}}$ and A is invariant, then A is necessarily in tail σ-field \mathcal{T}, hence has probability zero or one by Kolmogorov's $0-1$ law. So sequence is ergodic (the shift on sequence space $\mathbb{R}^{\{0,1,2, \ldots\}}$ is ergodic.
- Other examples: What about fair coin toss $(\Omega=\{H, T\})$ with $\phi(H)=T$ and $\phi(T)=H$? What about stationary Markov chain sequences?

Outline

Recall setup

Birkhoff's ergodic theorem

Outline

Recall setup

Birkhoff's ergodic theorem

Ergodic theorem

- Let ϕ be a measure preserving transformation of (Ω, \mathcal{F}, P). Then for any $X \in L^{1}$ we have

$$
\frac{1}{n} \sum_{m=0}^{n-1} X\left(\phi^{m} \omega\right) \rightarrow E(X \mid \mathcal{I})
$$

a.s. and in L^{1}.

- Note: if sequence is ergodic, then $E(X \mid \mathcal{I})=E(X)$, so the limit is just the mean.
- Proof takes a couple of pages. Shall we work through it?
- There's this lemma: let A_{k} be the event the maximum M_{k} of X_{0} and $X_{0}+X_{1}$ up to $X_{1}+\ldots+X_{k-1}$ is non-negative. Then $E X_{0} 1_{A_{k}} \geq 0$ is non-negative. ${ }_{7}$

Benford's law

- Typical starting digit of a physical constant? Look up Benford's law.
- Does ergodic theorem kind of give a mathematical framework for this law?

MIT OpenCourseWare
http://ocw.mit.edu

18.175 Theory of Probability

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

