
MITOCW | 21. Structure of set addition I: introduction to Freiman's theorem

YUFEI ZHAO: All right, today we're going to start a new topic an additive combinatorics. And this is a fairly

central topic having to do with the structure of set addition. So the main players that we're

going to be seeing in this chapter have to do with, if you start with a subset of some obedient

group under addition-- not necessarily finite. So the obedient group that I'm going to keep in

mind, the ones that will come up generally are integers, z mod n or the finite field model.

We're going to be looking at objects such as a sum set, so a plus b, meaning the set of

elements that can be written as a sum, where you take one element from a and another from

b. Likewise, you can also have a minus b defined similarly, now taking a minus b. We can

iterate this operation. So kA, so 2A, 3A, 4A, for instance, means I add A to itself k times, not to

be confused with a dilation, which we'll denote by k dot A. So this is notation for multiplying

every element of A by the number k.

So given a subset of integers I can do these operations to the set. And I want to ask, how does

the size of the set change when I do these operations? For example, what is the largest or the

smallest? So how large or small can A plus A be for a given set size, A?

So if I allow you to use 10 elements, how can you make A plus A as big as possible? And how

can you make it as small as possible? So this is not a hard question. How can you make it as

big as possible? So what's the maximum size A plus A can be as a function of A?

Well, I'm looking at pairwise sums, so if there are no collisions between different pairwise

sums, this is as large as possible. And then it's not hard to see that the maximum possible is

the size of A plus 1, choose 2. So since at most, this many pairs and space possible if all sums

are distinct. So for example, in integers, you can take 1, 2, 2 squared, and so on. So that will

give you the span.

The minimum possible is also not too hard. We're allowed to work in a general obedient group.

So in that case, the minimum could be just the size of A. The size is always at least the size of

A. And this is tight if A is a subgroup. If you have a subgroup, then it's closed under addition.

So the set does not expand under addition.

In the integers, you don't have any finite subgroups. So if I give you k integers, what's the

smallest, the sum set can be?



AUDIENCE: 2k minus 1.

YUFEI ZHAO: 2k minus 1, right? So the example is when you have an arithmetic progression. So in integers,

the minimum is 2k minus 1. And it's achieved for an arithmetic progression.

So let me just give you the one-line proof why you always have at least this many elements, is

if A has elements sorted like this, then the following elements are distinct in the sum set. So

you start with A plus A. And then you move A1 plus A2, A1 plus A3, and so on, to A1 plus Ak.

And then you move the first element forward. OK, so here you already see 2k minus 1 distinct

elements in A plus A.

OK, so these are fairly simple examples, fairly simple questions. So now let's get to some

more interesting questions, which is, what can you say about a set if you know that it has small

doubling? If it doesn't expand by very much, what can you tell me about the set? And for that,

let me define the notion of a doubling constant.

So the doubling constant of A is defined to be the number which we often denote by k, the

number obtained by dividing the size of A plus A by the size of A. And we would like to

understand-- and this is the main question that's addressed in the upcoming lectures is, what

is the structure of a set with bounded doubling constant?

So for instance, think of k as fixed. Let's say k is 100. If you know a set has doubling constant,

at most, 100, what can you tell me about the structure of the set? So that's the main question.

Let me show you in a second a few examples of sets the have bounded doubling constant.

So that's easy to check that those examples indeed have bounded doubling constant. And

what this question amounts to is what is often known as an inverse question. So it's an inverse

problem that asks you to describe in reverse-- so it's easy to check in the upcoming examples

that all of those examples have bounded doubling constant. And what we want to say is, in

reverse, that if a set has bounded doubling constant, then it must in some sense look like one

of our examples. It's the harder inverse question.

OK, so let me give you some examples of sets with small doubling constant. One example we

already saw earlier is that if you have an arithmetic progression. If you have an arithmetic

progression, then the size of A plus A is always 2 times the size of A minus 1.

So the doubling constantly is always, at most, 2. That's pretty small. That's as small as you

can get in arithmetic progressions is in the integers.



But if you start with an arithmetic progression and now I take just a subset of the elements of

this progression, so if I take AP, and if I cross out a few elements, just a small number of

elements from this progression, or even cross out most, but keeping a constant fraction of

elements still remaining, I claim that's still a pretty good set. So if A can be embedded inside

an AP such that the AP has size no more a constant factor and more than that of A, then the

size of A plus A is, at most-- so we bound it by the size of P plus P, which is, at most, 2P.

