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We will continue the discussion about Stirling numbers today. Recall that s(n, k), the Stirling numbers of the first kind, 

are (−1)n−k times the number of permutations of Sn with exactly k cycles, including fixed points. Meanwhile, S(n, k), the 

Stirling numbers of the second kind, count the number of set-partitions of [n] with k blocks, where order doesn’t matter 

for each. 

Example 1 

Take n = 4, k = 2. There are 8 ways to have Sn as a 3-cycle and a fixed point, and 3 ways to make it two 

transpositions. Thus, 

s(4, 2) = (−1)4−2 · (8 + 3) = 11. 

On the other hand, S(4, 2) is similar, but we don’t care which orientation the 3-cycle goes in. So we have 4 3-cycles 

and 3 pairs of transpositions, and this means 

S(4, 2) = 4 + 3 = 7. 

From last week, we found the following main result: 

Theorem 2 

We have 
nX 
s(n, k)x k = (x)n, 

k=0 

where (x)n = x(x − 1)(x − 2) · · · (x − (n − 1)), and 
nX 

n S(n, k)(x)k = x . 
k=0 

So consider the space of all polynomials R[x ]: this is a linear space, and it has a 2 linear bases. 

Fact 3 
2 n {1, x, x , · · · , x , · · · } is a basis for R[x ], but so is {1, x, x(x − 1), · · · , (x)n, · · · }. So the Stirling numbers are a 

“change of basis.” 

That means that we can construct matrices for both changes of bases, and they must be invertible! 
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Corollary 4 

If we construct matrices (s(n, k))n,k≥0 and (S(n, k))n,k≥0, they are invertible. 

These are infinite matrices, but we can always take all indices from 0 to some fixed N. 

Example 5 

For 0 ≤ n, k ≤ 3, we have 1 0 
1 0 0 0 
0 1 0 0 
0 −1 1 0 
0 2 −3 1 

CCA 
BB@ (s(n, k)) = , 

and 1 0 BB@ 

1 0 0 0 
0 1 0 0 
0 1 1 0 
0 1 3 1 

CCA (S(n, k)) = . 

Both are lower triangular matrices, since s(n, k) = S(n, k) = 0 for k > n. 

We’ve proved the first identity from the theorem above already, but what about the second identity? 

X 

Proof. We can prove this by induction, but here’s a combinatorial proof. It is enough to prove that this holds for all 

positive integer x , since both sides are polynomials. 

Consider the set of all functions 

F = {f : [n] → [x ]}. 
n Each of 1, 2, · · · , n has x options, so there are a total of x such functions in F . 

On the other hand, given a function f , we can construct a set-partition π of [n] as follows: put i and j in the same 

block if and only if f (i) = f (j). So we group elements of our set based on the output, and we want to count the number 

of sets that produce a given set-partition. 

Fix a set-partition π with k blocks B1, B2, · · · , Bk . The number of functions that produce this specific set-partition is 

x(x − 1) · · · (x − (k − 1)) = (x)k , since B1 has x options for its function value, then B2 has (x − 1) options (since it can’t 

be equal to the value on B1), and so on. 

But now we’re done: the number of such functions over all set partitions is 
n 

|F | = S(n, k)(x)k , 
k=0 

since we just pick a set-partition and then assign values to it, and we’re done! 

Here’s another combinatorial application of Stirling numbers of the second kind: rook placements. We’re not allowed 

to place rooks on the same row and column, so they can’t attack each other. 

Consider the number of rook placements on a triangle board of Young tableau shape ((n − 1), (n − 2), · · · , 1). For 
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example, here’s a rook placement for n = 7: 

x 

x 

x 

Our goal is to put numbers in the corners to correspond to a set partition: for each rook, we place a hook, and then 

numbers connected by hooks are in the same part of the partition. 

x 7 

x 6 

5 

x 4 

3 

2 

1 

This corresponds to a set partition! Here, 2, 4, 6 are connected, 1 and 7 are connected, and 3 and 5 are lonely, so this is 

the set partition 

π = (1, 7 | 2, 4, 6 | 3 | 5) . 

Theorem 6 

S(n, k) is the number of non-attacking rook placements with n − k rooks. 

For example, notice that S(n, n) = 1 is the number of ways to place no rooks on the chessboard. 

Definition 7 P n The Bell number Bn = S(n, k) is the total number of set-partitions of n, and this is also the total number of k=0 

rook placements on ((n − 1), (n − 2), · · · , 1). 

Example 8 

For n = 4, there is 1 way to place no rooks, 6 ways to place 1 rook, 7 ways to place 2 rooks (do casework), and 1 

way to place 3 rooks. This is a total of 

B4 = 1 + 6 + 7 + 1 = 15. 

There are other categories of set partitions that we can use, and those come from “arc diagrams.” Basically, place the 

numbers 1 through n on a number line, and draw an arc between adjacent entries in a block. (Arcs correspond to rooks: a 

to b is ath column, bth row.) 

Courtesy of Agustin Garcia, here’s the arc diagram for (1, 4, 6 | 2, 3 | 5): 

1 2 3 4 5 6 
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Definition 9 

A set-partition is non-crossing if no two arcs intersect each other. Basically, if i < j < k < l , we can’t have an arc 

between i and k and also between j and l . 

We also define a set-partition to be non-nesting if there is no arc “inside” another one. Basically, we can’t have an 

arc between i and l and also between j and k . 

There is an interesting duality between these two definitions: 

Theorem 10 

The number of non-crossing set partitions of [n] is equal to the number of non-nesting set partitions. This is just the 

Catalan number Cn. 

Proof for non-nesting partitions. Use rook placements! π is non-nesting if and only if there is no rook to the right and 

down of another one. Basically, each rook is southwest or northeast of each other one. Here’s an example: 

x 

x 

x 

x 

Put a sun on the top left corner. Every rook casts a shadow: 

x 

x 

x 

x 

Follow the border of the shadow. This is a Dyck path from the bottom left to the top right corner! 

As a bonus problem, figure out the analogous argument for non-crossing partitions. 

Fact 11 

We can draw a Pascal’s triangle-like object for S(n, k). There’s a similar rule to calculate both S(n, k) and s(n, k): 

it’s an exercise to find the recurrence relation! 
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