
18.218 Topics in Combinatorics Spring 2021 – Lectures 13,14 

Dor Minzer 

1 Motivation and statement 

In this lecture, we will begin discussing the invariance principle, which is a useful tool allowing one to 
transfer questions from the Boolean hypercube into Gaussian space. This is useful for several reasons: 
in Gaussian space, one may use several properties that are non-existent in the Boolean hypercube. One 
example is rotation invariance (i.e., a the Gaussian distribution over Rn is invariant under rotations) which 
is absent from the cube as rotations of Boolean vectors need not be Boolean vectors themselves. 

An example of this phenomenon is already apparent in the well-known central-limit theorem. This 
theorem states that if X1, . . . , Xn are “reasonable” random variables, independently distributed with mean 0√ 
and variance 1, then the distribution of (X1+. . .+Xn)/ n approaches a standard Gaussian random variable 
N(0, 1). This phrasing, while correct, is a bit misleading in a sense. The point here is that if the random√ 
variables X1, . . . , Xn are reasonable and normalized, then the limiting distribution of (X1 + . . . + Xn)/ n 
does not really depend on the specific distribution of X1, . . . , Xn, and will be the same. In other words, if 

n 
1 P

we look at the linear function f(z1, . . . , zn) = √ zi, then the asymptotic distribution of f(X1, . . . , Xn)n 
i=1 

is the same for al reasonable X1, . . . , Xn. For example, we have that 

f(X1, . . . , Xn) ≈ f(G1, . . . , Gn), 

where X1, . . . , Xn are reasonable and normalized, and G1, . . . , Gn are standard Gaussians. 
The additional fact that f(G1, . . . , Gn) is distributed as a standard Gaussian itself should be thought of 

as a “miracle” in this context; the way we have stated the statement suggests that perhaps one can prove such 
result for more general class of functions f . Indeed, the main question the invariance principle investigates, 
is what classes of functions we can prove such universality of the probability law of f(X1, . . . , Xn) for. 

To get some intuition into this question, we consider a few examples. 

• f(z1, . . . , zn) = z1. 

100Q
• f(z1, . . . , zn) = zi. 

i=1 P Q q1• f(z1, . . . , zn) = zi. 
(n 
3) |S|=3 i∈S 

What goes wrong in the first 3 examples? How can you eliminate them? The issue with the first example is 
that there is a variable with large influence; this means that in a sense, f looks like a dictatorship, and for 
such functions it is clear that a uniform bit {−1, 1} looks differently from a Gaussian random variable. This 
is also the issue with the second example. The issue with the third example is that the degree of f is high. 
The result, that will be the focus of this and next lecture, asserts that if one requires the function to not have 
influential variables and be of low-degree, then an invariance principle holds. More formally: 
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P bTheorem 1.1. For all d ∈ N, if f(x1, . . . , xn) = f(S)χS (x) is a function of degree at most d, and 
|S|6d 

ψ : R → R is a smooth function with kψ000k∞ 6 C, then 

nX 
23d/2E [ψ(f(x))] − E [ψ(f(z))] 6 

C
Ii[f ]

3/2 . 
x∼{−1,1}n z∼N(0,In) 2 

i=1 P 
Corollary 1.2. For all C, ε > 0, d ∈ N there is τ > 0 such that if f(x1, . . . , xn) = fb(S)χS (x) is a 

|S|6d 

function of degree at most d, ψ : R → R is a smooth function with kψ000k∞ 6 C and var(f) 6 C, then 

E [ψ(f(x))] − E [ψ(f(z))] 6 ε. 
x∼{−1,1}n z∼N(0,In) 

Proof. Using the last theorem, we have that this difference is bounded by C 23d/2τI[f ] 6 C 23d/2τdvar(f) 63 3√ � �2
C29d ετ , so choosing τ = 

C29d finishes the proof. 

