
18.218 Topics in Combinatorics Spring 2021 – Lectures 11 - 12 

Dor Minzer 

Our goal in this lecture as well as the next lecture will be to demonstrate the power of analytical tools 
in Extremal Combinatorics. More specifically, we will see an instance of the junta method, a successful 
method in the area that has been introduced in the early 2000’s and has recently risen in popularity. 

1 Erdős-Ko-Rado type theorem � � 
For k 6 n/2, a family of subsets F ⊆ [n] is said to be intersecting if for any A, B ∈ F we have thatk 
A ∩ B =6 ∅. Given this definition, one may wonder: (1) How large can an intersecting family F be? (2) 
What is the structure of the extremal families F? How about stability results? 

The solution to this particular question is the well know, Erdos-Ko-Rado theorem, which asserts that� � 
nthe size of the largest intersecting family is , and furthermore the extremal families are preciselyk−1 

dictatorships, i.e. {A | |A| = k, i ∈ A} for each i ∈ [n]. Can one prove a general structural result about 
intersecting families? Can they always be approximated by a considerably simpler families? This question 
is the main question we will consider in this as well as in the next lecture. 

Before we dive into that, in order to get a feeling to where the method applies, we give several more 
examples of closely related problems. � � 

1. t-wise intersecting families. Suppose k 6 0.49n; how large can a family F ⊆ [n] be if for any k 
A, B ∈ F it holds that |A ∩ B| > t? Thinking about this problem for several minutes, one comes 
up with a candidate extremal example such as F = {A | 1, . . . , t ∈ A}, and with a few more minutes 
one realizes that a more general class of families is F = {A | |A ∩ [t + 2r]| > t + r} for any r ∈ N. 
These turn out to be the extremal families and the junta method applies here; it is not a coincidence 
that these families are juntas. � � 

2. Forbidden intersections. How large can a family F ⊆ [n] be if for any A, B ∈ F it holds that k 
|A ∩ B| 6= t − 1. Note that any t intersecting family is an immediate candidate, and it turns out that 
these are also the extremal examples. Both this question and the previous question have analog in 
different domains, such as larger alphabets [m]n , Sn, vector spaces and more. � � 

3. Suppose n > sk. How large can F ⊆ [n] be if it doesn’t contain a matching of size s, i.e. k 
A1, . . . , As ∈ F that are pairwise disjoint? 

The solution to these problems is considerably more difficult and requires additional analytical tools as 
well as more advanced ideas in the junta method. In the example we show, we will only see the basic ideas 
and set-up. 

Throughout this lecture, we will move back and fourth between the language of families of subsets 
F ⊆ P ([n]), and Boolean functions f : {0, 1}n → {0, 1}, by identifying a subset A ⊂ [n] with its indicator 
vector 1A ∈ {0, 1}n, and a family of subsets F with the function f(1A) = 1A∈F . 

1 



2 The p-biased cube 

Instead of discussing uniform-sized families, it will be much more convenient for us to think of their product� � 
measure analogs. 1 That is, instead of thinking about families in [n] , we will think of families of subsets, k 
or equivalently subsets of {0, 1}n , and our measure will be the p-biased measure with p = k/n. This is the 
measure on {0, 1}n defined as µp(x) = p|x|(1 − p)n−|x|, where |x| is the number of 1’s in x. Intuitively,√ 
since most of the measure of µp lies on points whose number of ones is pn ± O( 

√ 
pn) = k ± k we 

expect the p-biased measure of the largest intersecting family to be closely related to the size of the largest � � 
intersecting family in [n] . This is indeed the case, and hence from now on we will focus on the former k 
problem. 

Considering the measure space ({0, 1}n, µp), one can generalize much of what we’ve seen so far in 
the course with one important remark. Roughly speaking, the situation is vastly different depending on the 
range of p. 

1. The range in which p is bounded away from 0 and 1, i.e. 0 < ζ 6 p 6 1 − ζ for some absolute 
constant ζ. In this case, almost everything behaves exactly as in the p = 1/2 case. In particular, 
the hypercontractive inequality holds (albeit with slightly worse constants), the KKL theorem and 
the Friedgut’s junta theorem also hold (albeit with constants depending on ζ); we will not repeat the 
proofs of these results here, and refer the interested reader to the book. 

√ 
2. The range in which p or 1 − p decay with n, say p = 1/ n. This is a much more challenging 

range from the analytical perspective, and almost all of the results we’ve seen so far in this course 
completely break. Given time constraints, we will discuss this range later on in the course. 

3 The main result 

The key result we will prove in this and the next lecture is the following theorem, due to Dinur and Friedgut. 

