
MITOCW | 26. Sum-product problem and incidence geometry

YUFEI ZHAO: Today we want to look at the sum product problem. So for the past few lectures, we've been

discussing the structure of sets under the addition operation. Today we're going to throw in

one extra operation, so multiplication, and understand how sets behave under both addition

and multiplication.

And the basic problem here is, can it be the case that A plus A, A times A, which is,

analogously, the set of all pairwise products of elements from A-- can these two sets be

simultaneously small, that is, the same for some single A? Can we have it so that A plus A and

A times A are simultaneously small? For example, it's easy to make one of them small.

We've seen examples where if you take A to be an arithmetic progression, then A plus A is

more or less as small as it gets. But for such an example, you see A times A is pretty large. It's

actually not so clear how to prove how large it

Is. And there are some very nice proofs. And this problem has actually been more or less

pinned down. But the short version is that A times A has size close to its maximum possible.

So it turns out the size of A times A is almost quadratic. So this number is actually now known

fairly precisely. So this problem of determining the size of A times A for the interval 1 through

N is known as the Erdos multiplication table problem.

So if you take an N by N multiplication table, how many numbers do you see in the table? So

that turns out to be sub-quadratic, but not too sub-quadratic. So this problem has been more

or less solved by Kevin Ford. And we now know a fairly precise expression, but I don't want to

focus on that. That's not the topic of today's lecture. This is just an example.

Alternatively, you can take A times A to be quite small by taking A to be a geometric

progression. Then it's not too hard to convince yourself that A plus A must be fairly large in

that case. And the geometric progression doesn't have so much additive structure, so A plus A

will be large.

So can you make A plus A and A times A simultaneously small? So there's this conjecture that

the answer is no. And this is a famous conjecture in this area, known as the Erdos similarity

conjecture on the sum product problem, which states that for all finite sets of real numbers,

either A plus A or A times A has to be close to quadratic size.



So that's the conjecture. It's still very much open. Today I want to show you some progress

towards this conjecture via some partial results. And it will use a nice combination of tools from

graph theory and incidence geometry, so it nicely ties in together many of the things that we've

seen in this course so far.

So Erdos and Szemeredi proved some bound, which is like 1 plus c for some constant c.

Today we'll show some bounds for somewhat better c's. So you'll see.

The first tool that I want to introduce is a result from graph theory known as the "crossing

number inequality." So you know that planar graphs are graphs where you can draw on the

planes so that the edges do not cross. And there are some famous examples of non-planar

graphs, like K5 and K 3, 3.

But you can ask a more quantitative question. If I give you a graph, how many crossings must

you have in every drawing of this graph? And the crossing number inequality provides some

estimate for such a quantity.

So given the graph G, denoted by cr, so crossing of G, to be the minimum number of

crossings in a planar drawing of G. There is a bit of subtlety here, where by a planar drawing,

do I mean using line segments or do I mean using curves? It's actually not clear how it affects

this quantity here. That's a very subtle issue.

So for planar graphs, there's a famous result that more or less says if a planar graph can be

drawn using continuous curves, then it can be drawn using straight lines. But the minimum

number of crossings, the two different ways of drawings, they might end up with different

crossing numbers. But for the purpose of today's lecture, we'll use a more general notion,

although it doesn't actually matter for today which one we'll use-- so planar drawing using

curves.

Draw the graph where edges are continuous curves. How many crossings do you get? The

crossing is a pair of edges that cross.

You can ask-- it's just a cross over point that can-- it doesn't matter. So there are many

different subtle ways of defining these things. They won't really come up for today's lecture.

The crossing number inequality is a result from the '80s, which give you a lower-bound

estimate on the number of crossings. If G is a graph with enough edges-- the number of



edges is, let's say, at least four times the number of vertices-- then the number of crossings of

every drawing of G is at least the number of edges cubed divided by the number of vertices

squared. And there's an extra constant factor, which is some constant. So the constant does

not depend on the graph.

In particular, if it has a lot of edges, then every drawing of G must have a lot of crossings. So

the crossing number inequality was proved by two separate independent works, one by Ajtai,

Chvatal, Newborn, Szemeredi and the other by Tom Leighton, our very own Tom Leighton. So

let me first give you some consequences of this theorem, just for illustration.

