
MITOCW | 17. Graph limits IV: inequalities between subgraph densities

PROFESSOR: We spent the last few lectures developing the theory of graph limits. And one of the

motivations I gave at the beginning of the lecture on graph limits was that there were certain

graph inequalities. Specifically, if I tell you that your graph has edge density one half, what's

the minimum possible C4 density?

So for those kinds of problems, graph limits gives us a very nice language for describing what

the answer is, and also sometimes for solving these problems. So today, I want to dive more

into these types of problems. Specifically, we're going to be talking about homomorphism

density inequalities. Homomorphism.

So trying to understand what is the relationship between possible subgraph densities or

homomorphism densities within a large graph. We've seen these kind of problems in the past.

So one of the very first theorems that we did in this course was Turan's theorem and Mantel's

theorem.

So specifically, for Mantel's theorem, it tells us something about the possible edge versus

triangle densities in the graph, which is something that I want to spend the first part of today's

lecture focusing on. So what is the possible relationship? What are all the possible edge

versus triangle densities in the graph?

Mantel's theorem tells us something-- namely, that if your edge density exceeds one half, then

your triangle density cannot be zero. So that's what Mantel's theorem tells us. And let me write

it down like this.

So the statement I just said, the one about Mantel's theorem, and more generally for Turan's

theorem tells us that if the Kr plus 1 density in W is 0, then necessarily the edge density is at

most 1 minus 1 over r.

So this is what it tells us. It gives us some information about what are the possible densities.

But I would like to know more generally, or a good complete picture, of what is a set of edge

versus triangle density inequalities. So let me draw a picture that captures what we're looking

for.

So here on the x-axis, I have all the possible edge densities, and on the vertical axis, I have

the triangle density. And I would like to know what is a set of feasible points in this box.



Mantel's theorem tells us already something-- namely, when can you-- so this region, the

horizontal line at zero extends at most until the halfway point. Beyond this point, it's not a part

of the feasible region.

So far that's the information that we know. Our discussion about graph limits, and in particular-

- so let me first write down what is the question. So if you look at the set of possible edge

versus triangle densities, so there is this region here. What is this region? It's a subset of this

unit square.

We would like to understand what is the set of all possibilities. The compactness of the space

of graphons tells us that this region is compact. So let me call this region D23 for edge versus

triangle. So D23 is compact because the space of graphons is compact under the cut metric,

and densities are continuous under cut distance.

So in particular, if you have some limit point of some sequence of graphs, that limit point's

achieved by a corresponding limit graphon. So you really have a nice closed region over here.

So we don't have to-- I should be able to tell you the answer. This is the region. There should

not be any additional quantifiers. There's no optimizer zero, missing this point and missing that

point. It's a closed region. So what is this closed region?

Equivalently, we can ask the following question. Suppose I give you the edge density. In other

words, look at a particular horizontal place in this picture. What is the maximum and minimum

possible triangle densities?

So I tell you that the edge density is 0.75. What is the upper and lower boundaries of this

region? I want you to think about why this region is-- the vertical cross-section is a line

segment. You cannot have any hulls. So that requires an argument, and I'll let you think about

that.

So I want to complete this picture, and I'll show you some proofs. And at the end of-- well, by

the middle of today's lecture, we'll see a picture of what this region looks like.

All right. First, let me do the easier direction, which is to find the upper boundary of this region.

So what is the maximum possible triangle density for a given edge density? And the answer--

so it turns out to be what I will-- the result I will tell you is a special case of what's called

Kruskal-Katona.

Think about it this way. Suppose I give you a very large number of vertices and I give you



some large number of edges, and I want you to put the edges into the graph in a way that

generates as many triangles as possible. Intuitively, how should you put the edges in to try to

make as many triangles as you can?

AUDIENCE: Clique.

PROFESSOR: In a clique. So you put all the edges as closely together as possible, try to form a clique. So

maximize number of triangles by forming a clique. And that is indeed the answer. And this is

what we'll prove, at least in the graph densities version.

So we will show that the upper boundary is given by the curve y equals to x to the 3/2. So don't

worry about the specific function. But what's important is that the upper bound is achieved by

the following graphon. Namely, this graphon corresponding to a clique.

For this graphon here, the edge density is a squared, and the triangle density is a cubed. And

it turns out this graphon is the best that you can do with a given edge density in order to

generate as many triangles or the most triangle density possible.

In other words, what we'll prove is that the triangle density throughout W will be a graphon. So

W is always a graphon. So values between 0 and 1. Then you have the following inequality.