Theorem 3.1. For all ζ > 0, ε > 0 there exists J ∈ N such that the following holds. If F ⊆ {0, 1}n is an 
1intersecting family, and ζ < p < − ζ, then there exists an intersecting J-junta J ⊆ {0, 1}n such that 2 

µp(F \ J ) 6 ε. 

In words, the theorem asserts that an intersecting family is nearly contained in a special intersecting 
family, i.e. a junta. The proof of this theorem incorporates several components, some of which we have 
already seen, while others we have not: 

1. First, we will define the notion of “monotonicity” of families/ functions, and argue that one may 
assume F to be monotone increasing. 

2. Secondly, we will define a certain notion of “pseudo-randomness”, and show that any family of subsets 
may be decomposed into a small number of sub-families that are pseudo-random (+junk sub-families 
that will be small in measure). 

3. Thirdly, we will show that pseudo-random families contain intersections of any constant size (we will 
actually need, and prove, a stronger statement along these lines which deals with two pseudo-random 
families). 

1There is a standard way to move between these two settings that we will not present here. 
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3.1 Upwards closure 

Given a family F ⊆ P ([n]), the upwards closure of F is defined as 

F↑ = {A ⊆ [n] | ∃B ∈ F , A ⊇ B} . 

Claim 3.2. Suppose F is an intersecting family. Then F↑ is also intersecting. 

Proof. Let A, A0 ∈ F↑ . Then by definition there are B, B0 ∈ F such that B ⊆ A, B0 ⊆ A0 . As F is 
intersecting, B ∩ B0 is non-empty, and as A ∩ A0 ⊇ B ∩ B0 , we get that A ∩ A0 is also non-empty. 

Note that if we proved the theorem for F↑, then we’re done as µp(F \ J ) 6 µp(F↑ \ J ) for any family 
J . We thus assume that F = F↑ henceforth, i.e. that F is upwards closed. 

3.2 Quasi-randomness 

Next, we introduce a notion of quasi-randomness that will be useful for us in this context. 

Definition 3.3. Let r ∈ N, ε > 0 and 0 < p < 1. We say a Boolean function f : {0, 1}n → {0, 1} is (r, ε) 
quasi-random with respect to p if for any R ⊆ [n] of size at most R, and any z ∈ {0, 1}R it holds that 

|µp(fR→z) − µp(f)| 6 ε. 

In words, a function f is (r, ε) quasi-random if any restriction of size at most r can change the average of 
the function by at most ε. 

Remark 3.4. In the homework assignment you will see a connection between this notion and a function 
having small Fourier coefficients on the low levels. 

Definition 3.5. Let r ∈ N, ε > 0 and 0 < p < 1. We say F is (r, ε) quasi-random with respect to p if 1F is 
(r, ε) quasi-random with respect to p. 

We now state and prove a regularity lemma suitable for the notion of quasi-randomness we have just 
defined. 

Lemma 3.6. For all r ∈ N, ε > 0, δ, ζ > 0 there exists J ∈ N such that the following holds. If ζ 6 p 6 
1 − ζ, and f : {0, 1}n → {0, 1} is any Boolean function, then there exists a set T ⊆ [n] of size at most J , 
such that 

Pr [fT →z is not (r, ε) quasi-random] 6 δ. 
z∼µT

p 

In words, the lemma asserts that for any function f we may find a constant size set of variables T , such 
that randomly restricting them, the resulting function is quasi-random. 

Proof. The proof is iterative, and is based on the construction of an appropriate potential function. Starting 
with T = ∅, we define a potential function p : P ([n]) → [0, 1] by � � 

p(T ) = E (µp(fT →z) − µp(f))
2 . 

z∼µT
p 

Our goal will show that if we have some T ⊆ [n] for which the condition fails, i.e. for which many of the 
restrictions fT →z are not quasi-random, then we may find T 0 which is a bit larger and p(T 0) is substantially 
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larger than p(T ). Thus, as p(T ) is always bounded by 1, the process would terminate in constantly many 
steps, in which case T necessarily satisfies the condition of the lemma. 

Suppose we have T for which the condition fails, and let Z = {z | fT →z is not (r, ε) quasi-random}. 
For each z ∈ Z, pick Rz ⊆ [n] \ T of size at most r and w ∈ {0, 1}Rz demonstrating that fT →z is not (r, ε)S 
quasi-random, and define T 0 = T ∪ z∈Z Rz . 

Bounding the size of T 0 . Note that |Z| 6 2|T |, and so |T 0| 6 |T | |Z| r 6 |T | 2|T | 6 r22|T |. 

S 
Analyzing the potential function. Let us write R = Rz and z∈Z " # � � 

p(T 0) = E E (µp(fT →z,R→z0 ) − µp(f))
2 . 