So if you have an n-vertex graph with a quadratic number of edges, then how many crossings

must you have? You plug in these parameters into the theorem. See that it has necessarily n

to the 4th crossings.

But if you just draw the graph in some arbitrary way, you have at most n to the 4 crossings,

because a crossing involves four points. So when you have a quadratic number of edges, you

must get basically the maximum number of crossings. The leading constant term factor is an

interesting problem, which we're not going to get into.

Let's prove the crossing number inequality. First, the base case of the crossing number

inequalities is when you can draw a graph with no crossings. And those are planar graphs.

So for every connected planar graph, if it has at least one cycle-- and you'll see why in a

second, why I say this-- if with at least one cycle, so that's not a tree, we must have that 3

times the number of faces is at most 2 times the number of edges. So here, we're going to use

the key tool being Euler's formula, which we all know as the number of vertices minus the

number of edges plus the number of faces equals to 2. We're here for face, because I draw a

planar graph, and so I count the faces. Here there are two faces, outer face, inner face, count

edges and vertices, so you have Euler's formula up there.

And plug in Euler's formula for a planar graph with at least one cycle, so we can obtain this

consequence over here, because every face is adjacent to at least three edges. If you go

around the face, you see these three edges, and every edge is counted exactly twice, is

adjacent to exactly two faces. So you do the double counting, you get that inequality up there.

So plugging these two into Euler gets you that inequality up there. Plugging these two into

Euler, we get that the number of edges is almost 3 times the number of vertices minus 6. So



for this leaves that inequality, but plug it into Euler, plug in this into Euler, you get this. So we

have that the number of edges is at most 3 times the number of vertices for every graph G.

So here, we require that the graph is planar and has at least one cycle, but even if we drop the

condition that it has at least one cycle but just require that it's planar, every planar graph G

satisfies this inequality over here. So in other words, you might have heard before, in a planar

graph, the average degree of a vertex is almost 6. So in particular, the crossing number of a

graph G is positive if the number of edges exceeds 3 times the number of vertices. It's not

planar, so it has at least one crossing every drawing.

And by deleting an edge from each crossing, we get a planar graph. You draw the graph. You

have some crossings.

You get rid of an edge associated with each drawing. Then you get a planar graph. If you look

at this inequality and you account for the number of edges that you deleted, we obtain then

the inequality that the number of edges minus the number of crossings is at least 3 times the

number of vertices. So we obtain the inequality that the lower bounds in number of crossings

as the number of edges minus 3 times the number of vertices, this one.

So that's some lower bound on the crossing number. It's not quite the bound that we have

over there. And in fact, if you take a graph with a quadratic number of edges, this bound here

only gives you quadratic lower bound on the crossing number, some lower bound. But it's not

a great lower bound.

And we would like to do better. So here's a trick that is a very nice trick, where we're going to

use this inequality to upgrade it to a much better inequality, bootstrap it to a much tighter

inequality. So this involves the use of the probabilistic method.

Let me denote by p some number between 0 and 1, to be decided later. And starting with a

graph G, let's let G prime, with vertices and edges being V prime and E prime, be obtained

from G by randomly deleting some of the vertices, or rather randomly keeping each vertex

with probability p, independently for each of these vertices. So you have some graph G.

I keep each vertex with probability p. And I delete the remaining vertices. And I get a smaller

graph. I get some induced subgraph.

And I would like to know what can we say about the crossing number of the smaller graph in

comparison to the crossing number of the original graph? For the smaller graph, because it's



still a planar graph so G prime-- so it's still a graph. It's not a planar graph, but it's still a graph,

so G prime still satisfies this inequality up here.

So G prime still satisfies that the number of crossings in every drawing of G prime is at least

the number of edges of G prime minus 3 times the number of vertices of G prime. But note

that G prime is a random graph. G was fixed, given. G prime is a random graph.

So let's evaluate the expectation of both quantities, left-hand side and right-hand side. If this

inequality is true for every G prime, the same inequality must be true in expectation. Now what

do we know about all the expectations of each of these quantities?