So let's prove it. First let me draw you what this shape looks like. Because of the relationship

between graphs and graph limits, any of these inequalities about graph limits, about graphons,

it's sufficient to prove the corresponding inequality for graphs because the set of graphs is

dense within the space of graphons according to the topology-- namely, the cut metric that we

discussed.

So it suffices to show the corresponding inequality about graphs-- namely, that the K3 density

in a graph is at most the K2 density in a graph raised to the power 3/2.

So let me belabor this point just a little bit more. This inequality is a subset of those inequalities

up there because graphs sit inside a space of graphons. But because they sit inside in a

dense subset, if you know this inequality and everything is continuous, then you know that

inequality. So these two are equivalent to each other.

Now, with graphs-- and specifically, these counts here, so triangle densities and edge

densities-- they correspond to counting closed walks in the graph. So in particular, if we're

interested in the number of K3 homomorphisms in a graph, this is the same as counting



closed walks of length 3.

And there was important identity we used earlier when we were discussing the proof of quasi-

random graphs, that for counting closed walks you should look at the spectral moment. So

that's a very important tool to look at the spectral moment-- namely, the third power of the

eigenvalues of the adjacency matrix of this graph. This is the eigenvalues of the adjacency

matrix of G.

I claim that this sum here is upper bounded by a corresponding sum of squares raised to the

power that normalizes. The first time I saw this I was a bit confused because I remember,

power means inequality. Shouldn't go the other way. But actually, no, this is the correct

direction. So let me remind you why.

So if you have a positive t, then claim that-- and you have a bunch of non-negative reals, then

the claim is that this t-th power sum is less than or equal to the t-th power of the sum.

Now, there are several ways to see why this is true. You can do induction. But let me show you

one way which is quite neat. Because it's homogeneous in the variables, I can assume that the

sum is 1, in which case the left-hand side is equal to this sum of t-th powers.

So because I assumed that everything is non-negative, all these a's are between 0 and 1. So

now, this sum is less than or equal to the same sum without the t's because you're using it like

that. And that's equal to 1, which is the right-hand side.

So this is true. And now we have the sum of the squares of the eigenvalues, which is also a

moment of the eigenvalues-- namely, corresponding to K2. So the same inequality is true for

graph homomorphisms. And to get to the inequality for densities, we just divide by the number

of vertices raised to the third power from both sides, and we get the inequality that we're

looking for.

So that's the proof of the upper bound. Any questions?

There is something that bothers me slightly about this proof. Look, it's a correct proof. So

there is nothing wrong with this proof. Everything is kosher. Everything is correct. You might

ask, is there a way to do this spectral argument in graphons without passing to graphs? And

yes, you can, because for graphons you can also talk about spectrum.

It turns out to be a compact operator, so that spectrum makes sense. You have to develop a



little bit more theory about the spectrum of compact operators, but everything, more or less,

works exactly the same way. It's just easier to talk about graphs.

But what bothers me about this proof is that we started with what I would call a physical

inequality, meaning that it only has to do with the actual edges and subgraph densities. But the

proof involved going to the spectrum. And that bothers me a little bit.

There's nothing incorrect about it, but somehow in my mind a physical inequality deserves a

physical proof. So I use the word physical in contrast to frequency, which is coming from

Fourier analysis. And that's the next thing we'll do in this course.

But this proof goes to the spectrum. It goes to something beyond the physical domain. OK. It's

neat. But I want to show you a different proof that stays within the physical domain. And this

other proof-- I mean, it's always nice to see some different proofs because you can use it to

apply to different situations.

And there are some situations where you might not be able to use this spectral

characterization. For example, what if your K3 is now K4? A similar inequality is true, but this

proof doesn't show it, at least not directly. You have to do a little bit of extra work.

So let me show you a different proof of the upper bound. And we'll prove a slightly stronger

statement. Namely, that for all not just graphons-- it's not so important but for all symmetric

measurable functions, from the unit square to r, one has the following inequality-- namely, that

the K3 density in W is upper bounded by the K2 density of W squared raised to power 3/2.

Here, the square is meant to be a point-wise square.

So a couple of things. If your graph is a graphon or a graph, then-- if it's a graph, then it's 0

comma 1 value. So taking this point by square doesn't do anything. If you're a graphon, you

can always put one more inequality that replaces it by the thing that we're looking for because

W is always bounded between 0 and 1.

