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We’ll start by finishing the Lindstrom-Gessel-Viennot lemma proof. Recall the statement: 

Theorem 1 

Given a directed acyclic digraph G with some vertices A1, · · · Ak , B1, · · · , Bk , the (weighted with a ±) number of 

ways to connect each Ai to Bi for 1 ≤ i ≤ k is the determinant X 
(−1) ̀ (w)N(A1, · · · , Ak , Bw(1), · · · , Bw(k)) = det C 

w∈Sn 

where Ci j is the number of ways to connect Ai to Bj with no other restrictions. 

Proof. First, expand out det C as we did last class - see the notes there for details. 

The idea is to construct a sign-reversing involution σ on all bad collections of paths: basically, if we have two collections 

of paths with intersection, we find the “first intersection” (Pi , Pj , X), where the paths Pi and Pj intersect at a point X, 

and then swap Pi and Pj after point X. 

We can’t just take the lexicographic minimum (i , j), because the minimum is not preserved - there might be a new 

lexicographic minimum! Instead, take the minimal index i such that Pi has an intersection with another path. Let the first 

intersection along that path (with another Pj ) be point X: however, there can still be a bunch of other paths through X. 

Among all of those, find Pj with the smallest index j . 
Then after we apply σ, we’ll still pick Pj and Pi at point X, and indeed σ reverses the sign of our permutation! Thus all 

such terms do cancel out, as desired. 

This lemma has a weighted version as well! Let’s now say that every edge e in G is assigned some positive weight 

xe > 0, and define X Y Y 
N(A1, · · · , Ak , B1, · · · , Bk ) = xe . 

noncrossing paths i e∈Pi 
P1,P2,··· ,Pk 

Theorem 2 
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Then this quantity X 
(−1) ̀ (w )N(A1, · · · , Ak , Bw (1), · · · , Bw (k)) 

w ∈Sn 
is again the determinant of C, where ci j = N(Ai , Bj ). 

The same proof works: we just need to see that the sign-reversing involution also preserves the weights, because the 

multiset of all edges is preserved! 

Fact 3 

Also, we can make the same assumption that we had before: if the only way to connect the Ai s to the Bj s is 

A1 → B1, A2 → B2, · · · , then the left side is just N(A1, · · · , Ak , B1, · · · , Bk ). 

So how can we make sure that this assumption is indeed true, so that our theorem is a lot simpler? 

Example 4 

Let’s say G is a planar graph that can be drawn in a square so that all the sources A1, · · · , Ak are on the left side, 

and all the sinks B1, · · · , Bk are on the right side. 

Then we can’t connect A1 to anything beside B1, and so on! In particular, our matrix C will have determinant 

det C = N(A1, · · · , An, B1, · · · , Bn) ≥ 0, 

because it’s just some weighted sum of positive-valued paths. We can actually say a lot more about matrices of this form! 

Definition 5 

A matrix C with real entries is totally positive (respectively, totally nonnegative) if all minors (determinants of 

square submatrices) are greater than 0 (respectively, nonnegative). 

This is much stronger than having a matrix that is positive definite, which only requires that principal minors are 

positive! 

Example 6 

For a 3 by 3 totally positive matrix, we know that all entries are positive, and any square submatrix also has positive 

determinant! This is a lot of conditions. 

Well, note that in our planar graph, we can always remove any k entries from the left and any k entries from the right, 

and we still have only one unique way to choose our path endpoints! So all such matrices C resulting from planar 
graphs G this way are totally nonnegative. 

Fact 7 

It turns out that a matrix C is totally nonnegative if and only if it can be represnted by a planar graph in this way! 

So somehow there’s a deep connection between these two ideas of planarity and total nonnegativity. How can we 

generally get any m by n totally positive matrix? 

Start by drawing an m by n grid, so that all vertical edges are directed up and all horizontal edges are directed to the 

right. We’ll only put weights on the horizontal edges to avoid redundacy: now label them x11, x12, · · · on the top row, 

x21, x22, · · · on the next row, and so on. 
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We’ll put our Ai s from left to right on the bottom row, and we’ll put our Bi s from top to bottom on the right column 

(this is equivalent to putting the As on the left by deformation). Now we have some matrix C such that ci j = N(Ai , Bj ). 

Theorem 8 

Then any totally positive matrix can be represented using some xi j s. 

Example 9 

Take m = n = 2. 

Here’s what our graph looks like: 

x y 
B1 

z t 

A1 A2 

B2 

In this case, all entries are positive (since weights are positive), and the determinant is also positive (in particular, the 

only way to connect Ai s to Bj s is by using edges x, y , t, so the determinant is xyt). 

Corollary 10 

Thus, the space of all totally positive m × n matrices is isomorphic to (R>0)mn . 

Let’s talk about another application of the Lindstrom lemma: we’re going to go back to Young diagram-like objects by 

thinking about plane partitions! 

Consider an m × n rectangle broken up into 1 by 1 grid squares. We again put numbers into our grid squares, but our 

entries are now weakly decreasing, and we’re allowed to repeat numbers. Here’s an example: 

7 7 6 6 4 

7 6 5 4 3 

5 5 3 3 3 

3 3 3 2 1 

2 2 2 1 1 

Let’s say that all entries are in {1, k}. Is it possible to calculate the number of such plane partitions? Here’s the complete 

list for m = n = k = 2: 

, , , , , 1 1 

1 1 

2 1 

1 1 

2 2 

1 1 

2 1 

2 1 

2 2 

2 1 

2 2 

2 2 
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Example 11 � � 
n+m For k = 2, the number of such plane partitions is : this is because we just need to find the path that separates n 

the 1s and 2s from each other. 

Can we extend this logic in general? We can again draw paths Pk that separate entries > k from those ≤ k for all k , 

and this creates (k − 1) weakly noncrossing paths in an m × n grid: they can intersect but not cross over each other. 

But now just slightly perturb each path: have Pk−1 starting at Ak−1 = (0, 0) and ending at Bk−1 = (m, n), Pk−2 starting 

at (1, −1) and ending at (m + 1, n − 1), and so on. Now the paths are non-crossing, and we can apply the Lindstrom � � 
m+n lemma: we have a (k − 1) by (k − 1) matrix with entries ci j = (which is just the number of ways to get from Ai m+i−j 

to Bj . There’s actually an explicit product formula, but we’ll skip over it for now! 

Well, we can think of our plane partitions as three-dimensional Young diagrams: make each number c into a tower of c 

cubes stacked on top of each other! In general, if we rotate our picture, this can be bijected into rhombus tilings of 

hexagons with pairs of opposites of length m, n, k . This tells us that the condition is actually symmetric on m, n, k , and 

we’ll look more at the explicit formula at some point. 
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