# 18.212: Algebraic Combinatorics 

Andrew Lin

Spring 2019

This class is being taught by Professor Postnikov.

## March 22, 2019

Let's go back to the unimodality of the Gaussian coefficients - the easiest proof is to use linear algebra instead of a combinatorial proof. Remember that we consider

$$
\left[\begin{array}{c}
k+l \\
k
\end{array}\right]_{q}=a_{)}+a_{1} q+\cdots+a_{k \prime} q^{k l}
$$

and we want to show the coefficients are increasing and then decreasing.
The idea is to consider $V_{n}$, the linear space of formal linear combinations of Young diagrams $\lambda$ in a $k$ by / rectangle with $n$ squares. The dimension is just $a_{n}$, the number of possible Young diagrams, and our goal is to show that $a_{i} \leq a_{i+1}$ for all $i<\frac{k l}{2}$ : by symmetry of the coefficients, we get the result.

Consider a weighted up operator $U_{n}: V_{n} \rightarrow V_{n+1}$ which sends

$$
\lambda \rightarrow \sum_{\substack{\mu=\lambda \cup\{x\} \\ \mu>\lambda}} \sqrt{w(x)} \mu
$$

where $w$ is a weight function sending boxes of $k \times /$ rectangles to positive reals. Similarly, we consider the weighted down operator $D_{n}: V_{n+1} \rightarrow V_{n}$, sending

$$
\lambda \rightarrow \sum_{\substack{\mu=\lambda \backslash\{x\} \\ \mu<\lambda}} \sqrt{w(x)} \mu
$$

Define our commutator

$$
H_{n}=D_{n} U_{n}-U_{n-1} D_{n-1}
$$

notice that this takes any element in $V_{n}$ to another element in $V_{n}$. We can represent $U_{n}$ with an $a_{n+1}$ by $a_{n}$ matrix, and we
can represent $D_{n}$ by its transpose: $U_{n}^{T}$.

## Fact 187

They are transposes, because all nonzero entries in $U_{n}$ have $\sqrt{x}$ in the entry $(a, b)$, where $a$ and $b$ differ by the box $x$, and entries in $D_{n}$ have $\sqrt{x}$ in the entry $(b, a)$.

Claim 187.1. $H_{n}$ is a diagonal matrix with entries

$$
\left(H_{n}\right)_{\lambda, \lambda}=\sum_{x \in \operatorname{Add}(\lambda)} w(x)-\sum_{y \in \operatorname{Remove}(\lambda)} w(y) .
$$

Why is this? The off-diagonal entries mean we start with a Young diagram, add a box, and remove a different box: this is equivalent to first removing the other box and then add it, so those always cancel out. Meanwhile, the diagonal entries get a $\sqrt{w(x)}^{2}=w(x)$ contribution.

Here's a diagram: the As are part of $\operatorname{Add}(\lambda)$, while the Rs are part of Remove $(\lambda)$.

|  |  | $R$ | $A$ |
| :--- | :--- | :--- | :--- |
|  | $A$ |  |  |
| $R$ |  |  |  |

So let's assume we can find a weight function $w$ so that the matrix $H_{n}$ has positive diagonal entries: thus, the eigenvalues are all positive. Then

$$
D_{n} U_{n}=U_{n-1} D_{n-1}+H_{n}=U_{n-1} U_{n-1}^{T}+H_{n}
$$

$U_{n-1} U_{n-1}^{T}$ is positive semi-definite (since for any matrix $A, x A A^{T} x$ is the square of the standard dot product of $A^{T} x$ with itself), and $H_{n}$ is positive definite, so their sum is positive definite (this is a fact from linear algebra!) This means $D_{n} U_{n}$ has nonzero determinant, and therefore the rank of $D_{n} U_{n}$ is $a_{n}$.

## Fact 188 (Other linear algebra fact)

Let $A$ be an $m \times n$ matrix and let $B$ be an $n \times k$ matrix. Then the rank of $A B$ is less than the minimum of $m, n, k$, since rank can't increase with products or be larger than the dimensions of the matrices!

So the rank of $D_{n} U_{n}$ is $a_{n}$, but $D_{n}$ is an $a_{n} \times a_{n+1}$ matrix and $U_{n}$ is $a_{n+1} \times a_{n}$. So $a_{n} \leq \min \left(a_{n}, a_{n+1}\right)$ and therefore $a_{n} \leq a_{n+1}$, as desired! So as long as we can find a weight function, we are good.

Well, define $w:[k] \times[/] \rightarrow \mathbb{R}_{>0}$ as

$$
w(i, j)=(i-j+l)(j-i+k), 1 \leq i \leq k, 1 \leq j \leq l
$$

## Example 189

Here it is for $k=3, l=4$ :

$$
\begin{array}{|c|c|c|c|}
\hline 12 & 12 & 10 & 6 \\
\hline 10 & 12 & 12 & 10 \\
\hline 6 & 10 & 12 & 12 \\
\hline
\end{array}
$$

Note that all of these are of the form $n(7-n)$, and it is larger closer to the centers.

We claim that this weight function works! Here's why:

## Lemma 190

For all $\lambda$ contained in a $k \times /$ box,

$$
w_{\lambda}=\sum_{x \in \operatorname{Add}(\lambda)} w(x)-\sum_{y \in \operatorname{Remove}(\lambda)} w(y)=k I-2|\lambda| .
$$

So this is positive as long as $n=|\lambda|<\frac{k l}{2}$.