So the doubling constant of A is, at most, 2C. So if you have a set which is at least 1/10

fraction of an AP, then you are doubling constant at most, 20, bounded. So this is another

class of examples. So it's kind of a modification, some alteration of the arithmetic progression.

Another more substantial generalization of APs is that of a two-dimensional arithmetic

progression. So you think of an arithmetic progression as equally spaced points on a line. But

you can extend this in multiple dimensions, so like a grid.

So this is a two-dimensional arithmetic progression, but I still want to work inside the integers.

So what we are going to do is project this picture onto the integers. So that's a two-

dimensional arithmetic progression. And specifically, we have a set of the form, so x0 is the

starting point, plus l1 of x1-- l1 times x1, and l2 2 times x2, where the little l's are integers, non-

negative integers up to big L.

So that's a two-dimensional arithmetic progression. So the picture that you can have in mind

is, on the number line, we can get, write down first an AP and then a few more points like that

so that you can have a two-dimensional arithmetic progression. We say that this set, this two-

dimensional arithmetic progression is proper if all terms are distinct.

And if that's the case, then I can write A plus A in a very similar format. So A plus A contains

elements still of the same form, but now the indices go up to 2L minus 1. So you see that A

plus A has size, at most, 4 times the original set, A. Also easy to see from this blue picture up

there-- you expand that grid. It goes to, at most, 4 times the size. Yes?

AUDIENCE: [INAUDIBLE]

YUFEI ZHAO: So the question is, should it be?

AUDIENCE: [INAUDIBLE]



YUFEI ZHAO: 2x0?

AUDIENCE: [INAUDIBLE]

YUFEI ZHAO: What do you mean?

AUDIENCE: 2x0 plus l1 x0 plus 1?

YUFEI ZHAO: Ah, thank you, so 2x0, thank you. Yeah, 2x0, great. OK, so that's the size. And of course, you

can generalize this example of a fairly straightforward way to d dimensional arithmetic

progressions. And we call those things generalized arithmetic progressions.

So a Generalized Arithmetic Progression, which we will abbreviate by the letters GAP, is a set

of numbers of the form as above, except now you have d different directions and indices, are

also straightforward generalizations of what was earlier. So this is the notion of a generalized

arithmetic progression. So think about projection of a d dimensional grid onto the integers.

And for GAPs, we say that it's proper if all the terms are distinct. We call d the dimension of the

GAP. And for a GAP, whether it's proper or not, we call the size to be the product of the

lengths.

And this is potentially larger. So this is larger than the number of distinct elements if it's not

proper. So when I refer to the size of a GAP-- so I view the GAP more than just as a set, but

also with the data of the initial point and the directions. If I talk about the size, I'm always

referring to this quantity over here. Great.

So you see, if you take a GAP or a fraction of a GAP, then, as with earlier examples, you have

small doubling. So if P is a proper GAP, of dimension d, then P plus P is, at most, 2 raised to

power d times the size of P. And furthermore, if A is an arbitrary subset of P and such that A

has size-- such that the GAP has size, at most, a constant fraction bigger than that of A, then

A has small doubling as well.

So all of these are examples of constructions of sets where, for some fixed constant, the

doubling constant, we can find a family of sets with doubling constant bounded by that

number. And the natural question though is, are these all the examples? So have we missed

some important family of constructions not covered by any of these examples?

And so that's the kind of inverse question I was referring to earlier. So all of these examples,



easy to check that they indeed have small doubling constant. Can you go in reverse? So can

you ask the inverse question, if a set has small doubling constant, must it look like, in some

sense, one of these sets?

It turns out this is not such an easy problem. And there is a central result in additive

combinatorics known as Freiman's theorem which gives a positive answer to that question. So

Freiman's theorem is now considered a central result in additive combinatorics. And it

completely describes, in some sense, the sets that have small doubling.

And let me write down the statement. So if A is a subset of Z and has bounded doubling, then

A is contained in a GAP of bounded dimension and size bounded by some constant times the

size of the set. This is a really important result in additive combinatorics. The title of this

chapter, "Structure of Set Addition," Freiman's theorem tells us something about the structure

of a set with small doubling.