So it's a slightly stronger inequality. Let me show it to you by writing down a series of

inequalities and applying the Cauchy-Schwarz inequality repeatedly. So it's, again, an exercise

in using Cauchy-Schwartz. And we will apply three applications of Cauchy-Schwarz.

Essentially, three applications-- one corresponding to every edge of this triangle. So let me

begin by writing down the expression in graphons corresponding to the K3 density.



I'm going to apply Cauchy-Schwarz by-- so I'm going to apply Cauchy-Schwarz to the variable

x, holding all the other variables constant. So hold dy and dz constant. Going to apply to dz.

You see there are two factors that involve the variable x. So apply Cauchy-Schwarz to them,

you split each of them into an L2.

So one of these factors become that. By the way, all of these are definite integrals. I'm just

omitting the domain of integrations. All the integrals are integrated over from 0 to 1. So the

second application-- sorry, the second factor becomes like that. And the third factor is left

intact.

So that's the first application of Cauchy-Schwarz. You apply it with respect to dx to these two

factors. Split them like that.

AUDIENCE: There's a normalization missing.

PROFESSOR: Thank you. There is a normalization missing. OK. Guess what the second step is? Going to

apply Cauchy-Schwarz again, but now to dy, to one more variable. Cauchy-Schwarz with

respect to dy.

There are two factors now that involve the letter y. So I apply Cauchy-Schwarz and I get the

following. The first factor now just becomes the L2 norm of W. The second factor does not

involve y, so it is left intact. And the third factor is again integrated with respect to y after taking

the square.

And there's now dz that remains. Last step. You can guess, you integrate with respect to dz

and apply Cauchy-Schwarz. Apply Cauchy-Schwarz to the last two factors. And there, actually,

the outside integral goes away.

OK. So you get this product. And you see every single term is just the L2 norm of W. So you

have that, which is the same as what I wrote over here. Any questions? Yeah.

AUDIENCE: Where do you use the fact that W is symmetric?

PROFESSOR: Great question. So where do I use the fact that W is symmetric? So let's see. In some sense,

we're not using the fact that W is symmetric because there is a slightly more general inequality

you can write down. And actually, the question gives me a good chance to do a slight diversion

into how this inequality is related to Holder's inequality.



So this is actually one of my favorite inequalities for this kind of combinatorial inequalities on

graphons. So many of you may be familiar with Holder's inequality in the following form. If I

have three functions, if I integrate them, then you can upper bound this integral by the product

of the L3 norms.

And likewise, if you have more functions. So if you apply just this inequality directly, you get a

weaker estimate. So you don't get anything that's quite as strong as what you're looking for

over there.

So what happens is that if you know-- so if f, g, and h each depends only on a subset of the

coordinates in the following way that f depends on only x and y, g depends only on x and z,

and h depends only on y and z, then if you repeat that proof verbatim with three different

functions, you will find that you can upper bound this product, this integral, by the product of

the L2 norms.

So L2 norms are in general less than or equal to the L3 norms. So here we're inside a

probability measure space. So the entire space has volume 1. So this is a stronger inequality,

and this is the inequality that comes up over there. Yeah.

AUDIENCE: Is there an entirely graph theoretic proof of this-- say, for graphs instead of graphons-- that

doesn't involve going to spectrum?

PROFESSOR: Great. So the question is, is there entirely graph theoretic proof of this? So the reason why I

mentioned that this result is a special case of Kruskal-Katona-- so Kruskal-Katona actually is a

stronger result, which tells you precisely how you should construct a graph. So given exactly m

edges, what's the maximum number of triangles?

And the statement that there is actually-- it's a very precise result. It tells you, for example, if

you have K choose 2 edges, you have at most K choose 3 triangles. It's not just at the density

level but exactly. And even if the number of edges is not in the form of K choose 2, it tells you

what to do.

And actually, the answer is pretty easy to describe. It's almost intuitive so if I give you a bunch

of matchsticks and ask you to construct a graph with as many triangles as you can, what

should you do? You start with one, two, filling a triangle. Start filling a triangle. Another vertex.

1, 2, 3, 4. You keep going. And that's the best way to do it.

And that's what Kruskal-Katona tells you. So that's a more precise version of this inequality.



And the Kruskal-Katona, the combinatorial version, is proved via a combinatorial shifting

argument, also known as a compression argument. Namely, if you start with a given graph,

there are some transformations you do to that graph to push your edges in one direction that

saves the number of edges exactly the same but increases the number of triangles at each

step.