The number of vertices in expectation-- that's pretty easy. So this one here is p times the

original number of vertices. The number of edges is also pretty easy. Each edge is kept if both

endpoints are kept. So this expectation on the number of edges remaining is also pretty easy

to determine.

The crossing number of the new graph-- that I have to be a little bit more careful of, because

when you look at the smaller graph, maybe there's a different way to draw it that's not just

deleting the sum of the vertices from the original graph. So even though the original graph

might have a lot of crossings, when you go to a subgraph, maybe there's a better way to draw

it. But we just need an inequality in the right direction. So we are still OK.

And I claim that the crossing number of G prime is in expectation at most p to be 4th times the

crossing number of G. Because if you keep the same drawing, then the expected number of

crossings that are kept-- each crossing is kept if all four of its end points are kept. So each

crossing is kept with probability p to the 4th.

So you can draw it in expectation with this many crossings. Maybe it's much less. Maybe

there's a better way to draw it, but you have an inequality going in the right direction.

Looking at that inequality up there in yellow, we find that the crossing number of G is at least p

to the minus 2 E minus 3p to the minus 3. And this is true for every value of p between 0 and

1. So now you pick a value of p that works most in your favor.

And it turns out you should do this by setting these two equalities to be roughly equal to each

other. So setting p between 0 and 1 so that 4 times the-- basically, set these two terms to be

roughly equal to each other. And then we get that this quantity here is at least the claimed



quantity, which is E cubed over V squared up to some constant factor, which I don't really care

about.

In order to set p, I have to be a little bit careful that p is between 0 and 1. If you set p to be 1.2,

this whole argument doesn't make any sense. So this is OK.

So we know p is at most one as long as E is at most 4p. I mean, the 4 here is not optimal, but

if 4 were 2, then it's not true. So if E is 2V, you can have a planar graph, so you shouldn't have

a lower bound on the crossing number.

So this is the proof of the crossing number inequality. As I said, if you have lots of edges, then

you must have lots of crossings. Any questions?

So let's use the crossing number inequality to prove a fundamental result in incidence

geometry. Incidence geometry is this area of discrete math that concerns fairly basic-sounding

questions about incidences between, let's say, points and lines. And here's an example.

So what's the maximum number of incidences between endpoints and end lines, where by

"incidence" I mean if p-- so curly p-- is a set of points, and curly l is a set of lines, then I write I

of p and l to be the number of pairs, one point, one line, such that the point lies on the line. So

I'm counting incidences between points and lines. You can view this in many ways. You can

view it as a bipartite graph between points and lines, and we're counting the number of edges

in this bipartite graph.

So I give you end points, end lines. What's the maximum number of incidences? It's not such

an obvious question. So let's see how we can approach this question.

But first, let me give you some easy bounds. So here's a trivial bound-- so here, I want to know

if I give you some number of points, some number of lines, what's the maximum number of

incidences. So a trivial bound is that the number of incidences is at most the product between

the number of points and the number of lines.

One point, one line, at most one incidence. So that's pretty trivial. We can do better.

So we can do better because, well, you see, let's use this following fact, that every line-- so

every pair of points determine at most one line. I have two points. There's at most one line that

contains those two points.



Using this fact, we see that the number of-- so let's count the number of triples involving two

points and one line such that both points lie on the line. So how big can this set be? So let's try

to count it in two different ways.

On one hand, this quantity is at most the number of points squared, because if I give you two

points, then they determine this line-- so at most the number of points squared. But on the

other hand, we see that if I give you a line, I just need to count now the number of-- let me

also require that these two points are distinct. So if I give you a line, I now need to count the

number of pairs of points on this line.

So I can enumerate over lines and count line by line how many pairs of points are on that line.

So I get this quantity over here. On each line, I have that contribution.

And now, using Cauchy-Schwartz inequality, we find that this squared term is at least the

number of incidences divided by the number of lines. And the remaining minus 1 term

contributes just to the number of incidences. So the first is by Cauchy-Schwartz.

So putting these two inequalities together, we get some upper bound on the number of

incidences. If you have to invert this inequality, you will get that the number of incidences

between points and lines is upper bounded by the number of points times the number of lines

raised to power 1/2 plus the number of lines. So that's what you get from this inequality over

here.