The next few lecturers are going to be occupied with proving this theorem. So this theorem will

have-- its proof is involved and probably the most involved proof that we have in this course.

And the proof will take the next several lectures. And we'll see a lot of different ingredients, a

lot of really nice tools. Fourier analysis will come up at some point, but also other tools like the

geometry of numbers and also some more classical additive combinatorics ideas.

But before starting on a proof, I want to offer a few remarks and historical remarks to just give

you some more context about Freiman's theorem, but first, a few mathematical comments. In

this conclusions of Freiman's theorem, I didn't mention properness. And that's mostly a matter

of convenience. So you can, in fact, make the conclusion proper as well at the cost of

increasing the number somewhat, but still constants depending only on k-- can guarantee

properness as well. So there is an extra step involved which we'll not cover, because it's not

entirely trivial, but it's also not too hard.

Freiman's original proof, so it's named after Freiman. So he proved that in the '60s. But at that

time, the proof was considered rather obscure. It actually did not get the attention and the

recognition that it deserved until much later. So this was kind of a forgotten result, a forgotten

proof for a very long time until quite a bit later when Ruzsa-- Ruzsa's name will come up many

times in this chapter.

Ruzsa came and gave a different proof of Freiman's theorem, and significantly cleaned up the

proof, and offered many new ideas. So much of what we'll see today are results that we now



attribute to Ruzsa. And theorem sometimes is also called the Freiman-Ruzsa theorem.

But this result was really brought into-- brought as a highlight of additive combinatorics in the

work of Gowers when he proved, that gave his new proof of Szemerédi's theorem, giving

much better bounds. So he had to use quite a bit of serious additive combinatorics. And many

of the ideas that went into Gowers' proof of Szemerédi's theorem came from this line of work,

Freiman and Ruzsa. So and their work was, again, brought into prominence as a result of

Gowers' Fields-Medal-winning work on Szemerédi's theorem.

So this is some of the history. And now Freiman's theorem is considered a central result in the

area. You can see, it's a beautiful result. And it's also quite a deep result.

Let me mention a few things about bounds. So what do we know about this d of k and f of k?

But first, an example-- so if the set A is dissociated in the sense of having no arithmetic

structure, no coincidental sums colliding, so for example, if a of this form, then you see that--

also and we saw the size of A plus A, so A plus 1 choose 2. So in this case, the doubling

constant is the size of A plus 1 divided by 2, so roughly on the same order as the size of A.

But what do you need to take in Freiman's theorem for d and for f? So how can I embed this A

in generalized arithmetic progression? See, there is not a great way to do it. So I want to keep

the size small. There is not a great way to do it.

So one way to do it is to use one direction for each of these elements. So contained in GAP--

now of course, there is always a trade off between dimension and size. But usually, not a

great-- I mean, it's not such an important trade off. So but certainly it's contained in the GAP of

dimension size of A minus 1 and size 2 to the size of A minus 1, by thinking about A as a cube.

And so you convince yourself that you basically cannot do much better. So the best possible

bound that we can hope to prove is of the form d being, at most, linear in k, and f being, at

most, exponential in k. So you see already, the bounds, that you have to lose some things.

Yes?

AUDIENCE: Why can't we just make the dimension 1 and just let our arithmetic progression be 1 through 2

to the sine of A minus 1?

YUFEI ZHAO: OK, great, so that's a great question. So why can't we just make dimension 1 and have the

entire thing be as part of a single linear arithmetic progression? So you can do that, but then I



can cook up other examples where I blow up this cube. So I ask you to think about how to do

that. So you can try to blow up this cube so that you really do need the dimension to not be

constant, so exercise.

So the best result is not quite this claim. So this is still open. So the best result so far is due to

Tom Sanders, whose name came up earlier, as he has basically the best bound on Roth's

theorem. And you know, many of these results are all related to each other.

So Sanders has-- so he showed that Freiman's theorem is true with d being, so basically k, but

you lose a poly log factor. I think the big O is maybe 3, or 4, something like that, so not

substantial. And then f of k is also basically exponential, but you lose a poly log factor in the

exponent.

Just a minor note about how to read this notation-- so I mean, it's written slightly sloppily as log

k raised to big O of 1. You should think k as constant, but somewhat big, because if k were 2,

this notation actually doesn't make sense. So just think of chaos, as at least 3 when you read

that notation.