And eventually, you push everything into a clique. So it's something you can read about. It's a

very nice result. Other questions?

So we've solved the upper bound. So from examples and from this upper bound proof, we see

that it's the upper bound. Now let me tell you a fairly general result that says something about

graph theoretic inequalities but for a specific kind of linear inequalities. So here's a theorem

due to Bollobas.

I'm interested in an inequality of the form like-- so I'm interested in inequality of this form,

where I have a bunch of real coefficients, and I'm looking at a linear combination of the clique

densities. I would like to know if this inequality is true.

So somebody gives us this inequality, whatever the numbers may be. You can also have a

constant term. The constant term corresponds to r equals to 1. So the point density. That's the

constant term. And asks you to decide is this inequality true. And if so, prove it. If not, find a

counterexample.

So the theorem tells you that this is actually not hard to do. So this inequality holds for all G if

and only if it holds whenever G is a clique. Maybe somebody gives you this inequality about--

it's a linear inequality about clique densities.

Then, to check this inequality, you only have to check over all cliques G, which is much easier

than checking for all graphs. For each clique G this is just some specific expression you can

write down, and you can check.

So I want to show you the proof of Bollobas' theorem. It's a quite nice result. But before that,

any questions about the statement. All right. So the reason I say that this is very easy to check

if I actually give you what the numbers are is because this inequality for cliques-- so the

inequality is equivalent to just the statement of inequality that I'm writing down now, where I tell

you precisely what the r clique density is in an n clique. Because that's just some combinatorial

expression.



So to check whether this inequality is true for all graphs, I just have to check the specific

inequality for all integers n, which is straightforward. All right. So let's see how to prove that

inequality up there.

And here we're-- I mean, we're not going to exactly use the theorems about graphons, but it's

useful to think about graphons. So if and only if one of the directions is trivial-- so let's get that

out of the way first. But also-- so the only if is clear. So for the if direction, first note that this is

true for all graphs if and only if it is true for all graphons and where I replaced G by W. By the

general theory of graph limits and whatnot, this is true.

So in particular, there is one class of class that I would like to look at-- namely, I want to

consider the set of node weighted-- so I want to consider the set of node weighted simple

graphs. So node weighted simple graphs, by this I mean a graph where some of the edges

are present and I have a node weight-- a weight for each node.

And to normalize things properly, I'm going to assume that the nodes' weights add up to 1.

Now, you see that each graph like that, you can represented by a graphon where-- so you can

have a graphon. So they're not meant to be the same picture, but you have some graphon like

this, which corresponds to a node weighted graph.

And the set of such node weighted graphs is dense in the space of graphons. In particular, as

far as graph densities are concerned, they include all the simple graphs. So it suffices-- I

mean, it's equivalent to-- the inequality is equivalent to it being true for all node weighted

simple graphs.

But for this space of graphs, suppose that the inequality fails. Suppose that inequality is false.

Then there exists a node weighted simple graph. I'm going to actually drop the word simple

from now on. So node weighted graph H, such that f of H being the above sum is less than

zero.

And there could be many possibilities for such an H. But let me choose. So among all the

possible H's, let's choose one that is minimal in the sense that it has the smallest possible

number of nodes. So with this minimum-- has a minimum number of nodes.

And furthermore, among all H with this number of nodes, choose the node weights, which we'll

denote by a1 through a n, summing to 1. Chooses node weights so that this expression, the



sum, is minimized.

And by compactness-- and now we're not even talking about compact in the space of

graphons. You have a finite number of parameters. It's a continuous function. So just by

compactness, there exists such an H for which the minimum is achieved.

This is minimizing over integers. And here, minimizing over a finite set of bounded real

numbers. So the name of the game now is we have this H, which is minimizing. And I want to

show that H has certain properties. If it doesn't have these properties, I can decrease those

values.

So let's see what properties this H must have if it has the minimum number of nodes and f of H

is minimum possible. So first I claim that all the node weights are positive. If not, I can delete

that node and decrease the number of nodes.

I would like to claim that H must be a complete graph because if some ij is not edge of H-- so

here i is different from j. I do not allow loops. It's just simple. Then let's think about what this

expression f of H should be. So I don't want to write this down, but I want you to imagine in

your head.

So you have this graphon H. I'm Looking at the clique density. It's some polynomial. In fact, it's

some multilinear-- it's some polynomial in these node weights.

So I want to understand what is the shape of this polynomial as a function of the node weights.