By considering point-line duality-- so whenever you have this kind of setup involving points and

lines, you can take the projected duality and transform the configuration into-- lines into points

and points into lines, and the incidences are preserved. So I also have an inequality. By

duality-- I also have an inequality where I switch the roles of points and lines.

So I is already the numbers. I don't need to put an extra absolute value sign. So the number of

points and lines is upper bounded by the number of lines times the square root of a number of

points plus an extra term, just in case there are very few lines. So these are the bounds that

you have so far.

And the only thing that we have used so far is the fact that every two points determine at most

one line, and every two lines meet at at most one point. So these are the bounds that we get.

And in particular, for end points and end lines, we get the number of incidences is-- they go off

n to the 3/2.



This should remind you of something we've done before. So in the first part of this course,

when we were looking at extremal numbers, where did 3/2 come up?

AUDIENCE: [INAUDIBLE] like C4?

YUFEI ZHAO: C4, yeah. So if you compare this quantity to the extremal number of C4, it's also n to the 3/2.

And in fact, the proof is exactly the same. All we're using here is that the incidence graph is

C4-free

So in fact, this is an argument about C4-free graphs. So this fact here, every two points

determine at most one line, is saying that if you look at the incidence graph, there's no C4.

That's all we're using for now. Any questions?

So is this the truth? Now, back when we were discussing the extremal number for C4-free

graphs, we saw that, in fact, this is the correct order. And what was the construction there?

So the construction also came from incidences, but incidences of taking all lines and points in

the finite field plain, Fq squared. If you look at all the lines and all the points in a finite field

plain, then you get the correct lower bound for C4. But now we are actually working in the real

plane, so it turns out that the answer is different when you're not working the finite field.

We're going to be using the topology of the real plane. And we're going to come up with a

different answer. So it turns out that the truth for the number of maximum number of

incidences in the plane, for points and lines in the real plane, is not exponent 3/2, but turns out

to be 4/3.

And this is a consequence of an important result in incidence geometry, a fundamental result,

known as the Szemeredi-Trotter theorem. So the Szemeredi-Trotter theorem says that the

number of incidences between points and lines is upper bounded by this function where you

look at the number of points times the number of lines, and each raised to power 2/3 and plus

some additional terms, just in case there are many more lines compared to points or way

more points compared to lines.

So that's the Szemeredi-Trotter theorem. And as a corollary, you see that n points, n lines give

you at most n to the 4/3 incidences, in contrast to the setting of the finite field plain, where you

can get n to the 3/2 incidences. So somehow, we have to use the topology of the real plane for

this one.



And I want to show you a proof-- turns out not the original proof, but it's a proof that uses the

crossing number inequality to prove Szemeredi-Trotter theorem. You see, in crossing number

inequality, we are using the topology of the real plane. Where?

AUDIENCE: Euler's formula.

YUFEI ZHAO: Euler's formula, right. So the very beginning, Euler's formula has to do with the topology of the

real plane. Now, this bound turns out to be tight. So let me give you an example showing that

the 4/3 exponent is tight.

And the example is, if you take p to be this rectangular grid of points, and L to be a set of

lines-- so I'm going to write the lines by their equation, where the slope is an integer from 1

through k and the y-intercept is an integer from 1 through k squared. And you see here that

every line in L contains exactly k points from P. So we got in total k to the 4th incidences,

which is on the order of n to the 4/3. So n to the 4/3 third is the right answer.

Now let me show you how to prove Szemeredi-Trotter theorem from the crossing number

inequality. It turns out to be a very neat application that's almost a direct consequence once

you set up the right graph. And the idea is that we are going to draw a graph based on our

incidence configuration.

So first, just to clean things up a little bit, let's get rid of lines in L with 1 or 0 points in P. So this

operation doesn't affect the bounds. So you can check. These lines don't contribute much to

the incidence bound, and only contributes to this plus L. So you can get rid of such lines.

So let's assume that every line in L contains at least two points from P. And let's draw a graph

based on this incidence structure. So if I have-- so suppose these are my points and lines.

