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Recall that a di˙erential poset is ranked with a minimal element 0̂, and we define up and down operators such that 

[D, U] = DU − UD = I, where I is the identity operator. Combinatorially, this is equivalent to the following two conditions: 

• For any x 6= y in the same level, if there are a elements that cover both x and y , there are a elements covered by x 

and y . 
• For any x , there is one more element covering x than elements covered by x . 

Fact 1 

We found an example last time: Young’s lattice is a di˙erential poset. 

Are there other di˙erential posets? 

We know we must start with a unique minimal element 0̂. There must be exactly 1 element above 0̂, and then 2 

elements above that. Now, for the two elements x and y we just constructed, we need one element to cover both x and y , 

and then each of x and y need to add another extra edge. 

Let’s see how we could construct the next (n +1th) level inductively: to satisfy the first condition of a di˙erential poset, 

reflect over the previous level’s edges. In other words, take the bipartite graph between the nth and n − 1th levels, and flip 

it over the nth level. (This is not the only way, but it works.) 

Now add in an extra edge to a new vertex for each one to satisfy the second condition. in other words, add an edge 

above each element x on the nth level. 

What’s the rank number - that is, how many vertices ri do we have? The numbers are 1, 1, 2, 3, 5, 8, · · · : these are 

Fibonacci numbers by construction, since we add one vertex from each of the n − 1th level, and then add another vertex 

from the nth level. 

Theorem 2 

This poset is a lattice! So any two elements have a well-defined meet and join. 

This is called the Fibonacci lattice. Let’s compare this to Young’s lattice: the rank numbers there are 1, 1, 2, 3, 5, 7, 

so from that point on, the numbers will be di˙erent. However, they have very similar properties! If we find the number 

of walks from 0̂ up n steps and then down n steps, it turns out it is n! as well (since we only care about the identity 

DU − UD = I. 
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Theorem 3 

For any di˙erential poset, 

DnUn0̂ = n!0̂. 

This follows from induction. But where is the n! actually coming from? If we look at 

DD · · · DDUU · · · UU0̂. 

We can think of them as particles and antiparticles. Each pair can collide or go past each other! Each D must collide with 

one of the Us, because D0̂ gives zero contribution. So each D is matched with a U, and that means we really have a 

permutation of n Ds! 

In general, we can pick any word with n U’s and n D’s: 

DDUDUU0̂ = c 0̂. 

What is this number? This counts the number of paths that go up, up, down, up, down, down. In this case, we have a 

total of 4 paths, but is there a way to find c? 

We have to match all Ds with Us, where each D matches with a U to its right, and our goal is to find the total number 

of matchings. 

Equivalently, we can describe this by a rook placement! First trace out a path from the bottom left to top right of an 

n × n board by going right when we see a D and going up when we see a U, and draw the Young diagram: for example, 

DDUDUU gives 

and any rook placement gives us a valid annihilation! Specifically, we get a Young diagram of form ν = (ν1, · · · , νn), 
where the ith row is the number of Ds that appear before the n + 1 − ith U in our sequence. Then we just match the 

corresponding Us and Ds in our rooks. 

Theorem 4 

The constant c in the equation 

W ̂0 = c 0̂, 

where W is a word of n Ds and n Us, is the number of placement of n non-attacking rooks in the shape ν. Specifically, 

this is 

νn(νn−1 − 1)(νn−2 − 2) · · · (ν1 − n + 1). 

Proof. Just start by placing a rook on the bottom row! There’s νn choices. Then we can place a rook on the next row in 

any of the remaining columns in νn−1 − 1 ways, and so on. 

So let’s go back to the unimodality of Gaussian coeÿcients. Recall the Gaussian coeÿcients an in the equation � � klX k + l n = anq . l 
q n=0 

We found by the Young diagram complement idea that these are symmetric. The following was first formulated by Cayley 

in 1856 and proved by Sylvester in 1878: 
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Theorem 5 (Unimodality of the Gaussian coeÿcients) 

We have a0 ≤ a1 ≤ · · · ≤ ab kl ≥ · · · ≥ akl . c 
2 

Proof. Let P be the product poset [k] × [l ]. Then the lattice of order ideals of P (as we know) is the lattice of Young 

diagrams that fit inside a k by l rectangle 

J(P ) ∼ L(k, l). 

Denote J(P )n to be all Young diagrams in J(P ) on the nth level (with n boxes). Our goal is to show that the number of 
kl elements in J(P )n+1 ≥ J(P )n as long as n < . 2 

For λ ⊂ J(P )n, let us denote Add(λ) to be all boxes x ∈ P such that λ ∪ {x} m λ. Similarly, define Remove(λ) to be 

all boxes y ∈ P such that λ \ {y } l λ. Remember that in Young’s lattice, the number of addable boxes is always one more 

than the number of removable boxes: this is no longer true because we can’t add boxes outside of our k × l rectangle. 

Here’s a key fact: 

Lemma 6 

Fix n, k, l . Suppose we have a function w : P → R>0 such that for any λ ∈ J(P )n, we have X X 
w (x) > w (y). 

x∈Add(λ) y ∈Remove(λ) 

Then the number of elements in J(P )n+1 is at least the number of elements in J(P )n. 

Here’s an example of a weight function: 

12 12 10 6 

10 12 12 10 

6 10 12 12 

We can check that this works for all n < 6. Let’s prove the lemma, but we’ll need some more general up and down 

operators: consider the weighted up and down operators X p 
U : λ → w(x) · µ 

µ=λ∪{x}, 
x∈Add(λ) 

and X p 
D : λ → w(y ) · µ. 

µ=λ\{y }, 
y ∈Remove(λ) 

We can think of these as linear operators: it is clear that D = UT are transpose matrices. 

Claim 6.1. H = [D, U] = DU − UD is a diagonal matrix. It sends H from λ to 0 1 X X @ w (x) − w (y)A λ. 
x∈Add(λ) y∈Remove(λ) 

It’s diagonal because (as before), adding a box and removing another box can be done in either order. On the other p 2 
hand, if we want to get back to ourself, we can add any box and remove it, which gives w (x) = w (x), or remove any 

box and add it back, which gives w(y ). 

What can we do with this? Here’s a property of linear algebra: since D = UT , 

DU = UD + H = UUT + H. 
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UUT is positive semi-definite, and H is a positive definite matrix, so this means DU must be positive definite! Therefore, 

DU has positive determinant. We’ll see the rest of the details in the next lecture! 
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