Thus, the theorem asserts that the distributions of f(x) and f(z) look very similar as far as smooth test 
functions are concerned. The above formulation of the invariance principle is the most basic version of it 
and there are extensions of it: 

1. to non-smooth functions, such as ψ(t) = 1t610. Proving these extensions requires smooth approxi-
mation to such functions, and the idea of anti-concentration in Gaussian space. 

2. There is an extension of this result to functions that are not low-degree, but are close to low-degree 
functions and Lipshitz functions ψ. 

3. The fact that z is distributed according to a standard Gaussian random variable is not very important, 
and similar statements can be made as long as: (1) the first and second moment of coordinates of x 
and z match, and (2) one has a hypercontractive inequality for both functions in x, and functions in z. 

In this lecture, we will first present prove a variant of Theorem 1.1 in the special case that f is a linear 
function. This is a basic result in probability theory called the Berry-Essen Theorem, and will help us in 
order to introduce the replacement method. We will then explain the difference and challenges that will arise 
when we try to adapt the argument to the setting of Theorem 1.1, and then briefly discuss hypercontractivity 
in Gaussian space. 

2 The Berry-Essen Theorem 
nP 

Theorem 2.1. If f(x1, . . . , xn) = aixi, and ψ : R → R is a smooth function with kψ000k∞ 6 C, then 
i=1 

n 
3E [ψ(f(x))] − E [ψ(f(z))] 6 

C X 
ai . 

x∼{−1,1}n z∼N(0,In) 2 
i=1 

Proof. Let x ∼ {−1, 1}n , z ∼ N(0, In) be independent, and for each 0 6 t 6 n consider the following 
hybrid distribution: 

Ut = (x1, . . . , xt, zt+1, . . . , zn); U−(t+1) = (x1, . . . , xt, zt+2, . . . , zn). 
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Note that U0 = z, Un = x, so our difference can be written as 

n−1X 
E [ψ(f(Un))] − E [ψ(f(U0))] = E [ψ(f(Ut+1))] − E [ψ(f(Ut))] 

x∼{−1,1}n z∼N(0,In) x,z x,z 
t=0 

n−1X 
6 E [ψ(f(Ut+1))] − E [ψ(f(Ut))] . 

x,z x,z 
t=0 

Our goal is to bound the summand corresponding to t by Ca3 
t . Fix t. Since f is linear, we may write 

f(Ut+1) = g(U−(t+1)) + at+1xt+1 and f(Ut) = g(U−(t+1)) + at+1zt+1, where g is a function on n − 1P 
coordinates indexed by i = 1, . . . , t, t +2, . . . , n, and defined by g(u) = aiui. We may then write the 

i6=t+1 
tth-summand in the above sum as � � �� � � �� 

E ψ g(U−(t+1)) + at+1xt+1 − E ψ g(U−(t+1)) + at+1zt+1 . 
x,z x,z 

Fix u = U−(t+1), and expand g according to Taylor’s theorem around the point g(u). We get 

ψ00(g(u))w 2 ψ000(ξ)w 3ψ(g(u) + w) = ψ(g(u)) + ψ0(g(u))w +
1 

+
1 

,
2 3! 

where ξ ∈ (g(u), g(u) + w) is some point. Thus, � � �� 
E ψ g(U−(t+1)) + at+1xt+1 = 
x,z � � 

1 2 2 1 
ψ000(g(ξx 

3E ψ(g(U−(t+1))) + ψ0(g(U−(t+1)))at+1xt+1 + ψ00(U−(t+1))at+1xt+1 + (U−(t+1))))at+1x , 
x,z 2 6 t+1 

where ξx(U−(t+1)) is some random variable. Using the fact that U−(t+1) and xt+1 are independent and that 
the first and second moment of xt+1 are 0 and 1 respectively, we get that � � �� 