I'll just draw a graph where I keep the points as the vertices, and I put in an edge. It's a finite

edge that connects two adjacent points on the same line. So I get some graph.

Let me make this graph a bit more interesting. So I get some graph. And how many crossings,

at most, does this graph have?

So the number of crossings of G is at most the number of lines squared, because a crossing

comes from two lines. So here, you have a crossing. A crossing comes from two lines. Number

of crossings is at most number of lines squared.



On the other hand, we can give a lower bound to the number of crossings from the crossing

number inequality. And to do that, I want to estimate the number of edges. And this is the

reason why I assume every line contains at least two points from P, because a line with now k

incidences gives k minus 1 edges.

And if k is at least 2, then k minus 1 is at least k over 2, let's say. I don't care about constant

factors. So by crossing number inequality, the number of crossings of G is at least the number

of edges cubed over the number of vertices squared, which is at least the number of

incidences of this configuration cubed over the number of points squared. Actually, number of

vertices is the number of points. And number of edges, by this argument here, is on the same

order as the number of incidences.

Putting these two facts together, we see-- there was one extra hypothesis in crossing number

inequality. Provided that this hypothesis holds, which is that the number of incidences is at

least 8 times the number of points, so that the original hypothesis holds. So putting everything

together, and rearranging all of these terms, and using upper and lower bounds on the

crossing number, we find that the number of incidences is upper bounded by-- the main term

you see is just coming from these two, but there are a few other terms that we should put in,

just in case this hypothesis is violated, and also to take care of this assumption over here, so

adding a couple of linear terms corresponding to the number of points and the number of

lines.

If this hypothesis is violated, then the inequality is still true. So this proves the crossing

numbers inequality. Any questions?

So we've done these two very neat results. The question is, what do they have to do with the

sum product problem? So I want to show you how you can give some lower bound on the sum

product problem using Szemeredi-Trotter theorem.

So it turns out that the sum product problem is intimately related to incidence geometry. And

the reason-- you'll see in a second precisely why they're related, but roughly speaking, when

you have addition and multiplication, they're are kind of like taking slope and y-intercept of an

equation of a line. So there are two operations that are involved. So turns out, many incidence

geometry problems can be set up and a way-- so many sum product problems can be set up

in a way that involves incidence geometry.

And a very short and clever lower bound to the sum product problem was proved by Elekes in



the late '90s. So he showed the bound that if you have a subset of finite, subset of reals, then

the sum set size times the product set size is at least A to the 5/2. As a corollary, one of these

two must be fairly large. The max of the sum set size and the product set size is at least a to

the 5/4.

Let me show you the proof. I'm going to construct a set of points and a set of lines based on

the set A. And the set of points in R2 is going to be pairs x comma y, where the horizontal

coordinate lies in the sum set, A plus A, and the vertical coordinate lies in the product set, A

times A. And a set of lines is going to be these lines-- y equals to a times x minus a prime,

where a and a prime lie in A.

So these are some points and some lines. And I want to show you that they must have many

incidences. So what are the incidences?

So note that the line y equals to a times x minus a prime-- it contains the points a prime plus b

and ab, which lies in P for all b in A. You plug it in. If you plug in a prime plus b into here, you

get ab. And this point lies in P, because the first coordinate is the sum set.

The second coordinate lies in the product set. So each line in L contains many incidences. So

each line in L contains a incidents. So this line, each line in L contains a incidences.

Also, we can easily compute the number of lines and the number of points. The number of

points is A plus A size times the size of A times A. And the number of lines is just the size of A

squared.

So by Szemeredi-Trotter, we find that the number of incidences is lower bounded by noting

this fact here. We have many incidences. So the number of lines, each line contributes a

incidences.

But we also have an upper bound coming from the Szemeredi-Trotter theorem. So plugging in

the upper bound, we find that you have-- so now I'm just directly plugging in the statement of

Szemeredi-Trotter. The main term is the first term. You should still check the latter two terms,

but the main term is the first term.

So plugging in the values for P and L, we find this is the case, plus some additional terms,

which you can check are dominated by the first term. So let me just do a big O over there.

Now you put left and right together, and we could obtain some lower bound on the product of



the sizes of the sum set and the product set, thereby yielding allocations.