All right, so we will prove Freiman's theorem. So this bound will show a worse bound. It

actually will be basically exponentially worse, but it will be a constant. So it will be just a

function of k. And that will take us the next several lectures.

So we'll begin by developing some tools that are, I think, of interest individually. And they can

all be used for other things. So we'll develop some tools that will help us to show, eventually

lead us to Freiman's theorem.

And I'll try to structure this proof in such a way that there are several goal posts that are also

interesting. So in particular, just as what we did with Roth's theorem, we'll begin by proving a

finite field analog of Freiman's theorem. So what would that mean, a finite field analog?

So what would a problem like this mean in F2 to the n? So in F2 to the n, so this is a finite field

analog. If A plus A is small-- so I'm not trying to ask an inverse question. But what are

examples of sets in F2 to the n that have small doubling?

AUDIENCE: 2 to the n.

YUFEI ZHAO: So 2 to the n, so you can take the entire space. Any other examples that have small doubling?



AUDIENCE: You can take a subspace.

YUFEI ZHAO: Exactly, I can take a subspace. So a subspace, well, it doesn't grow. So A plus A is the same

as A. All right, so and also, as before, you can take a subset of a subspace. So then the

analog of Freiman's theorem will say that A is contained in a subspace of size, at most, a

constant times the size of A.

So this is the analog of Freiman's theorem in F2. And so we'll see, so this will be much easier

than the general result about Freiman's theorem, but it will involve a subset of F2. And we'll

see this theorem first. So we'll prove that next lecture.

Of course, this is much easier in many ways, because here, unlike before, I don't even have to

think about what subspace to take. I can just take the subspace generated by the elements of

A. All right, Any questions so far? Yes?

AUDIENCE: Is the f of k here still exponential in k?

YUFEI ZHAO: OK, so the question, is the f of k here still exponential in k? So the answer is, yes. And the

construction is if you take A to be a basis.

OK, so let's start with some techniques and some proofs. So in this chapter, many things are

named after Ruzsa. And at some point, it becomes slightly confusing which ones are not

named after Ruzsa. But the first thing will be named after Ruzsa. So it's a Ruzsa Triangle

Inequality.

All right, the Ruzsa Triangle Inequality tells us that, if A, B, and C-- so unless otherwise I tell

you so, and I'll try to remind you each time, but basically, we're always going to be looking

finite sets in an arbitrary obedient group always with an under addition-- then one has the

inequality on their sizes of different sets. The size of A times the size of B minus C is upper

bounded by the size of A minus B times the size of A minus C. So that's the Ruzsa Triangle

Inequality.

Let me show you the proof. We will construct an injection from A cross B minus C to A minus B

cross A minus C. Of course, if you can exhibit such an injection, then you prove the desired

inequality. To obtain this injection, we start with an element a, d.

And for this a, d, so for each d, let me pick-- so if d is an element of B minus C, let us pick

arbitrarily but stick with those choices a b of d in the set B and a c of d in the set C such that d



equals to b of d minus c of d. So because d is the set B minus C, it can be represented as a

difference from one element from each set. So it may be represented in many ways.

But from the start, you pick a way to represent it. And you stick with that choice. And you label

that function b of d and c of d.

Now I map a, d to the element a minus b of d and a minus c of d. So this is a map. I want to

show that it is injective. Why is it injective? Well, to show something is injective, I just need to

show that I can recover where I came from if I tell you the image. So I can recover a and d

from these two numbers. So if-- sorry, new board.

OK, so well you basically can think about how you can recover a and d from the image

elements. So if the image-- so I label that map phi. So that's phi up there. So if the image is

given, then I can recover d.

So how can we recover the element d? So you subtract these two numbers. So d is minus x.

And once you recover d, you can also then take a look at the first element. And you can

recover a. So now you know d. I can now recover a.

OK, so then this is-- you can check this is an injection. And that proves the Ruzsa Triangle

Inequality. OK, so it's short, but it's tricky. It's tricky.

OK, so why is this called Ruzsa's Triangle Inequality? Where is the triangle in this? The reason

that it's given that name is that you can write the inequality as follows. Suppose we use rho A,

B to denote this quantity obtained by taking the log of the size of A minus B divided by the

square root of the product of their individual sizes, then the inequality says that the rho of B, C

is, at most, rho of A, B plus rho of A, C, which looks like a triangle inequality.