E ψ g(U−(t+1)) + at+1xt+1 
x,z � � 

1 2 1 
ψ000(ξx 

3 = E ψ(g(U−(t+1))) + ψ00(ξ(U−(t+1)))at+1 + (g(U−(t+1))))at+1xt+1 . 
x,z 2 6 

Similarly, we have � � �� 
E ψ g(U−(t+1)) + at+1zt+1 
x,z � � 

1 2 1 
ψ000(g(ξz 

3 = E ψ(g(U−(t+1))) + ψ00(ξ(U−(t+1)))at+1 + (U−(t+1))))at+1zt+1 , 
x,z 2 6 

and taking the difference we get 

� � �� � � �� 
E ψ g(U−(t+1)) + at+1xt+1 − E ψ g(U−(t+1)) + at+1zt+1 
x,z x,z 

1 � � 
ψ000(g(ξx 

3 
t 
3
+1 + ψ000(g(ξz 

3 36 E (U−(t+1))))at+1x (U−(t+1))))at+1z . 
6 x,z 

t+1 
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To finish the proof, we use the triangle inequality and bound each expectation separately. For the first one 
we have h i� � 

ψ000(g(ξx 
3 3E (U−(t+1))))at+1xt+1 6 C |at+1|3 E |xt+1|3 = C |at+1|3 

x,z x,z 

as |xt+1| 6 1. For the second one we have h i� � 4 
E ψ000(g(ξz(U−(t+1))))a 3 3 6 C |at+1|3 E |zt+1|3 = C |at+1|3 √ .t+1zt+1 
x,z x,z 2π 

Combining, we get that � � 
1 4 C 

E [ψ(f(Ut+1))] − E [ψ(f(Ut))] 6 1 + √ C |at+1|3 6 |at+1|3 . 
x,z x,z 6 2π 2 

1Is this error bound even good? Note that in the central-limit theorem setting, we would have ai = √ ,
n 

Cso the error bound we have simplifies to √ , which is very decent. In general, one can expect a bound on
2 n 

nP 
2the sum of squares of the ai’s, say a 6 1 (as is often the case in applications), and then we automatically i 

i=1 

get that the error can be further upper bounded by C maxi |ai|.2 

2.1 Generalizing the argument to low-degree polynomials 

Can you see how to adapt the above argument to the setting of Theorem 1.1? What did we really do when 
we wrote f(Ut+1) = g(U−(t+1)) + at+1zt+1? What we really did here is check the influence of variable 
t + 1 on the function at the point Ut+1. This can be generalized to low-degree polynomials by considering X X 

g(Ut+1) = fb(S)χS (Ut+1), ∂t+1f(Ut+1) = fb(S)χS\{t+1}(Ut+1), 
S 63t+1 S3t+1 

and then we can write f(Ut+1) = g(Ut+1) + zt+1∂t+1f(Ut+1) and f(Ut) = g(Ut) + xt+1∂t+1f(Ut). 
Noting that both g(Ut+1) and ∂t+1f(Ut+1) do not depend on the t + 1 coordinate, we get that g(Ut+1) = 
g(Ut), ∂t+1f(Ut+1) = ∂t+1f(Ut). At this point, one may attempt to run the argument from the proof 
of Theorem 2.1, and everything goes through until the part where we need to bound the third powers of 
the remainder of Taylor’s theorem. We will do that using hypercontractivity, but we should note here that 
we have a function that takes as input both Gaussian as well as bits, so we should first justify that the 
hypercontractive inequality holds for such functions. 

3 Hypercontractivity in Gaussian space 

Hypercontractivity can be abstracted and generalized beyond the Boolean hypercube and you can read about 
such formalization in Ryan O’Donnell’s book. Our treatment here would be more specialized to the setting 
we are in. 

−zConsider the Gaussian real line, i.e. (R, µ) where µ(z) = √1 e 
2/2 is the Gaussian density measure. 

2π R ∞We consider the space of functions f : R → R equipped with the inner product hf, gi = ∞ f(x)g(x)dµ. 
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One may to find the analog of the Fourier expansion in this setting, and indeed there is such one. A good 
orthonormal set in this case is known as Hermite polynomials, given as h0(z) ≡ 1, and for k > 1 

dk 
z2/2 −z2/2hk(z) = (−1)k e e . 

dzk 

The first few Hermite polynomials are h1(z) = z, h2(z) = z2 − 1, h3(z) = z3 − 3z, and they satisfy a 
bunch of nice properties we will not discuss further here. 