So this is some lower bound on the sum product problem. And you see, we went through the

crossing number inequality to prove Szemeredi-Trotter, a basic result in incidence geometry.

And viewing sum product as an incidence geometry problem, one can obtain this lower bound

over here. Any questions?

I want to show you a different proof that was found later, that gives an improvement. And

there's a question, can you do better than 5/4? So it turns out that there was a very nice result

of Solymosi sometime later that gives you an improvement.

Solymosi proved in 2009 that if A is a subset of positive reals, then the size of A times A

multiplied by the size of A plus A squared is at least size of A to the 4th divided by 4 ceiling log

of the size of A, where the log is base 2. So don't worry about the specific constants.

A being in the positive reals is no big deal, because you can always separate A as positive and

negative and analyze each part separately. So as a corollary to Solymosi's theorem, we obtain

that for A, a subset of the reals, the sum set and the product set, at least one of them must

have size at least A raised to 4/3 divided by 2 times log base 2 size of A raised to 1/3 third. So

basically, A to the 4/3 minus little one in the exponent, so better than before. And this is a new

bound.

I want to note that in this formulation, where we are looking at lower bounding this quantity

over here, this is tied up to logarithmic factors, by considering A to be just the interval from 1 to

n. If A is the interval from 1 to n, then the left-hand side, A plus A, is around size n. So you

have n squared. And A times A is also, I mentioned, around size n squared. So this inequality

here is tight. The consequence is not tight, but the first inequality is tight.

So in the remainder of today's lecture, I want to show you how to prove Solymosi's lower

bound. And it has some similarities to the one that we've seen, because it also looks at some

geometric aspects of the sum product problem. But it doesn't use the exact tools that we've

seen earlier.

It does use some tools that were related to the lecture from Monday. So last time, we

discussed this thing called the "additive energy." You can come up with a similar notion for the

multiplication operation, so the "multiplicative energy," which we'll denote by E sub, with the

multiplication symbol, A. So the multiplicative energy is like the additive energy, except that



instead of doing addition, we're going to do a multiplication instead.

So one way to define it is the number of quadruples such that there exists some real lambda

such that a, comma, b equals to lambda c, comma, d. So basically the same as additive

energy, except that we're using multiplications instead. By the Cauchy-Schwartz inequality--

and this is a calculation we saw last time, as well-- we see that if you have a set with small

product, then it must have high multiplicative energy.

So last time, we saw small sum set implies high additive energy. Likewise, small product set

implies high multiplicative energy. In particular, the multiplicative energy of A, you can rewrite it

as sum over all elements x in the product set of the quantity, which tells you the number of

ways to write x as a product, this number squared and then summed over all x.

By Cauchy-Schwartz, we find that this quantity here is lower bounded by the size of A to the

4th divided by the size of A times A. So to prove Solymosi's theorem, we are going to actually

prove a bound on the energy, instead of proving it on the set. We're going to prove it on the

energy.

So it suffices to show that the multiplicative energy is at most 4 times the sum set size times--

so let me divide the energy by log of A. So when you plug this into this inequality, it would

imply that.

So it remains to show this inequality over here upper bounding the multiplicative energy.

There's an important idea that we're going to use here, which is also pretty common in

analysis, is that instead of considering that energy sum here, we're going to consider a similar

sum, except we're going to chop up the sum into pieces according to how big the terms are,

so that we're only looking at contributions of comparable size. And so this is called a "dyadic

decomposition."

The idea is that we can write the multiplicative energy similar to above, but instead of summing

over x in the product set, let me sum over s in the quotient set. So you can interpret what this

quotient A is. This is the set of all A divided by B, where A and B are in A. A is a set of positive

reals, so I don't need to worry about division by 0.

So what remains, then, is the intersection of s times A and A squared. Remember, s times A is

scaling each element of A by s. So we have this quantity over here.

So I want to break up the sum into a bunch of smaller sums, where I want to break up the sum



according to how big the terms are, so that inside each group, all the terms are roughly of the

same size. And easiest way to do this is to chop them up into groups where everything inside

the same collection differs by at most a factor of 2. So that's why it's called a dyadic

decomposition, going from 0 to-- the maximum possible here is basically A.