So that's why it's called Ruzsa's Triangle Inequality, because this is-- don't take it too seriously,

because this is not a distance. So rho of A, A is not equal to 0. But it certainly has the form of a

triangle inequality, hence the name.

How should you think of Ruzsa's triangle inequality? So in this chapter, there's going to be a

lot of symbol pushing around. And it's easy to get lost and buried in all of these symbols. And I

want to tell you about how you might think about what's the point of Ruzsa's Triangle

Inequality. How would you use it?

And the idea is that if you have a set with small doubling, we want to use Ruzsa's triangle



inequality and other tools to control its further doublings. So in particular, if-- so I'll say,

applications.

So suppose you knew that 2A minus 2A is size, at most, k times A. So this is a stronger

hypothesis than just A has small doublings. Even if you iterate it several times, you still have

size, at most, constant times A.

I would like to start from this hypothesis and control further iterations, further subsets of A. And

Ruzsa's Triangle Inequality allows us to do it, because by the Ruzsa's Triangle Inequality,

setting B and C to be 2A minus A, we find that 3A minus 3A is, at most, 2A minus 2A squared

over A, the size of A. So plug it in. This is what you get.

So if the size of 2A plus 2A is, at most, k times the size of A, then the size of 3A times 3A is--

blows up by a factor, at most, k squared. So it controls further doublings. And of course, we

can iterate.

If we know set B and C to be 3A minus 2A, then what we get is 5A minus 5A is, at most, a size

of 3A minus 3A square divided by the size of A. And so now you have a bound which is k to

the 4 times A. And you can continue. You can continue.

OK, so this is all a consequence of Ruzsa's triangle. So starting with this hypothesis, now I get

to control all the further doublings, the further subset iterations. I call them doublings, but

they're no longer doubles, but further subsets. But this is a stronger hypothesis than the one

that we start with in Freiman's theorem, because if you have that, then this 2A minus 2A is at

least as large as the size of 2A. So can we start with just doubling constant and then obtain

bounds on the iterations?

| it turns out you can. It will require another theorem. So this theorem is called Plunnecke

inequality. But actually, these days, in literature, it's often referred to as Plunnecke-Ruzsa

inequality. So Plunnecke initially proved it. But nobody understood his proof. And Ruzsa gave

a better proof. And actually, recently, there was an even better proof. And that's the one I will

show you.

So Plunnecke-Ruzsa inequality tells us that if A is subset of some obedient group, and has

doubling constant, at most, k, then for all non-negative integers m and n, the size of mA minus

nA is, at most, k to the m plus n times the size of A. So if you have bounded doubling, then the

further iterations, the further subset iterations are also controlling size. I want you to think of



polynomial transformations in k as negligible.

So don't worry about that we're raising things here. k is constant. You should think of m and n

as constant. So I'm changing k to some other constant. And in fact, I'm only changing it by a

polynomial. So this is, like, almost no change at all. So this is tricky. So we'll do it after a short

break.

All right, let's prove Plunnecke's inequality, Plunnecke-Ruzsa inequality. So the history of

Plunnecke's inequality has some similarities with Freiman's theorem. So Plunnecke initially

proved it, but his proof was hard to understand and was sort of left not understood for a long

time until others like Plun and Ruzsa came in and really simplified the proof.

But even then, the proof was not so easy. And if I were teaching this course about 10 years

ago, I would have just skipped this proof, maybe sketched some ideas, but I would have

skipped the proof. And the proof, actually, it's a beautiful proof, but it uses some serious graph

theory. It uses Menger's theorem about flows. You construct some graph. And then you try to

understand its flows. It's very pretty stuff. And I do encourage you to look it up.

And then about eight years ago, Petridis found a proof, so a proof by Petridis, who was a PhD

student that Tim Gowers at the time. And that was surprisingly short, and beautiful, and kind of

surprised everyone that such a short proof exists, given that this theorem sat in that state for

such a long time. And it's a pretty central step in the proof of Freiman's theorem.

We'll prove Plunnecke-Ruzsa via a slightly more general statement. So you see, it generalizes

the earlier statement. Instead of having one set, it will be convenient to have two different sets.

So let A and B be subsets of some obedient group, as usual.

If size of A plus B is, at most, k times the size of A, then mB minus nB has size, at most, k to

the m plus n times the size of A for all non-negative integers m and n. So instead of having

one set, so I have two sets, A and B. Of course, then you derive the earlier statement setting A

and B to equal. So we'll prove this more general statement.