Thus, we get a basis for the space of functions f : (Rn, µ⊗n) → R by h~ (z1, . . . , zn) where ~k = 
k 

nQ
(k1, . . . , kn) and h~k(z1, . . . , zk) = hki (zi). The Hermite expansion of f is 

i=1 X 

~k 

Lastly, we need the notion of degrees. The degree of h~ is k1 + . . .+kn, and the degree of f is the maximum 
k 

degree of h~ such that fb(~k) =6 0.
k 

Lemma 3.1 (Hypercontractivity for Gaussian space). Suppose f : (Rn, µ⊗n) → R is a function of degree 

bf(z) = f(~k)h~ (z).k 

at most d, and q > 2. Then 
kfkq 6

p
− 1q 

d kfk2. 

Proof. Consider the sequence of functions gr for r = 1, . . . , ∞ where we have xi,j independent ±1 bits for 
i = 1, . . . , n and j = 1, . . . , r, defined by ⎞PP⎛ 

r r ⎜⎜⎜⎝ 

x1,j xn,j 
j=1 j=1 √ , . . . , √ 

r r 

⎟⎟⎟⎠gr(x) = f . 

rP 
x1,j 

Note that as j=1√ approach a standard Gaussian random variable, we have that 
r ih Z ∞ 

lim E |gr(x)| ` = |f(z)| ` dµ⊗n 
r→∞ x −∞ 

for all ` ∈ N. Note that gr has degree at most d, so combining this with hypercontractivity for bits we get 
that p 4d 

q − 1 kgrk4 
2 = 

p 
q − 1 

4d kfk42,kfk44 = lim kgrk44 6 lim 
r→∞ r→∞ 

p 

finishing the proof. 

In a similar fashion, we may prove a hypercontractive inequality for functions that get as input both ± 
bits and Gaussians. For f : {−1, 1}t × Rn−t → R, we consider the natural orthonormal basis indexed by 

~ ~(S, k) where S ⊆ [t], k = (kt+1, . . . , kn) and given as χ (x, z) = χS (x)h~ (z). We define the degree of 
S,~k k 

χ as |S| + kt+1 + . . . + kn, and the degree of f as the maximal degree of χ supported in its Fourier 
S,~k S,~k 

expansion. 

Lemma 3.2. Suppose f : {−1, 1}t × Rn−t → R is a function of degree at most d, and q > 2. Then 

d kfkq 6 q − 1 kfk2. 
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4 Proof of Theorem 1.1 

We are now in the position to prove Theorem 1.1. The proof is almost the same as the proof of Theorem 2.1, 
and as so we will be more brief and focus on the places where there is a difference. 

Proof. Let x ∼ {−1, 1}n , z ∼ N(0, In) be independent, and for each 0 6 t 6 n consider the following 
hybrid distribution: 

Ut = (x1, . . . , xt, zt+1, . . . , zn). 

Note that U0 = z, Un = x, so our difference can be bounded as before by 

n−1X 
E [ψ(f(Ut+1))] − E [ψ(f(Ut))] . 
x,z x,z 

t=0 

Fix t, and recall the functions X X 
g(Ut+1) = fb(S)χS (Ut+1), ∂t+1f(Ut+1) = fb(S)χS\{t+1}(Ut+1), 

S 63t+1 S3t+1 

We may write f(Ut+1) = g(Ut+1) + xt+1∂t+1f(Ut+1) and f(Ut+1) = g(Ut+1) + zt+1∂t+1f(Ut+1), 
and then write the tth-summand in the above sum as � � �� � � �� 