So let's look at i going from 0 to log base 2 of A. So this is the number of bins. And partition the

sum into sub-sums where I'm looking at the i-th sub-sum consisting of contributions involving

terms with size between 2 to the i and 2 to the i plus 1. Break up the sum according to the

sizes of the summands.

By pigeonhole principle, one of these summands must be somewhat large. So by pigeonhole,

there exists a k such that setting D to be the s such that that corresponds to the k-th term in

the sum. So one has that this sum coming from just contributions from D is at least-- so it's at

least the multiplicative energy divided by the number of bins.

All of that many bins-- by pigeonhole, I can find one bin that's a pretty large contribution to the

sum. And the right-hand side, we can upper bound each term over here by 2 to the 2k plus 2,

and the number of terms as the size of D. Let me call the elements of D S1 through Sm, where

S1 through Sm are sorted in increasing order.

Now let me draw you a picture of what's going on. Let's consider for each element of D, so for

each i and m, let's consider the line given by the equation y equals to s sub i times x. Let me

draw this picture where I'm looking at the positive quadrant, so I have a bunch of points in the

positive quadrant.

And specifically, I'm interested in these points whose coordinates, both coordinates are

elements of A. And I want to consider lines through points of A, but I want to consider lines

where it intersects this A cross A in the desired number of points. And we find those set, and

then let's draw these lines over here, where this line here, L1 has slope exactly S1, and L2,

L3, and so on.

I want to draw one more line, which is somewhat auxiliary, but just to make our life a bit easier.

Finally, let's let L of m plus 1 be the vertical line, or rather be the vertical ray, which goes to the

minimum element of A above Lm. So it's this line over here. That's Lm plus 1.

So in A cross A, I draw a bunch of lines. So now all the lines-- so all these lines involve some

point of A and the origin, but I don't draw all of them. I draw a select set of them. And what we



said earlier says that the number of lines, the number of points on each of these strong lines,

is roughly the same for each of these lines.

Let's let capital L sub j denote the set of points in A cross A that lie on the j-th line. So that's

L1, L2, and so on. I claim that if you look at two consecutive lines and look at the sum set of

the points in A cross A that intersect, you're looking at two lines, and you're adding up points

on those two lines. So you form a grid.

So you end up forming this grid. And the number of points on this grid is precisely the product

of these two point sets. Moreover, the sets Lj plus L sub j plus 1 are disjoint for different j.

And this is where we're using the geometry of the plane here. Because the sum of L1 and L2

lies in the span, the sum of L2 and L3 in a different span, so they cannot intersect. So they lie

in-- so since they span disjoint regions, L1 plus L2 lies here, L2 plus L3 lies there, and so on.

But they're all disjoint.

Now let's put everything that we know together. Remember, the goal is to upper bound the

multiplicative energy as a function of the sum set. So in other words, we want to lower bound

the sum set. So I want to show you that this A plus A has a lot of elements. There's a lot of

sums.

And I have a bunch of disjoint contributions to these sums. So let's add up those disjoint

contributions to the sums. You see that the size of A plus A squared is the same as the size of

the product set A plus A.

So this is Cartesian product. Here is-- this is a Cartesian product, in other words, the grid that

is strong up there. I add this product to itself. So I should get the same set here.

But how big is this sum set? That grid, that lattice grid added to itself, how big should it be? I

want to lower bound the number of sums.

And the key observation is up there. We can look at contributions coming from distinct spans.

In particular, this sum here, so this sum set here, size is lower bounded by these distinct Lj

plus L j plus 1's. I threw away a lot. I only keep the lines on the L's, and I only consider sums

between consecutive L's. That should be a lower bound to the sum set of the grid with itself.

But you see, and here, we're using these different-- for different j's, these contributions are

destroyed. But by what we said up there, Lj plus L j plus 1 is a grid. So it has size Lj times L j



plus 1. And the size of each Lj is at least 2 to the k. So the sum here is at least m times 2 to

the 2k.

But we saw over here that the energy lower bounds this 2 to the 2k. So we have a lower

bound that is the multiplicative energy of A divided by 4 times the log base 2 of the size of A.