The proof uses a key lemma. And the key lemma says that if a subset x of A is non-empty

and-- so if x is a non-empty subset of A that minimizes the ratio x plus B divided by size of x,

and let k prime be this ratio, this minimum ratio, then so the conclusion says that x plus B plus

C has size, at most, k prime times the size of x plus C for all sets C.

So that's the statement. I'll explain how you should think about the statement. These ratios



which you see in both hypotheses, how you should think about them is that there is this graph.

Let's say it's the group bipartite graph with the group elements on both sides. And the graph

has edges, the bipartite graph, where the edges are from each vertex a drawn edge for each

element of B. So I expand by B.

So if you have this graph and you start with some A on the left, then its neighbors on the right

will be A plus B. And those ratios up there are the expansion ratios. so quantities like this, they

are expansion ratios. You start with some set on the left and see by a what fraction does it

expand if you look at the neighborhood.

So let's read the statement of the key lemma. It says, if you have a set x-- I look, so I have a

set A. And I'm choosing a subset of A that minimizes the expansion ratio, so choose a non-

empty subset that minimizes the expansion ratio. And if this minimum expense ratio is k prime,

then, so x minimizes expansion ratio and expense ratios k prime, then x plus C also has

expansion ratio, at most, k prime as well.

So that's the statement. I mentioned earlier that the previous proofs of this theorem went

through some graph theory and Menger's theorem, that type of graph theory. You can kind of

see where it might come in.

We're not going to do that. We're going to stick with additive combinatorics. We're going to

stick with playing with sums, playing with additive combinatorics. So let's see how we can

prove the statement up there, so using the key lemma.

So assuming key lemma, so let's prove the statement, the theorem up there. So take a non-

empty subset x of A-- sorry, so x subset of A that minimizes the ratio x plus B divided by x. And

let k prime be this minimum ratio.

Note that k prime is, at most, k, because if you plug in x equals the k, you get-- if you plug in x

equals to A, you get k. But I'm choosing x to be possibly even lower. So k prime is, at most, k.

Now, applying the lemma, so applying the key lemma with C equals to B, we find that x plus

2B, so C, plug in B, x plus 2B has size, at most, k times size of x plus B. But the size of x plus B

is, at most, k times the size of A. So we get k squared, so k times the size of x, at most, k

squared x. So we're already in good shape.

If you iterate expansion twice-- so I imagine there is several chains of these bipartite graphs. If



you iterate this expansion twice, you still do not blow up by too much. So we can iterate

further, so apply the lemma with C being now 2B, and then later 3B, and so on. So you find

that x plus nB has size, at most, k raised to power n times the size of x for all non-negative

integers, n.

What do we want to control? So we want to prove a bound on the size of mB minus nB. Take a

look at the statement of Ruzsa Triangle Inequality.

Applying Ruzsa Triangle Inequality, we find that if we want to control mB minus nB, we can

upper bound it by x plus mB x plus nB divided by the size of x. Because each of these two

factors in the numerator are small expansions of x, now we can upper bound the whole

expression by k to the m plus n times the size of x. And because x is a subset of A, we can do

one more upper bound and obtain the bound that we are looking for. OK, so that proves the

key lemma. It's OK?

AUDIENCE: [INAUDIBLE]

YUFEI ZHAO: Sorry, that proves the theorem, assuming the key lemma. Thank you, that's what I meant to

say. Yeah, so that proves the theorem, assuming the key lemma. So now we do prove the key

lemma.

Great, we need to prove the key lemma. And so Petridis' proof of the key lemma, it's quite

surprising, in that it uses induction. And basically, we have not used induction in this course

ever since the first or maybe the second lecture, and for good reason.

So everything in this course is fairly analytic. You know, you have these Roth bounds. And

putting one extra vertex often doesn't really help. OK, so here, we're going to use induction on

the size of C. OK, I just want to emphasize again that the use of induction here was surprising.

So if the base case-- always check the base case-- when C is 1, then plus C is a translation.

So this shifts the set over. And so you can see that if you do plus C and minus 1, you raise the

plus C. And the conclusion follows basically from the hypothesis. So in this case, x plus B plus

C is equal to x plus B, which is, at most, k prime times the size x, by definition of-- so this

actually is equal to the size of k. The base case is easy.

