
    

18.212: Algebraic Combinatorics 

Andrew Lin 

Spring 2019 

This class is being taught by Professor Postnikov. 

May 3, 2019 

The problem set is posted! It will be due in a week (on May 10). Today, we’ll go over some concepts that will be helpful 

for the problem set. (Again, solving six problems completely is generally good enough.) 

Last time, we considered the tree inversion polynomial X X 
(n+1 

P 
inv(T) 2 )− f (i) 

i In(x) = x = x . 
T spanning f :[n]→[n] 

trees of Kn+1 parking function 

Three problems from the problem set are related to alternating permutations w ∈ Sn, which satisfy the condition 

w1 < w2 > w3 · · · . Letting An be the number of alternating permutations of Sn (also known as Euler, Andre, zigzag, 

tangent and secant numbers, up-down numbers, and so on), these are closely related to the Bernoulli numbers Bn! 

Fact 1 

Plugging in x = −1 yields the Euler numbers An. 

Fact 2 

Taking the exponential generating function X xn 
An 
n! 

n≥0 

(we do this so that our series is not divergent!), we get tan(x) + sec(x). In fact, if we only add odd or even n, X xn X xn 
An = tan x, An = sec x. 
n! n! 

n≥1 odd n≥0 even 

Fact 3 

We can draw something similar to the Pascal triangle: 
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1 

0 1 

1 1 0 

0 1 2 2 

5 5 4 2 0 

Basically, alternate from left to right, adding up the entries from the row above! Then the nonzero numbers on the 

sides of the triangle are just An. 

We can call the right side the “Bernoulli side” and the left side the “Euler side:” the right side is then the numbers that 

appear in the series expansion of tan x , and the left side is those for sec x . 

Definition 4 

The Bernoulli numbers Bn are given by X xn x 
Bn = . 
n! ex − 1 

n≥0 

If we expand out, we have � � � � 
2 4 6 x 1 1 x 1 x 1 x 

= 1 + − x + · + − + · + · · · 
ex − 1 2 6 2! 30 4! 42 6! 

Note that all Bn are only nonzero if n is even or n = 1. The exact formula is actually given by (through the tan x expansion) 

B2n = (−1)n−1 
2n

A2n−1. 
42n − 22n 

So really the Ans are the heart of the combinatorial tricks here! 

Fact 5 

By the way, these are related to the Riemann zeta function, which can written in integral form as ˆ ∞ x−1 1 u 
ζ(x) = du. 

Γ(x) eu − 1 0 

We can find that at integer values, there’s a useful relationship: 

(−1)n−1 · 2(2n)! 
B2n = ζ(2n), 

(2π)2n 

which allows us to find ζ(2), ζ(4), and so on. 

One thing that makes it easier for us to deal with Bernoulli numbers is the useful recurrence relation for An: 

Proposition 6 

We have for all n ≥ 1 that 
n � � X n 

2An+1 = Ak An−k . 
k 

k=0 

(Also, we have the initial conditions A0 = A1 = 1.) 

� � 
n This looks a little like the Catalan number relation (if we remove the 2 and ). So these are somehow the “labeled” k 

version of the Catalan numbers! 
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Proof. The left hand side is the number of ways to have alternating permutations on n + 1 elements that are either 

up-down or down-up: w1 < w2 > w3 · · · or w1 > w2 < w3 · · · . 
Take any permutation in this set, and find the position of (n + 1): let’s say it’s in spot k + 1. In front, we have k 

entries, and after, we have n − k entries: both must be alternating, and the orientation (up-down or down-up) is fixed, � � 
n because (n + 1) is the largest element. Thus we have ways to pick which k elements are before n + 1, Ak ways k · An−k 

to arrange the remaining elements, and then summing over all k gives the result! 

It turns out that we can turn this recurrence relation to a di˙erential equation for our generating function A(x): 

2A0(x) + A2(x) + 1. 

This is good to look over as an exercise! Note that A0(x) for an exponential generating function shifts the indices by one, 

and also notice how similar this looks to the Catalan functional equation. 

It turns out these ideas are also related to binary trees! There are two versions: a regular binary tree is one where 

every vertex has at most 2 children: a left child and a right child. There’s also a notion of a full binary tree: this is the 

subset of normal binary trees where every vertex either has no children (is a leaf) or has both children. 

Fact 7 

Each full binary tree has an odd number of vertices, because we always add 2 vertices as a time. 

It turns out both kinds of binary trees are related to Catalan numbers! 

Claim 7.1. The Catalan number Cn is the number of (regular) binary trees on n vertices, and it’s also the number of full 

binary trees on 2n + 1 vertices. 

Proof. It’s pretty easy to find a bijection between the sets of trees here: given a binary tree on n vertices, add all missing 

children (so add both children to each leaf as well). This will create a full binary tree with n non-leafs and n + 1 leaves: 

that means we indeed have a 2n + 1 vertex full binary tree! To go backwards, just remove all leaves from our tree. 

To show that these are equal to Cn, let’s find a bijection between Dyck paths of length 2n and full binary trees with 

2n + 1 vertices. Given any Dyck path, we can break it up into consecutive up-steps: let a1, a2, · · · be the lengths of those 

groups. (If we have consecutive down-steps, then we still have ai = 0 in the middle: basically, ai counts the number of up 

steps on the ith diagonal.) 

Now we can construct our tree: attach a1 vertices along a left chain (with all children), attach a2 vertices starting from 

the bottom-most right child of the a1-chain, and now repeat. If we have ai = 0, then move one up the diagonal and keep 

going! This is one way to search through a binary tree. 

Next lecture, we’ll discuss what happens when we label the vertices of our binary trees by numbers (with increasing 

labels downward). Then the number of increasing-labeled binary trees on n nodes is equal to n!, and the number of 

increasing-labeled full binary trees on 2n + 1 nodes is equal to An. So alternating numbers are the “labeled version” of 

Catalan numbers! 
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