And I observe that it has to be multilinear in-- has to be multilinear in particular in alpha i and

alpha j. It's a polynomial. That should be clear.

It is multilinear because, well, you have-- why is it multilinear? Why do I not have alpha i

squared? Either of you.

AUDIENCE: It says the 0 is not [INAUDIBLE].

PROFESSOR: So we're forbidding-- so here's alpha 1, alpha 2, alpha 3, alpha 4, alpha 1, alpha 2, alpha 3,

alpha 4. So understand what the triangle density-- if you write down the triangle density as an

expression in terms of the parameters, think about what comes out, what it looks like. And they

essentially consist of you choosing a subgraph, which you cannot have repeats.

So it's multilinear. So it's multilinear in particular in alpha i and alpha j. So no term has the



product alpha i alpha j in it because ij is not an edge. So here's where we're really using that

we're only considering clique densities.

So the theorem is completely false without the assumption of clique densities. If we have a

general inequality, general linear inequality, then the statement is completely false. So it's

multilinear. So if we now fix all the other variables and just think about how to optimize, how to

minimize f of H by tweaking alpha i and alpha j, well, it's linear, so you should minimize it by

setting one of them to be zero.

And that would then decrease the number of nodes. So can shift alpha i and alpha j while

preserving alpha i plus alpha j and not changing-- so not increasing f of H. And then we get

either alpha i to go to zero or alpha j to go to zero, in which case we decrease the number of

nodes, thereby contradicting the minimality assumption.

So this argument here then tells you that H must be a clique. So hence, H is complete. And if

H is complete, then as a polynomial in these alphas, what should f look like? Well, it has to be

symmetric with respect to all these alphas.

So in particular, it has to be-- so since H is complete, we see that, in fact, now you can write

down exactly what f of H is in terms of the parameters described in the problem. Namely, it's

Cr times r factorial times Sr, where Sr is a symmetric polynomial where you look at-- you

choose r of the terms, r of these alphas for each term in this sum. It's just elementary

symmetric polynomial.

And I would like to know, given such a polynomial, how to minimize this number by choosing

the alphas. But if you think about what happens if you fix again everything but two of the

alphas-- so by fixing all of, let's say, alpha 3 to alpha n, we find that-- so as a function in just

alpha 1 and alpha 2, f of H has the following form.

And because it's symmetric, these two B's are actually the same. So if we now vary alpha 1

and alpha 2 but fixing everything else, because alpha 1 plus alpha 2 is constant, I can even

get rid of this linear part. So that linear part is fixed as a constant.

I want to minimize this expression with alpha 1 plus alpha 2, how it's fixed. So there are two

possibilities depending on whether C is positive or negative or, I guess, 0. So now you're here.

So depending if C is positive or negative, it's minimized by either the two alphas equal to each

other or one of the two of alphas should be zero.



The latter cannot occur because we assume minimality. So the first must occur. And hence, by

symmetry, if you apply the same argument to all the other alphas, all the alphas are equal to

each other, which means that H is a simple clique. It's basically an unweighted clique.

So in other words, if this inequality fails for some H, some node weighted H, then it must fail for

a simple clique H. And that's the claim above. Yeah?

AUDIENCE: So in the statement, there are two n's, are those two n's different n's then?

PROFESSOR: OK. Question. There are two n's. Yeah. Thank you. So these are two-- yeah. So these are two

different n's. Great. yeah.

AUDIENCE: I have a question. Which is the node weight such that f of H [INAUDIBLE]?

PROFESSOR: Question is, why can we assume that you can choose H so that f of H is minimized? Its

because once-- OK. So you agreed the first thing you can minimize because the number of

nodes is a positive integer. So if there's a counterexample, choose the minimum

counterexample.

Now, you fixed that number of vertices, and the number of-- then this is an optimization

problem. It's minimizing continuous function with a finite number of variables. So it has a

minimum just by compactness of a continuous function. So I choose that minimizer.

Any more questions? So we have this rather general looking theorem. So in the second part of

today's lecture, after taking a short break, I want to discuss what are some of the

consequences and also variations of that statement up there. And I want to also show you

what the rest of this picture looks like.

So let's continue to deduce some consequences of this theorem up there that tells us that it is

pretty easy to decide linear inequalities between clique densities. Namely, to decide it, just

check the inequalities on cliques.

So as a corollary for each n-- yes, for each n, the extremal points-- so the extremal points of

the convex hull of this set where I record the clique densities overall graphons W. So think

about this set as the higher dimensional generalization of that picture I drew up there.