Now we do the induction step. So let's assume that the size of C is bigger than 1 and C is C

prime plus an additional element, which we'll call gamma. So let's see this expression, x plus B



plus C, by separating it according to if its contribution came from C prime or not.

The contributions that came from C prime, I can write it like that. And then there are other

contributions, namely those that came from this extra element. But I may have some

redundancies in doing this. So I may have some redundancies coming from the fact that some

of the elements in this set might have already appeared earlier.

So let me take out those elements by taking out elements where it already appeared earlier.

So this means I'm looking at the set z being elements of x such that x plus B plus gamma is

already a subset of x plus B plus C prime. So the stuff in yellow, I can safely discard, because

it already appeared earlier.

So because of the definition of z, we see that z plus B plus gamma appears in x plus B plus C

prime. So that union is valid. Now, z is a subset of x. So the expansion ratio for z is at least k

prime, because we chose x to minimize this expansion ratio.

We would like to understand how big x plus B plus C. So let's evaluate the cardinality of that

expression up there. The cardinality I can upper bound by the union of these sum of the sizes

of the components.

So up there, so I just do a union bound on that expression up there. And now you see z is a

subset of x. So I can split this expression up even further.

All right, now let's use the induction hypothesis. So we have some expression involving x plus

B plus C prime. So now we apply induction hypothesis over here to this expression that has

plus C prime.

And we obtain an upper bound which is k prime x plus C prime. And the two expressions on

the right, well, one of them here is, by definition, coming from the expansion ratio of x. And

then the other, we gave a bound just now.

OK, so we're almost there. So we are trying to upper bound the size of this quantity. So we

decomposed it into pieces according to its contribution coming from this extra element. And we

analyzed these pieces individually.

But now I want to understand the right-hand side, so x plus C. So let's try to understand the

right-hand side. See, the x plus C, I can likewise write it as earlier by decomposing it into

contributions from C prime and those from the extra element.



And as earlier, we can take out contributions that were already appearing earlier, which we

now recall W plus gamma, where W is the set of elements in x, such that x plus gamma is

already contained in x plus C prime. So this part was already included earlier. We don't need

to include it any more.

A couple of observations that were different from earlier-- now this union I claim and say

disjoined union. So this union is a disjoined union. So there is actually no more overlaps. And

furthermore, W is contained in the set z from earlier. Any questions?

All right, therefore, the size of x plus C is equal to, because this is a disjoined union, x plus C

prime plus the size of x minus the size of W, and which is-- so W, because W is contained in z,

is x plus C prime plus the size of x minus the size of z. Now you compare these two

expressions. And that proves the key lemma. OK? That's it. Yeah?

AUDIENCE: Can you explain one more time why it's a disjoined union?

YUFEI ZHAO: OK, great, so why is this a disjoined union? Now, I have the set here. So I'm looking at this x

plus gamma. So think about, let's say, gamma equals to 0. So we translate, think about if

gamma equals to 0.

So I include x, but if some element of x was already here, I take it out. So here is x plus C

prime. And let's say this set is x. This W then would there be their intersection.

So now x minus W is just this set. So it's a disjoined union. So the points are, here, you're

adding single elements, where there, you're adding some sets. So you cannot necessarily take

a whole partition, necessarily. But here it's OK.

It's tricky. Yeah, it's tricky. And you know, this took a long time for people to find. It was found

about eight years ago. And yeah, it was surprising when this proof was discovered. People did

not expect that this proof existed.

And it's also tricky to get right. So the details-- I do it slowly. But the execution, like, the order

that you take the minimalities is important. It's easy to mess up this proof. OK, any questions?

Let me show you, just as an aside, an application of this key lemma. So earlier we saw

Ruzsa's Triangle Inequality. And you may wonder, what if you replace the minus signs in the

theorem by plus signs?



I mean, if you replace the right-hand side, the two pluses by minuses, the same proof works.

But if you replace all the minus signs by plus signs, you see, the proof doesn't work anymore.

Just give yourself a moment to convince yourself that. If you just replace all the minus signs by

plus signs, it doesn't work anymore, but it's still true.

So this is more of an aside. We will not use it. But it's nice. It's fun. So we have the inequality A

B plus C bounded by A plus B A plus C.

