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Today we’re going to talk about Eulerian cycles! 

Definition 1 

An Eulerian cycle or circuit / tour / walk in a digraph G is a closed directed walk on G such that we return to the 

same point where we start, and every edge is visited exactly once. 

We have the following famous result: 

Theorem 2 (Euler, 1736) 

A digraph G contains an Eulerian cycle if G is connected as an undirected graph and all vertices have equal indegree 

and outdegree. 

We can also say something similar for undirected graphs: 

Corollary 3 

An undirected graph G contains an (undirected) Eulerian cycle if and only if G is connected and all vertices have even 

degree. 

The story behind these is the bridges of Konigsberg: Euler wanted to use each bridge excatly once. This is pretty easy 

to prove: 

Proof of directed version. It is clear that the conditions are necessary: the graph must be connected, and each edge is 

entered and exited an equal number of times. To show that this is suÿcient, pick some arbitrary edge and keep going until 

we get stuck at some point (because there are finitely many edges). We can then only get stuck at our initial vertex, 

because the outdegree is equal to the indegree: for any other vertex, if we enter a times, we should be able to exit a times. 

So if we end up at our starting vertex, we are either done, or there are some edges we haven’t used. Find a vertex for 

which an edge hasn’t been used: just keep going and repeatedly add edges until everything is used. 

What we’re discussing, then, is the next question: how many Eulerian cycles exist? To avoid overcounting, we’ll fix our 

starting edge: basically, we are given a root r and edge e as reference, and we want to see how many Eulerian cycles are 

distinct up to that. (Since each edge is used exactly once in each Eulerian cycle, it doesn’t actually matter which one we 

use.) 
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Theorem 4 (B.E.S.T Theorem, 1951) 

Let G be a connected digraph, where the indegree of each vertex is equal to its outdegree, and fix a root r . Then the 

number of Eulerian cycles in G is equal to Y 
# of Eulerian cycles in G = Inr (G) · (outdegree(v ) − 1)!, 

v vertex 

where Inr (G) is the number of in-trees rooted at r . 

B.E.S.T actually stands for de Bruijn, von Aardenne-Ehrenfest, Smith, and Tutte. Note that we know the value of 

Inr (G) from the directed matrix tree theorem! 

Fact 5 

= Lout Since our graph is Eulerian (it satisfies the two requirements), the two Laplacian matrices Lin , and all row 

and column sums of our Laplacian matrix are zero: this implies that all cofactors of L are the same! Therefore, the 

number of in-trees rooted at r is the same as the number of out-trees rooted at r , and this is the same for all r . 

Example 6 

Consider a 4-cycle, where there are a pair of oppositely-directed edges between two opposite vertices in the cycle. 

We have two in-trees, and the outdegrees are 2, 1, 2, 1, so we should have 2 · 1!0!1!0! = 2 Eulerian cycles. 

Proof. Fix our starting root r and starting edge e. Given any Eulerian cycle C, list them in the order they appear in our 

cycle starting from e: this will order all edges in some manner 

e1e2 · · · eN . 

This is a total ordering, and it will be denoted by <C .For any vertex v 6= r , mark the edge from v which is maximal among 

all outgoing edges in the order <C : that is, we color the outgoing edge that occurs last in our Eulerian cycle. 

Let T be the subgraph formed by those colored edges. We claim that T is an in-tree rooted at r : this follows from the 

following facts: 

• T has n − 1 edges, where G has n vertices. 
• There is no fork: for every vertex, we picked exactly one outgoing edge. 
• There are no edges out of the root. 
• There are no directed cycles. 

This last claim is the least obvious: let’s prove it. 

Proof. If there were a cycle in T , denoted as C̃, it does not visit the root (because there are no outgoing edges). So let f 

be the maximal edge in C̃ (by the ordering <C ). f is not the last edge in our Eulerian walk (because it doesn’t go to the 

root), so we can let f 0 be the next edge in our Eulerian cycle C. Meanwhile, define f 00 to be the edge that follows f in the 

cycle C̃. 

f 0 = f 00 , because f is supposed to be the largest edge in our cycle, and f <C f 0 . On the other hand, if f 0 and f 00 are 

di˙erent edges, we know that f 00 <C f by maximality of f , and then f 0 > f 00: then we shouldn’t have included f 00 in T in 

the first place by maximality of construction of T !. So this is a contradiction, and no such cycle can exist. 
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This means that we have a graph with outdegree 1 everywhere except at the root, which is enough to make it an 

in-tree! So how do we finish the proof? For any vertex v , let wv be the ordering of all edges outgoing from v except for e 

and the tree T , given by our order <C . T and e remove 1 from each outdegree, so each wv corresponds to a permutation 

of size outdegree(v ) − 1. 

And now the wv s, plus the intrees, are enough to tell us the whole ordering: we claim this map 

C (Eulerian cycle) → (T, {wv }v vertex) 

is a bijection! To do this, just keep going along, picking the smallest unmarked edge, and only use a marked edge from T 

if we have no other choice. Then we can never get stuck, because we always use the last edge from each vertex when 

absolutely necessary by construction! 
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