But no previously we had n equals to 3, and we're still interested in n equals to 3. But in

general, you have this set sitting in this box. And so it's some set. And if I take the convex hull



of the set, what that theorem tells us-- and it requires maybe one bit of extra computation. But

what it tells us is that the extremal points are precisely the points given by W equals to Km for

all m equal to 1.

So evaluate, find what this point is for each m, and you have a bunch of points. And those are

the convex hull. So I'll illustrate by drawing what the points are for the picture over there. But it

essentially follows from Bollobas' theorem with one extra bit of computation to make sure that

all of these are actually extremal points of the convex hull. None of them is contained in the

convex hull of the other points.

So for example, we can also deduce very easily Turan's theorem. So what does Turan's

theorem tell us? It tells us that if the r plus 1 clique density is zero, then the K2 density is at

most 1 minus r. So why does Turan's theorem follow from the above claims?

It should follow because all the data here has to do with clique densities. And everything we

saw so far says that if you just want to understand linear inequalities between clique densities,

it's super easy. Maybe I'll draw the picture for triangles, and then you'll see what it's like.

So the corollary tells us for this picture, corresponding to n equals to 3, what the points, the

extreme point of the convex hull are. So let me let me draw these points for you. So one of

these points is this 1/2 comma 0. So that corresponds to Mantel's theorem.

Now, if you go to the other values of m, you find that those points-- so the extreme points--

they are of the form m minus 1 divided by m, m minus 1 m minus 2 divided by m squared for

positive integers m.

So for m equals to 2, that's the point that we just drew. And the next point-- so next two points,

one third and one fourth, they are at, if you plug it in-- thank you. 2/3 and 3/4. They

correspond to 2/9 and 3/8.

So let me show you where these points are. So they are at here and over there. And you have

this sequence of points going up. So this is the convex hull. And from that information, you

should already be able to deduce Mantel's theorem because this right half is not part of this

convex hull. So that's what Mantel's theorem. And similarly, the deduction to Turan's theorem

also follows by a similar logic.

OK. So you have this sequence of points. Now, it happens that all of these points lie on a

curve. So let me try to draw what this extra curve is. So there is some curve, like that. So



there's some curve like that. The equation of this curve happens to be x 2x minus 1. And

because the regions is contained in the convex hull, the yellow points, it certainly lies above

this convex red curve.

You've seen this red curve before. From where? So what is that saying? It's saying that if your

edge density is beyond above one half, then you have some lower bound on the triangle

density. Where have we seen this before? Problem set one. There was a problem on problem

set one that says exactly this inequality. So go back and compare what it did.

But of course, the convex hull result tells you even a little bit more-- namely, that you can draw

line segments between these convex hull points. So you have some polygonal reason that

lower bounds the actual region.

So what is the actual region? So leaving you in suspense. So let me tell you what the actual

region is now. So it turns out to be actually-- it's beautiful and it's quite deep, that the region is

now completely understood. And it's a fairly recent result. It's only about 10 years ago roughly

that there are some concave curves. The sequence of scallops going up to the top right

corner.

And this is now understood to be the complete region between these lower and upper curves.

So this is the complete set of feasible regions for edge versus triangle densities. So this lower

curve is a difficult result due to Razborov.

And I want to give you a statement what this curve is. And Razborov came up with this

machinery, this technique, known by the name of flag algebra. So actually, he came up with

this name. So I won't really tell you what flag algebra is, but it's kind of a computerized way of

doing Cauchy-Schwarz inequalities.

So many of our proofs for this graph through inequalities, they go through some kind of

Cauchy-Schwarz or sum of squares equivalently. But there are some very large or difficult

inequalities you can also prove this way. But it may be difficult to find exactly what is the actual

inequality-- the chain of Cauchy-Schwarz or the sum of squares that you should write down.

So this machinery, flag algebra, is a language, is a framework for setting up those sum of

squares inequalities in the context of proving graph theoretic inequalities. So it can be used in

many different ways. And notably, a lot of people have used serious computer computations. If

I want to prove something is true, I plug it into what's called a semidefinite program that allows



me to decide what kinds of Cauchy-Schwarz inequalities I should be applying to derive the

result I want to prove.

So that's what flag algebra roughly is. So what Razborov proved is the following. So

Razborov's theorem, which is drawn up there-- that's the lower curve-- is that for fixed-- so for

a fixed value of edge densities, if it lies between two specific points, drawn above, the

minimum value of triangle density with a fixed value of edge density is attained via the

following construction.