E ψ g(Ut+1) + xt+1∂t+1f(Ut+1) − E ψ g(Ut+1) + zt+1∂t+1f(Ut+1) . 
x,z x,z 

We use Taylor’s theorem to get that h� � �� 
E ψ g(Ut+1) + xt+1∂t+1f(Ut+1) = E ψ(g(Ut+1)) + ψ0(g(Ut+1))xt+1∂t+1f(Ut+1) 
x,z x,z 

2+
1 
ψ00(g(Ut+1))xt+1∂t+1f(Ut+1)

2 

2 i 
ψ000(g(ξx 

3+
1 

(Ut+1)))xt+1∂t+1f(Ut+1)
3 ,

6 

and h� � �� 
E ψ g(Ut+1) + zt+1∂t+1f(Ut+1) = E ψ(g(Ut+1)) + ψ0(g(Ut+1))zt+1∂t+1f(Ut+1) 
x,z x,z 

1 
ψ00(g(Ut+1))z 

2+ t+1∂t+1f(Ut+1)
2 

2 i 
ψ000(g(ξz 

3+
1 

(Ut+1)))zt+1∂t+1f(Ut+1)
3 . 

6 

Thus, the first three terms match, and taking the difference we get 

� � �� � � �� 
E ψ g(Ut+1) + at+1xt+1 − E ψ g(Ut+1) + at+1zt+1 
x,z x,z 

1 � � 
ψ000(g(ξx 

3 ++ψ000(g(ξz 
36 E (Ut+1)))xt+1∂t+1f(Ut+1)

3 (Ut+1)))zt+1∂t+1f(Ut+1)
3 . 

6 x,z 

6 
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To bound the first expectation, we note that it is at most h i √ d 
C · E |∂t+1f(Ut+1)|3 = C · k∂t+1fk33 6 C( 2 k∂t+1fk2)3 6 C23d/2It+1[f ]

3/2 . 
x,z 

For the second expectation, we bound it by h i 
C · E |zt+1|3 |∂t+1f(Ut+1)|3 = C √ 

4 · k∂t+1fk33 6 √ 
4C 

23d/2It+1[f ]
3/2 , 

x,z 2π 2π 

and combining these bounds finishes the proof. 

5 Extensions of the invariance principle 

We shall now see several extensions of the invariance principle. These are by no way extensive. 

5.1 Invariance principle for non-smooth test functions 

In this section, we show that the invariance principle continues to hold for some non-smooth functions. We 
will consider cutoff functions, i.e. ψt(y) = 1y>t, and for simplicity we consider the case t = 0. P bTheorem 5.1. For all d ∈ N, ε > 0 there is τ > 0 such that if f(x1, . . . , xn) = f(S)χS (x) is a 

|S|6d 

function of degree at most d, and maxi Ii[f ] 6 τ , then 

E [ψ0(f(x))] − E [ψ0(f(z))] 6 ε. 
x∼{−1,1}n z∼N(0,In) 

5.1.1 Smooth approximation of ψ0 

To prove this statement, we use smooth approximations. Namely, we fix a parameter δ and find a function 
ψδ such that: � �

11. ψδ : R → [0, 1] has continuous third derivative and kψ000k∞ 6 O 
δ3 .δ 

2. ψδ(y) = 0 for y 6 0 and ψδ(y) = 1 for y > δ. 

This is a standard construction from calculus, and we quickly outline it below. Consider h : R → [0, ∞) 
defined by h(y) = αe−1/(1−y

2) for |y| 6 1 and h(y) = 0 otherwise, where α is chosen so that the integral 
of h is 1; the function h is called a mollifier. Then h is smooth and kh000k∞ = O(1). Consider 

ψ(y) = (1(−∞,0] ∗ h)(y). 