T Rz∼µp z0∼µp 

First, we note that by Cauchy-Schwarz, for each z � � � � 
E (µp(fT →z,R→z0 ) − µp(f))

2 > ( E µp(fT →z,R→z0 ) − µp(f) )2 = (µp(fT →z) − µp(f))
2 , 

R Rz0∼µ z0∼µp p 

which immediately shows that p(T 0) > p(T ). The essence in our argument is to show that for z ∈ Z, there 
is substantial slack in the above inequality, which will give us the desired increase in the potential. 

Fix z ∈ Z. As before, we may write " # � � � � 
E (µp(fT →z,R→z0 ) − µp(f))

2 = E E (µp(fT →z,Rz →w,R\Rz →w0 ) − µp(f))
2 

Rz0∼µp w∼µ Rp 
z w0∼µ R\Rz " 

p # � � 
> E ( E µp(fT →z,Rz →w,R\Rz →w0 ) − µp(f) )2 

Rz R\Rzw∼µp w0∼µ� p � 
= E (µp(fT →z,Rz →w) − µp(f))

2 . 
w∼µp

Rz 

Consider the random variable Xz : {0, 1}Rz → [−1, 1], whose value at w is Xz(w) = µp(fT →z,Rz →w) − 
µp(f). Then note that � � � � 

E (µp(fT →z,Rz →w) − µp(f))
2 − (µp(fT →z) − µp(f))

2 = E Xz(w)
2 − E [Xz(w)]

2 = var(Xz), 
Rz w w w∼µp 

so it is enough to lower bound the variance of X . By definition, � � h i 
var(Xz) = E (Xz(w) − E [Xz(w)])

2 = E (µp(fT →z,Rz →w) − µp(fT →z))
2 , 

w w 

and as Rz is a witness that fT →z is not (r, ε) quasi-random, there is some w? ∈ {0, 1}RZ such that the inner 
difference is at least ε2 in absolute value. As µp(w)

? > ζr (by assumption on p and the fact that the size of 
Rz is at most r), it follows that var(Xz) > ζrε2 . 

Combining everything, we get that" # � � 
p(T 0) − p(T ) = E E (µp(fT →z,R→z0 ) − µp(f))

2 − (µp(fT →z) − µp(f))
2 

z∼µT
p z0∼µR

p � � 
> E [1z∈Z var(Xz)] > E 1z∈Z ζ

rε2 > δζrε2 . 
T Tz∈µp z∈µp 
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1Concluding, we get that the process terminates after at most steps and finds a set T whose size 
δζrε2 

depends only on r, ε, δ, ζ satisfying the condition of the lemma. 

In the next lecture, we will use this regularity lemma in order to prove Theorem 3.1. 
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4 Properties of quasi-random families 

4.1 Quasi-random families have a sharp threshold 

We begin with a neat application of Friedgut’s theorem, showing that quasi-random functions have a sharp 
threshold. 

Lemma 4.1. For all ζ, α > 0, there exists r ∈ N, ε > 0 such that the following holds. Suppose ζ < p < 1−ζ 
and f : {0, 1}n → {0, 1} is monotone with µp(f) > α. If f is (r, ε) quasi-random, then µp+ζ/2(f) > 0.9. 

p+ζ/2(f)−µp(f ) 2Proof. Suppose towards contradiction that µp+ζ/2(f) 6 0.9. Then 
µ 

6 ζ . By Lagrange’s (p+ζ/2)−p 

mean-value theorem, there is p0 ∈ (p, p + ζ/2) such that 

dµq(f) µp+ζ/2(f) − µp(f) 2 
(p 0) = 6 . 

dq (p + ζ/2) − p ζ 

dµq (f )By the Russo-Margulis lemma, as f is monotone, I[f ; µp0 ] = dq (p0), so by Friedgut’s junta theorem 
there is J ∈ N depending only on ζ, α, and g : {0, 1}n → {0, 1} a J-junta such that Prx∼µ [f(x) =6 g(x)] 60p
α .1000 

αWe choose the parameters r, ε of the quasi-randomness now as r = J and ε = .4 
Let R be the set of variables g depends on. We argue that 

Pr [gR→x ≡ 0] > 10−2 . 
x∼µR 

0p

Indeed, 
0.9 > µp+ξ(f) > µp0 (f) > µp0 (g) − Pr [f(x) 6= g(x)], 

x∼µp0 

αso µp0 (g) 6 0.9 + < 0.99.1000 
RChoose x ∼ µ 0 , and consider the following two events: p 

gR→x ≡ 0, Pr [fR→x(w) =6 gR→x(w)] 6 
α
. 