It's attained by the step function of the graphon corresponding to a K clique. So a complete

graph on K vertices with node weights alpha 1 through alpha K summing to 1, and such that

the first K minus 1 of the node weights are equal. And the last one is Smaller

All right. And the point here is that if you are given a specific edge weight, edge density, then

there is a unique choice of these alphas that achieve that edge density. And that is the

graphon you should use that minimizes the triangle density-- describes the lower curve.

So you can write down specific equations for the lower curve, but it's not so important. This is

a more important description. These are the graphs that come out. And what is something that

is actually quite-- I mean, why you should suspect this theorem is difficult is that unlike Turan's

theorem-- so Turan's theorem, which corresponds to all those discrete points. In Turan's

theorem, the minimizer is unique.

I tell you the number-- I tell you that the edge density is 2/3, and I want you to minimize the

number of triangles. Not from Turan's theorem, but it turns out that this extremal point is

unique. Essentially corresponds to a complete three partite graph.

But for the intermediate values, the constructions are not unique. So unless the K2 density is

exactly of this form, the minimizer is not unique. And the reason why it is not unique is that you

can replace-- so what's going on here? So you have this graphon. Alpha 1, alpha 2, alpha 3.

I can replace this graphon here by any triangle free graphon of the same edge density. And

there are lots and lots of them. And the non-uniqueness of the minimizer makes this

minimization problem much more difficult.

So Razborov proved this result for edge versus triangle densities. And this program was later

completed to K4, and more generally, to Kr So K4 is due to a result of Nikiforov, and the Kr



result of Reiher So a similar picture. It's more or less that picture up there but with the actual

numbers shifted. Instead of edge versus triangle, it is now edge versus Kr.

I should say that it's worth-- so this is a picture that I drew up there, and this is roughly the

picture that you see in textbooks-- how they draw these scallops. I once plotted what this

picture looks like in Mathematica, just to see for myself where the actual graph is. And it

doesn't actually look like that.

The concaveness is very subtle. If you draw it on a computer, they look like straight lines. So in

some sense, that's a cartoon. So the concaveness is caricatured. So it's not actually as

concave as it is drawn, but I think it's a good illustration of what's happening in reality.

Questions?

So on one hand, every polynomial graph inequality-- so what do I mean by a polynomial graph

inequality? So something like-- suppose I have some inequality of this form. And I want to

know, is this true? It turns out that I don't actually need these squares in some sense because

I can always replace them by what happens if you take disjoint unions.

So all I'm trying to say is that every polynomial graph inequality can be written as a linear

graph inequality of densities. But nevertheless, this still captures a very large class of graph

inequalities. And if I just give you some arbitrary one that is not of that form, it can be often

very difficult to decide whether it is true or not.

So over here it's not so hard. You just plug it in, and then you can decide whether it is true. I

mean, it turns out to decide whether this inequality is true, it's really a polynomial. And then

you just check. It's not too hard to do.

But in general, suppose I give you an inequality of this form. So some generalized version of a

linear inequality, like that. It's even decidable if the inequality holds. Decidable in the sense of

Turing halting problem. So is there some computer program give you this inequality is true? I

wonder, can you write a computer program that decides the truthfulness?

It turns out-- OK. So before telling you what the answer is, let me just put it in some context.

What about more classical questions before we jump into graph theory? If I give you some

polynomial p over the real numbers and I want to check is that true-- so this is not too hard. So

this is not too hard.

But what if you have multivariate for all real? Does anyone know the answer? Is this



decidable? So as you can imagine, these things were studied pretty classically. And so it turns

out that every first word or theory over the real numbers is decidable. So this is a result of

Tarski.

In particular, such questions are decidable. And in fact, there is a very nice characterization of-

- so there's a result called Artin's theorem that tells you that every such polynomial, if it is non-

negative, then if and only if, it can be written as a sum of squares of rational functions. So

there's a very nice characterization of positiveness of polynomials over the reals.

But now I change the question and I ask, what about over the integers? So if I give you a

polynomial, is it always non-negative if I have integer entries? Is this decidable? So turns out,

this is not decidable.

And this is related. So it's more or less the same as the undecidability of Diophantine

equations, which is also known as Hilbert's tenth problem. So there is no computer program

where we give you a Diophantine equation and solves the question or even tells you whether

the equation has a solution.

And this is part of what makes number theory, makes Diophantine equations interesting. So

it's undecidable, but we talk about it. So undecidability is a famous result due to Matiyasevich.