So hopefully you've convince yourself that if you follow our notes with the previous proof, you

are you're not going to get it. You're not going to prove this this way. It's still true. So how can

we prove it? So we are going to use the key lemma. So first, the statement is trivial if A is

empty. So let's assume that's not the case.

Let x be a subset of A that minimizes the expression or the expansion ratio x plus B divided by

x as in the key lemma. So let k denote the quantity A plus B over A, so the expansion ratio for

A, and k prime be the expansion ratio for x. So the quantities came up earlier. k prime is, at

most, value of k, because of our choice of x.

So the key lemma gives x B plus C-- OK, and this, it's really amazing what's happening. It

seems like we're just going to throw in some extra stuff. So I'm going to upper bound it by x

plus B plus C. I'm just going to throw in some extra stuff. And then by the lemma, I can upper

bound this expression by k prime times the size of x plus C. So that's what the lemma gives

you.

And because x is a subset of A, we can upper bound it by the size of A plus C. And now k

prime is, at most, the size of k. k prime is, at most, k. So you have that.

But now look at what the definition of k is. And that's it. So that's how you can prove this harder

version of Ruzsa's Triangle Inequality, Yes, question?

AUDIENCE: Are there equality cases for this?

YUFEI ZHAO: All right, question, are there equality cases for this? Yes, so I mean, if you're in a subgroup,

then all things are equal, although, if A, B, and C are all the same subgroup of some finite

obedient group.

AUDIENCE: What if you're working in the integers?



YUFEI ZHAO: Great, yeah, so the question is, what if you're working in integers? That's a good question. I

mean, you can suddenly get expansion ratio of two if you have-- no, OK.

Right, yeah, so that's a good question. Can you get equality cases? If you set A, B, and C to

be sets of very different sizes, AP is a very different set. Yes?

AUDIENCE: If you set B being true for the single element and B and C to just be sets that have full

extension so that B plus C is not [? B. ?]

YUFEI ZHAO: Great, yeah, so you take A to be a single-element set, then it could be that B plus C is the

same as the size of B times the size of C if B and C have no additive interactions. Yeah?

AUDIENCE: Are there other known proofs of this that are less involved?

YUFEI ZHAO: OK, are there other known proofs of this? I don't know. I'm not aware of other proofs. It would

be nice to find a different proof. More questions? Yeah?

AUDIENCE: How did come up with this?

YUFEI ZHAO: How did he come up with this? You know, Petridis did a very long PhD. He spent, I think,

seven or eight years in his PhD. And he eventually came up with this proof. So he must have

thought a lot about this problem.

But the already proofs are still nice. The earlier proofs, I think they are worth looking at. They

are looking at expansion ratios in graphs. So you take a sequence of graphs, multi-partite

graphs. And you think about expansion. And you think about flows.

It's, again, not easy at all, but maybe more motivated if you're used to think about expansions

and flows in graphs. And this one really distills the core ideas of that proof, but looks

something you can teach in half a lecture, whereas before this proof came about, I could have

taught the proof, but most likely, I would have just skipped it.

To just give you a sense of what's coming up ahead, so going forward, the first thing we'll do in

the next lecture is we'll show-- we'll see the proof of the Freiman's theorem in the finite field

setting, so in F2 to the n. There is one more thing, one more very quick lemma called the

covering lemma, Ruzsa are Covering Lemma, that I will tell you. And then once we have that,

then we can prove Freiman's theorem in the finite field setting.

But then moving on to the integers, we'll need to understand how to think about the integers.



Well, if you start with a subset of integers, they could, even if you have a small number of

elements, they could be spread out, really, all over the place. But because you only care about

the additive structure within the integers, you can try to model that very spread-out set of

integers to something that is very compact. So there is something called the modeling lemma,

Ruzsa's Modeling Lemma, that we'll see next time. And that will play a pretty important role.

Before finishing off, I also want to mention that Freiman in his work, so he had this result. And

he also wrote a book I think called The Structural  Theory  of  Set Addition, or something like

that, that emphasized this connection. He tried to draw this analogy sort of comparing additive

combinatorics to geometry in the sense of cline, where in order to understand sets, you don't

think about sets.

You think about maps between sets, which was kind of an obscure idea at the time. But we'll

see next lecture that this actually is a very powerful, it's a very influential idea to really think

about a sets of integers under transformations that only preserve their additive structure. So

we'll see this next time.