[n]\R 2w∼µ 0p

The first event holds with probability > 10−2 as we have just seen; as for the second event, ⎡ ⎤ 
α 

E ⎣ Pr [fR→x(w) =6 gR→x(w)]⎦ = Pr [f(y) =6 g(y)] 6 , 
x [n]\R y∼µ 0 1000 w∼µ p0p

2so by Markov’s inequality the second event holds with probability at least 1 − 
103 . 

As the sum of the probabilities of the events exceeds 1, it follows that there is x for which both events 
hold. In that case, we get that 

Pr [fR→x(w) 6= 0] 6 
α
, 

[n]\R 2w∼µ 0p

which by monotonicity implies that 

Pr [fR→x(w) 6= 0] 6 
α
, 

[n]\R 2w∼µp 

αand in particular µ(fR→x) 6 2 . The assignment (R, x) now contradicts the (r, ε) quasi-randomness of 
f . 
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4.2 Quasi-random families are not cross intersecting 

Armed with Lemma 4.1, we are almost ready to prove Theorem 3.1. But first, we need a simple version of 
the Erdős-Ko-Rado theorem. 

Claim 4.2. Suppose G, H ⊆ P ([n]) are such that µ1/2(G) + µ1/2(H) > 1. Then there are disjoint F ∈ 
F , G ∈ G. � � 
Proof. Sample A ⊆ [n] uniformly at random, and write µ1/2(G) = EA [1A∈G ], and µ1/2(H) = EA 1Ā∈H ; 

¯the last identity is true since the distribution of A is uniform among all subsets of [n]. Thus, by the premise � � 
1 < µ1/2(G) + µ1/2(H) = E 1A∈G + 1 ̄  ,A∈H 

A 

¯so with positive probability 1A∈G +1Ā∈H > 1, i.e. there is A such that A ∈ G, A ∈ H, and we take G = A, 
H = Ā . 

We now combine Lemma 4.1 and Claim 4.2 to show that quasi-random families are not cross intersect-
ing. 

Lemma 4.3. For all α, ζ > 0 there exists r ∈ N, ε > 0 such that the following holds. Suppose ζ < p 6 1 −ζ2 
and G, H ⊆ P ([n]) are monotone families such that µp(G), µp(H) > α, and each one of them is (r, ε)-
quasi-random. 

Then there are disjoint G ∈ G, H ∈ H. 

1Proof. Take ξ = 2 − p > ζ, and find (r, ε) from Lemma 4.1. Then we get that 

µp+ξ(G), µp+ξ(H) > 0.9, 

1and as p + ξ = , we conclude from Claim 4.2 that F , G cross contain disjoint sets, as desired. 2 

4.3 Proof of Theorem 3.1 

Fix ζ, ε > 0 as in the theorem. 
As we argued last time, by moving from F to its upwards closure, we may assume F to be upwards 

closed. 
Set α = ε/2, and choose (r, ε0) from Lemma 4.3. We now take J from Lemma 3.6 for r, ε0 , δ = ε/2 

and ζ. Applying Lemma 3.6 on f = 1F , we find a set T ⊆ [n] of size at most J , such that � � 
Pr fT →z is not (r, ε0) quasi-random 6 δ. 

Tz∼µp 

Define � 
T = A ⊆ T | fT →1A is (r, ε0) quasi-random and µp(fT →1A ) > ε/2 , 

and define the T -junta J = {A ⊆ [n] | A ∩ T ∈ T }. To complete the proof, we will show that µp(F \ J ) 
and that J is intersecting. 
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Bounding µp(F \ J ). Let g : {0, 1}n → {0, 1} be the function of J . Then 

µp(F \ J ) = E [µp((F \ J )T →z)]. 
z∼{0,1}T 

By definition of J , each z for which (F \ J )T →z) is non-empty either satisfies that fT →z is not (r, ε0) 
quasi-random, or that µp(fT →z) < ε/2. Thus, � � 

µp(F \ J ) 6 E 1fT →z is (r, ε0) quasi-random + µp(fT →z)1µp(fT →z )<ε/2 
z∼{0,1}T 

The expectation of the first indicator is at most δ 6 ε/2, and for the second expectation we have that it is at 
most ε/2, hence µp(F \ J ) 6 ε. 

Showing that J is intersecting. We will show that for any A, A0 ∈ T , we have that A ∩ A0 =6 ∅, which 
is clearly enough. 

Assume towards contradiction otherwise, and take disjoint A, A0 ∈ T . Consider the families G = 
FT →A, H = FT →A0 . By definition of T , they are both (r, ε0) quasi-random and have µp-measure at least 
α. Hence by Lemma 4.3 we may find disjoint G ∈ G, H ∈ H. Thus, we have A ∪ G ∈ F and A0 ∪ H ∈ F 
which are disjoint, which contradicts the fact that F is intersecting. 
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