So don't worry so much about the constant factors. That's just the order of magnitude that is

important.

And that's it. Yep.

AUDIENCE: How do you know that the size of big L sub m plus 1?

YUFEI ZHAO: Great. The question is, what do we know about the size of big L sub m plus 1? So that's a

good point. The easiest answer is, if I don't care about these constant factors, I don't need to

worry about it.

You can think about what is the number of points on this line above that. It's essentially the

number of elements of A above the biggest element of s m, above s m. It's a good question. I

think we don't need to worry about it. I'm being slightly sloppy here. Yeah.

AUDIENCE: [INAUDIBLE]

YUFEI ZHAO: I think the question is, how do we know for j equals to m that you have this bound over here?

AUDIENCE: [INAUDIBLE]

YUFEI ZHAO: Great. So yes.

AUDIENCE: [INAUDIBLE]

YUFEI ZHAO: So there are some ways to do it. You can notice that the vertical line has at least as many

points as the first slanted line. So details that you can work on. So this proves Solymosi's

theorem, which gives you a lower bound on the sum set and the product set sizes and the

maximum of those two.

It's based on-- it's very short. It's very clever. It took a long time to find. And it gave a bound on

the sum product problem of 4/3 that actually remained stuck for a very long time, until just

fairly recently there was an improvement that gives-- so by Konyagin and Shkredov where

they improved the Solymosi bound from 4/3 to 4/3 plus some really small constant c. So it's



some explicit constant. I think right now-- so that's being proved over time, but right now, I

think c is around 1 over 1,000 or a few thousand. So it's some small but explicit constant.

It remains a major open problem to improve this bound and prove Erdos' similarity conjecture,

that if you have n elements, then one of the sums or products must be nearly quadratic in size.

And people generally believe that that's the case. Any questions?

So this concludes all the topics I want to cover in this course. So we went a long way. And so

the beginning of this course, we started with extremal graph theory, looking at the basic

problem of if you have a graph that doesn't contain some subgraph, triangle, C4, what's the

maximum number of edges. In fact, that showed up even today.

And then we went down to other tools, like Szemeredi's regularity lemma that allows us to

deduce important arithmetic consequences, such as Roth's theorem. It's also an extremal

problem if you have a set without a three-term arithmetic progression, how many elements

can it have? And so the important tool of Szemeredi's regularity lemma then later showed up

in many different ways in this course, especially the message of Szemeredi's regularity lemma,

that when you look at an object, it's important to decompose it into its structural component

and its pseudo-random component.

So this dichotomy, this interplay between structure and pseudo randomness, is a key theme

throughout this course. And it showed up in some of the later topics as well, when we

discussed spectral graph theory, quasi-randomness, graph limits, and also in the later Fourier

analytic proof of Roth's theorem. All of these proofs, all of these techniques, involve some kind

of interplay between structure and pseudo-randomness.

In the past month or, so we've been looking at Freiman's theorem, this key result in additive

combinatorics concerning the structure of sets under addition. And there, we also saw many

different tools that came up, and also connections I mentioned a few lectures ago, connections

to really important results in geometry to group theory. And it really extends all around.

And a few takeaways from this course-- one of them is that graph theory, additive

combinatorics, they are not isolated subjects. They're connected to a lot within mathematics.

And that's one of the goals I want to show you in this course, is to show these connections

throughout mathematics and some to analysis, to geometry, to topology.

And even simple questions can lead to really deep mathematics. And some of them I try to



show you, try to hint at you, or at least I mentioned throughout this course. And what we've

seen so far is just the tip of the iceberg.

And there is a lot of still extremely exciting work that's to be done. And I've also tried to

emphasize many important open problems that have yet to be better understood. And I expect

in some future iteration of this course, some of these problems will be resolved, and I can

show the next generation of students in your seats some new techniques, new methods, and

new theorems.

And I expect that will be the case. This is a very exciting area. And it's an area that is very

close to my heart. It's something that I've been thinking about since my PhD. The bulk of my

research work revolves around better understanding connections between graph theory, on

one hand, and additive combinatorics on the other hand. It's been really fun teaching this

course, and happy to have all of you here. Thank you.

[APPLAUSE]


