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Today we will continue with high school physics! Just to recap, let G be a connected digraph - directions don’t actually 

matter, but they are used for convenience, and we select two vertices A and B to be connected to a battery. Then we 

have some current I through the battery, and our goal is to find all the relevant currents and voltages Ie , Ve given the 

resistances Re for each edge. Alternatively, how can we find the resistance of the whole electrical network RAB ? 

First of all, remember that we have three laws that govern electricity. Let’s try to write them out as matrix laws! 

• Kirchho˙’s second law says that we can define a potential function U on the vertices of our graph such that 

Ve = Uv − Uu 

for any edge e : u → v . 
• Ohm’s law gives us a proportionality relationship: 

Ie = 
Ve 
Re 
= 
Uv − Uu 

. 
Re 

• For any vertex v , the in-current is equal to the out-current. For example, if e1 : v1 → v and e2 : v2 → v lead into v , 

and e3, e4, e5 lead out of v (from v to v3, v4, v5 respectively), we can write that as 

Uv − Uv1 Uv − Uv2 Uv3 − Uv Uv4 − Uv Uv5 − Uv 
+ = + + . 

R1 R2 R3 R4 R5 

For this last bullet point, let’s instead move all terms to the left hand side: now we get the nice symmetric form X Uv − Uvi = 0. 
Ri 

i neighbor 

This isn’t quite true always, though: we get some additional current if we’re at A or B. We can instead write this as 8 
0 v =6 A, B � � d > < X 1 1 1 

+ · · · + Uv − Uvi = −I v = A 
R1 Rd Ri 

i=1 >:I v = B 

Now let’s label our vertices with the integers from 1 to n, such that A = 1 is the first one and B = n is the last one. 
1 Denote Ri j to be the resistance of edge (i , j), and since we have reciprocals in our equation, define Ci j to be Rij if (i , j) is 

an edge of our graph and 0 otherwise. (Think of this as non-edges having infinite resistance!) 
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Definition 1 

The Kirchho˙ matrix K is an n × n matrix whose entries are equal to 8< P 
` i = j `6=i ci 

Ki j = : −ci j i 6= j 

3 2 64 U1 . . . 
UN 

75 Now we can write all three electrical laws in terms of this matrix! Specifically, if is the vector of potentials, u~ = 

we have 3 2 666664 
−I 
0 
. . . 
0 
I 

777775 (1) KU = . 

3 

Notice that the Kirchho˙ matrix is really just the Laplacian matrix for graphs whose edge-weights are conductances! 
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Note that this system has many solutions, since all rows of our Kirchho˙ matrix add to 0. But that makes sense: our 

3 

potential functions can be shifted up and down by a constant! This is because K, our Laplacian or Kirchho˙ matrix, has 

rank if is connected this that have least spanning by the matrix theorem, all − 1 G at tree tree- means we one so n 

2 

cofactors have to be nonzero. 

Fact 2 

In general, the rank of the matrix is n minus the number of connected components of our graph. 

In particular, can we use this to calculate the resistance between A and B 

Un − U1 
RAB(G) = ? 

I 

Let’s try to calculate this more explicitly. Note that we can simultaneously rescale the U vector and I in our equation 

(1) above without changing K: let’s assume I = 1, and then we can also assume by adding our constant that U1 = 0 (by 

grounding the first vertex). Then the resistance of the whole circuit is just Un. (1) then becomes 

U2 0 

K(1) 
64 75 = 

64 75 . . . . . . . 

3 2 

Un 1 

where K(1) denotes the (n − 1) × (n − 1) matrix obtained by removing the first row and column of K. 

This is a matrix equation, and we should use Cramer’s rule (despite professor Strang in 18.06 saying to never do so)! 

Since our goal is to calculate Un, 

K (̃1) det 
RAB(G) = Un = , 

det K(1) 

0 

where K (̃1) is obtained by replacing the last column with the vector 64 . . . 
1 

75 . Notice that expanding this determinant along 

the last column is actually just going to give us the determinant of the upper left (n − 2) × (n − 2) square of K(1)! Denote 

this as K(1,n), where we remove the first and last rows and columns of our matrix. 

The bottom line is that we get the following: 
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Theorem 3 

The overall resistance of our graph G P 
weight(T̃ ) T̃ spanning 

det K(1,n) ˜ tree of G RAB (G) = = P , 
det K(1) T spanning weight(T ) 

tree of G 

where the weight of a tree is the product of the conductances Y 1 
weight(T ) = , 

Re 
e edge of T 

and G̃ is obtained by gluing edges A and B together (or by connecting the two with an edge of infinite conductance). 

Equivalently, we can think of the numerator a little di˙erently: a spanning tree T̃ of G̃ is a forest of two components, 

such that A and B are in di˙erent components, so that the two are joined together when A and B are glued together. 

Let’s do an example! 

Example 4 

Consider a graph with three vertices A, B, C, where the resistances are R1 between A and C, R2 between B and C, 

and R3 between A and B. 

Then our theorem says that the total resistance between A and B is governed by spanning trees! G̃ makes A and B the 

same edge, so it only contains the edges R1 and R2: either of those is a spanning tree, so 

(R1)
−1 + (R2)

−1 
RAB(G) = . 

(R1R2)−1 + (R1R3)−1 + (R2R3)−1 

We could have also done this by using series and parallel connections: 

Proposition 5 (Series connection) 

If we have two graphs G1 and G2, only connected by one vertex C, and A ∈ G1, B ∈ G2, then 

RAB = RAC + RBC ; 

this can be also stated as R(G1 + G2) = R(G1) + R(G2). 

Proposition 6 (Parallel connection) 

If we have two graphs G1 and G2 that are disjoint but share two vertices A and B, then 

R(G1 k G2)−1 = R(G1)
−1 + R(G2)

−1 . 

Using these two processes, we can generate many graphs, but not all of them! 

Fact 7 

The smallest graph that doesn’t work is the Wheatstone bridge: this is a 4-cycle with one diagonal. Then finding 

the resistance between the two other vertices can’t be directly found by series and parallel connections. 

That’s an example where the general formula helps! By the way, we can easily deduce the series and parallel laws from 

the electrical network theorem, but we might come back to that later. 
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Now let’s look at something a bit di˙erent: this time, if we’re trying to work with our graph from A to B, rescale the 

currents and potentials so that UA = 0, UB = 1: all other vertices have potentials between 0 and 1. Can we phrase this as 

a probability?! 

Proposition 8 

Consider a random walk on the vertices of G, where the probability of us jumping from u to v is 
1 

Pr(u, v ) = P Ruv , 1 
w 6=u Ruw 

where the denominator is a normalizing factor. Then the probability that a random walk starting at vertex v hits B 

before it hits A is Uv . 

This should look a lot like the drunk man problem from the first class! We can think of A as the point x = 0, B as the 

house at x = N, and then U is the probability that the man survives. 

Proof. Let PV be the probability of survival: writing out the linear equations for the random walk gives you the same 

equations as Kirchho˙’s law! 

We’ll continue with the best theorem next time. 
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