This will be an exercise! In the diagram above, the sum of the As is 18 , while the sum of the $R \mathrm{~s}$ is 16 .
Let's shift gears now and talk about partitions. Recall that $p(n)$ is the number of partitions of $n$, which is the number of Young diagrams with $n$ boxes.

## Theorem 191

The generating function

$$
\sum_{n \geq 0} p(n) q^{n}=\frac{1}{(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right) \cdots}
$$

Expanding this out, it is

$$
\left(1+q+q^{2}+\cdots\right)\left(1+q^{2}+q^{4}+\cdots\right)\left(1+q^{n}+\cdots\right)
$$

and it's okay to only go up to the first $n$ terms, since all other terms will have a higher power! So we can always truncate this to a finite product with finite terms.

Proof. We know that

$$
\left[\begin{array}{c}
k+\prime \\
k
\end{array}\right]_{q}=\sum_{\lambda \subseteq k \times I} q^{|\lambda|}
$$

Take the limit as $k, l \rightarrow \infty$. Then we're summing over all Young diagrams, and just expand out the $q$-binomial coefficient!

A better proof. We can encode our partition $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots\right)$ by a different set of integers: let $m_{i}$ be the number of times $i$ appears in $\lambda$, that is, the number of $j$ s such that $\lambda_{j}=i$. Then we can encode the multiplicities $n_{i} \lambda=\left(1^{m_{1}} 2^{m_{2}} \cdots\right)$.

So now, a partition $(6,4,4,3,1,1)$ is now encoded via $\left(1^{2} 2^{0} 3^{1} 4^{2} 5^{0} 6^{1}\right)$, which corresponds to picking out the $q^{2}$ term in $\left(1+q+q^{2}+\cdots\right)$, the 1 term in $\left(1+q^{2}+q^{4}+\cdots\right)$, the $q^{3}$ term in $\left(1+q^{3}+q^{6}+\cdots\right)$, and so on! More rigorously, the sum

$$
\sum_{n \geq 0} p(n) q^{n}=\sum_{m_{1}, m_{2}, \cdots \geq 0}=q^{m_{1}+2 m_{2}+3 m_{3}+\cdots}
$$

can be factored as

$$
\sum_{m_{1}} q^{m_{1}} \cdot \sum_{m_{2}} q^{2 m_{2}} \cdot \sum_{m_{3}} q^{3 m_{3}} \cdots
$$

which is just

$$
\frac{1}{1-q} \frac{1}{1-q^{2}} \cdots
$$

as desired.
There are also some special classes of partitions.

## Definition 192

Define $p^{\text {odd }}(n)$ to be the number of partitions of $n$ into odd parts: $\lambda=\lambda_{1}+\lambda_{2}+\cdots$, where all $\lambda_{i}$ are odd.

This means $m_{i}=0$ for all even $i$, and the generating function is

$$
\frac{1}{1-q} \cdot \frac{1}{1-q^{3}} \cdot \frac{1}{1-q^{5}} \cdots
$$

## Definition 193

Define $p^{\text {dist }}(n)$ to be the number of partitions of $n$ into distinct parts: we have $\lambda=\left(\lambda_{1}>\lambda_{2}>\cdots\right)$.

This means $m_{i} \leq 1$ for all $i$, so the generating function is

$$
(1+q)\left(1+q^{2}\right)\left(1+q^{3}\right) \cdots
$$

Theorem 194 (Euler, 1748)
$p^{\text {odd }}(n)=p^{\text {dist }}(n)$.

For example, for $n=5$, we can break it into odd parts as $5=3+1+1=1+1+1+1+1$, and we can break it into distinct parts as $5=4+1=3+2$.

Proof. Our goal is to check that the generating functions above are equal! Take the generating function for $p^{\text {dist: }}$ it is

$$
\begin{aligned}
(1+q)(1+ & \left.q^{2}\right)\left(1+q^{3}\right) \cdots=\frac{(1+q)(1-q)}{1-q} \cdot \frac{\left(1+q^{2}\right)\left(1-q^{2}\right)}{1-q^{2}} \cdot \frac{\left(1+q^{3}\right)\left(1-q^{3}\right)}{1-q^{3}} \cdots \\
& =\frac{\left(1-q^{2}\right)\left(1-q^{4}\right)\left(1-q^{6}\right) \cdots}{(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right) \cdots}=\frac{1}{(1-q)\left(1-q^{3}\right)\left(1-q^{5}\right) \cdots}
\end{aligned}
$$

which is the generating function for $p^{\text {odd }}$ as desired.
There's also a combinatorial proof! This is left as an exercise as well.

Theorem 195 (Euler's pentagonal number theorem, 1750)
We have

$$
\frac{1}{\sum_{n \geq 0} p(n) q^{n}}=(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right) \cdots=\sum_{m=-\infty}^{\infty}(-1)^{m} q^{m(3 m-1) / 2}
$$

This basically counts the number of partitions with even versus odd parts and finds their difference: apparently this is 0 for almost all values of $n$. Numbers of the form $m(3 m-1) / 2$ are called pentagonal numbers, because it's the number of dots in successive dilations of a pentagon!

MIT OpenCourseWare
https://ocw.mit.edu

### 18.212 Algebraic Combinatorics

Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