So what about graph theoretic inequalities? So is a graph homomorphism inequality

decidable? I mean, the question you should ask yourself is, which one is it closer to? Is it

closer to deciding the positiveness of polynomials over reals or over integers?

On one hand, you might think that it is more similar to the question of polynomials over real.

So first of all, why it's similar to polynomials, I hope that's at least intuitively-- nothing's a proof,

but intuitively it feels somewhat similar to polynomials. And all of these guys you can write

down as polynomial-like quantities. And we saw this earlier in the proof of Bollobas' theorem.

So you might think it's similar to reals because, well, for graphons, you can take arbitrary real

weights. So it feels like the reals. So it turns out, due to a theorem of Hatami and Norine, that

the answer is no. It is not decidable.

And roughly the reason has to do with this picture. Even though the space of graphons is not

discrete, it's a very continuous object, even if you just look at this picture here, you have a

bunch of discrete points along this scallop. So here's a potential strategy for proving the



undecidability of graph homomorphism inequalities.

I start by just restricting myself to this curve. I restrict myself to the red curve. If you restrict

yourself to the red curve, than the set of possibilities-- it's now a discrete set, which is like the

positive integers. And now I start with-- I can reduce the problem to the problem of decidability

of integer inequalities.

I start with an integer inequality. I convert it to an inequality about points on this red curve. And

that turns into a corresponding graph inequality, which must then be undecidable. So this

undecidability result is related to the discreteness of points on this red curve.

So general undecidability results are interesting. But often, we're interested in specific

problems. So I give you some specific inequality and ask, is it true? And there are a lot of

interesting open problems of that type. My favorite one, and also a very important problem in

extremal graph theory, is known as Sidorenko's conjecture.

So the main cause conjecture-- it's a conjecture-- says that if H is bipartite, then the H density

in G or W is at least the edge density raised to the power of the number of edges of H. So we

saw one example of this inequality when H is the fourth cycle. So when we discussed quasi-

randomness we saw that this is true.

And in the homework, you'll have a few more-- so in the next problem homework, you'll have a

few more examples where you're asked to show this inequality. It is open. We don't know any

counterexamples. And the first open example, it's known as something called a Mobius strip.

So the Mobius strip graph, which is a fancy name for the graph consisting of taking a K55 and

removing a 10 cycle. So that's the graph. It is open whether this inequality holds for that graph

there. And this is something of great interest. So if you can make progress on this problem,

people will be very excited.

Now, why is this called a Mobius strip? This took me a while to figure out. So there are many

different interpretations. I think the reason why it's called a Mobius strip is that if you think

about the usual simplicial complex for a Mobius strip. And then this is the face vertex incidence

bipartite graph.

So five vertices, one for each face. Five vertices, one for each vertex. And if you draw the

incident structure, that's the graph. I'm not sure if this topological formulation will help you

improving Sidorenko's conjecture or disprove it, but certainly that that's why it's called a



Mobius strip. And there are some people believe who believe that it may be false. So it's still

open. It's still open.

The one last thing I want to mention is that even though the inequality written up there in

general is undecidable, if you only want to know whether this inequality is true up to an epsilon

error, then it has decidable. In fact, there is an algorithm that I can tell you.

So there exists an algorithm that decides, for every epsilon, that resides-- so I just want to

know whether that inequality is true. But I allow an epsilon error, meaning it decides correctly

this inequality is true up to an epsilon error for all G or outputs a G such that the sum here is

negative.

So up to an epsilon of error, I can give you an algorithm. And the algorithm follows-- I mean,

it's not too hard to describe. Basically, the idea is that if I take an epsilon regular partition, then

all the data about edge densities can be encoded in the epsilon regular partition. So apply

even the weak regularity lemma is enough.

And then we can test the bounded number of possibilities with some fixed number of parts.

And by the counting lemma, you lose some epsilon error if I check over all weighted graphs on

some bounded number of parts whose edge weights are multiples of epsilon, let's say,

whether this is true. If it's true, then it is true with this epsilon. If it is false, then I can already

output a counterexample.

So there is only finitely many possibilities as a result of weak regularity lemma. And therefore,

this version here is decidable. So today, we saw many different graph theoretic inequalities

and some general results. And there are lots of open problems about graph homomorphism

inequalities.

So this concludes roughly the extremal graph theory section of this course. So starting from

next lecture, we'll be looking at Roth's theorem. So looking at the Fourier analytic proof of

Roth's theorem.


