
    

Problem 1 

Show that the number of noncrossing partitions of {1, 2, · · · , n} is the Catalan number Cn. 

Solution by Vanshika. We construct a bijection between a Dyck path of length 2n and a noncrossing partition of [n]. As 

an example, consider the partition where 1 and 3 are connected, 4, 7, 8 are connected, and 5, 6 are connected. The idea is 

that every element should correspond to 2 letters in our Dyck path, so for each partition, draw an extra line from the first 

to last number in the partition (so now we have closed cycles). If there’s two arcs to the right, we write “UU,” if there’s 

two arcs to the left, we write “DD;” if there’s no arc, we write “UD,” and if there’s an arc going to and coming out of the 

number, we write “DU.” 

This is a Dyck path because we can’t end an arc before we start it! To reverse it, take each D from left to right and 

connect it to the nearest U before it, removing duplicates. 

Solution by Sanzeed. Mark all of the “up” steps in order from 1 to n in a Dyck path of length n, and now match the down 

steps by finding the corresponding “levels.” Then every maximal continual sequence of down steps is in its own partition! 

To reverse this, arrange partitions in descending order, and insert a partition {a1 > a2 > · · · } right after the a1th up 

step. 

Problem 2 

Find a closed formula for the number of saturated chains from the minimal element 0̂ = (1|2| · · · |n) to the maximal 

element 1̂ = (1 · · · n) in the partition lattice Πn. 

Proof by Congyue. A saturated chain corresponds to merging elements in some order: for example, we can go from 

(1|2|3|4|5) to (12|3|4|5) to (124|3|5) and so on. At the beginning, we have n blocks, so we need n − 1 steps to finish the 

process. � � 
n−k+1 On the kth step, there are ways to merge blocks, since we have n − k + 1 blocks. Thus, our answer is 2 Yn−1 � 

n − k + 1
� 

(n − 1)!n! 
= . 

2n−1 2 
k=1 

1 

Problem Set 2 Solutions I



Problem 3 

Find a bijection between partitions with odd distinct parts and self-conjugate partitions. 

Solution by Sophia. Consider the Young diagram representation of a partition. Bend each odd/distinct partition at the 

middle and join them together along the diagonal! For example, 

(6, 4, 4, 4, 1, 1) = ⇐⇒ (11, 5, 3, 1) = 

This is reversible, so we do have a bijection. 

Problem 4 

Find the number of paths in Young’s lattice that take 2n steps from 0̂ back to itself. 

Solution by Yogeshwar. Consider the words of length 2n with n U’s and n D’s: for each one, we need to sum up X 
W ̂0. 

W word 

Recall that for a sequence of U’s and D’s, such as 

DDUDUU0̂, 

each “up” needs to be matched with a “down” to its left: if we have any word, that just means we can match each U with 

any D as we want. So if we have the numbers 1, 2, · · · , 2n, there’s 2n − 1 ways to match 1, then 2n − 3 ways to match 

the next number in the list that hasn’t been matched, then 2n − 5, and so on, which yields a final answer of (2n − 1)!!. 

Problem 5 

Show that the Bell number is given by 
∞X kn 1 

B(n) = . 
e k! 
k=0 

Solution by Wanlin. From class, we have that 
nX 

n x = S(n, m)(x)m 

m=0 

where (x)m denotes the falling power of x . Replacing x by k , 
n � � X k 

kn = S(n, m) m!. 
m 

m=0 

This is also equal to (due to constraints on S and the binomial coeÿcient) 
k � � X k 

= S(n, m) m! 
m 

m=0 
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and plugging this in, we’re trying to show that 
∞ k � � X X 1 S(n, m) k m! m B(n) = 

e k! 
k=0 m=0 

and now a lot of things cancel: 
∞ k X X 1 S(n, m) 

= 
e (k − m)! 
k=0 m=0 

Switching the order of summation, 
∞ ∞ ∞ n X X X X 1 S(n, m) 

= = S(n, m) = S(n, m), 
e (k − m)! 
m=0 k=m m=0 m=0 

which is exactly the Bell number. 

Problem 6 

Find a bijection between distinct partitions and odd partitions. 

= λodd2mi Solution by Sarah. Let’s say we have a partition with all distinct parts, λ = λ1 + · · · + λn, where λi . Then we i 

turn this into λodd with multiplicity 2m1 , and so on. 1 

λa2 To do the reverse, start with an odd partition n = λa1 · · · (where the exponents are multiplicity). For each a, write it 1 2 P P 
in base 2 and expand it as a sum of powers of 2: λa1 then becomes λ1 · 2m , where 2m = a1. 1 

Problem 7 

Construct a non-recursive description of the Fibonacci lattice. 

Solution by Chiu Yu-Cheng. First of all, we show that the number of compositions of n with all parts equal to 1 or 2 is 

the Fibonacci number Fn+1: this is because we either start a composition with 1 or 2 and then fill in the rest in Fn−1 or Fn 
ways by induction. 

Now, consider a graph where every vertex is a composition of n with 1s and 2s. Two vertices v1, v2 are connected if v2 
is obtained by v1 by either (1) inserting a 1 anywhere to the left of the leftmost 1 in v1 or (2) changing the leftmost 1 to 

a 2. Similarly, v1 is obtained from v1 by either (1*) removing the leftmost 1 or (2*) chanigng a 2 to a 1, when 2 is on the 

left of the leftmost 1. 

We claim this graph is isomorphic to the Fibonacci lattice. Two vertices are only connected if the sum of the composition 

parts di˙er by 1, so we can define the rank to be that sum. To show this the isomorphism, we need to show that for any 

v1 6= v2 with some rank n, the number of common upper neighbors is equal to the number of common lower neighbors, 

and for every v1, it has one more upper neighbor than lower neighbor. This was how we defined the Fibonacci lattice! 

If v1 and v2 are di˙erent, a common neighbor must be applied by having one apply 1* and the other apply 2* to get a 

lower neighbor, or having one apply 1 and the other apply 2 to get an upper neighbor. So some vertex v 0 is obtained by 1* 
00 on v1 and 2* on v2, we can also apply 2 to v1 and 1 to v2 to get a v , so there’s a bijection between upper and lower 

neighbors. 

On the other hand, if v1 has i copies of 2 to the left of its leftmost 1, there will be i lower neighbors and i + 1 upper 

neighbors if there is no 1, and there will be i + 1 lower neighbors and i + 2 upper neighbors if there is a 1, which finishes 

the construction. 

Finally, we want to show that this is actually a lattice. Note that a ≤ b if and only if there is a walk with only upper 

steps from a to b: it’s not hard to check that this satisfies the poset axioms. We define “join” as follows: if either of x 

3 



and y start with 1, there is a unique lower neighborhood, so x 0 ∧ y = x ∧ y . Meanwhile, if they both start with a 2, the 

subgraph starting with 2 is isomorphic to the initial graph, so we can just ignore the first term of the composition and do 

the rest by induction. Similarly, to find meet, every element of rank at most 2n with n pieces can work up to 2, 2, 2, · · · , 
so this is a common upper neighbor, and then we can work down from there. 
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