1. If y 6 −1, then Z ∞ Z 0 

ψ(y) = 1(−∞,0](w)h(y − w)dw = h(y − w)dw = 1. 
−∞ −∞ 

2. If y > 1, then Z ∞ Z 0 

ψ(y) = 1(−∞,0](w)h(y − w)dw = h(y − w)dw = 0. 
−∞ −∞ 
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Additionally, ψ is smooth with kψk∞ = O(1). Take ψ2(y) = ψ2(1 − y), so that ψ2 = 0 on y 6 0, and 
= 1 on y > 2. Take ψδ(y) = ψ2(

y ) so that ψδ = 0 for y 6 0 and ψ3 = 1 for y > δ. We have by the ψ2 δ 
chain rule that kψδ 

000k∞ 6 O(1/δ3) · kψk∞ = O(1/δ3). 

5.1.2 An anticoncetration bound in Gaussian space 

If G ∼ N(0, 1), and I ⊆ R is an interval of length ε, then one can easily show that Pr [|G| 6 ε] 6 O(ε). 
The following theorem, due to Carbery and Wright, generalizes this fact to multi-linear polynomials. P P 

2Theorem 5.2. Suppose f(x) = aS χS is a multi-linear polynomial such that a 6 1, and I ⊆ RS 
0<|S|6d S 

is an interval of length at most ε. Then 

[|f(z)| 6 ε] 6 O(dε1/d).Pr 
z∼N(0,1) 

5.1.3 Proof of Theorem 5.1 

We prove that 
E [ψ0(f(x))] − E [ψ0(f(z))] 6 ε, 

x∼{−1,1}n z∼N(0,In) 

and the proof of the other inequality is analogous. Let δ > 0 to be determined, and pick ψδ from the previous 
section. Then � � 

1 √ 
23d/2dE [ψ0(f(x))] 6 E [ψδ(f(x))] 6 E [ψδ(f(z))] + O τ . 

x∼{−1,1}n x∼{−1,1}n z∼N(0,In) δ3 

where we used Theorem 1.1. Note that ψδ(f(z)) = ψ0(f(z)) if f(z) > δ or f(z) 6 0, and otherwise it is 
at most 1, so 

E [ψδ(f(z))] 6 E [ψ0(f(z))] + Pr [0 6 f(z) 6 δ]. 
z∼N(0,In) z∼N(0,In) z∼N (0,In) 

Combining the two inequalities and using Theorem 5.2 we get that � � 
1

23d/2d 
√ 
τ + O(dδ1/d).E [ψ0(f(x))] 6 E [ψ0(f(z))] + O 

x∼{−1,1}n z∼N(0,In) δ3 

We choose δ = 2−C·d log(d/ε) for large enough C > 0 so that the second error term is at most ε/2, and then 
τ small enough so that the first term is at most ε, and the proof is concluded. 

5.1.4 Piecewise smooth functions 

Using Theorem 5.1, it is not hard now to show that invariance holds for all piecewise smooth test functions 
ψ, i.e. test functions for which there is a partition of the real line into intervals R = I1 ∪ . . . ∪ Ir such that 
ψ is smooth in the interior of each Ii. We omit the proof. 
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5.2 Invariance principle for functions with small Fourier tails 

Next, we extend the invariance principle to functions that are not low-degree, but almost low degree. P bTheorem 5.3. For all C, ε > 0, d ∈ N there is τ > 0 such that if f(x1, . . . , xn) = f(S)χS (x) is a 

function such that maxi Ii[f
6d] 6 τ , and ψ : R → R is a piecewise smooth function C-Lipshitz function 

with kψ000k∞ 6 C, 

E [ψ(f(x))] − E [ψ(f(z))] 6 ε + 2Ckf>dk2. 
x∼{−1,1}n z∼N(0,In) 

= f6d + f>dProof. Write f . Then since ψ is C-Lipshitz 

h i h i 
E [ψ(f(x))] − E ψ(f6d(x)) 6 E C f6d(x) 6 Ckf6dk2. 

x∼{−1,1}n x∼{−1,1}n x∼{−1,1}n 

Similarly, 

h i h i 
E [ψ(f(z))] − E ψ(f6d(z)) 6 E C f6d(z) 6 Ckf6dk2. 

z∼N (0,In) x∼{−1,1}n z∼N(0,In) 

The result now follows from Theorem 5.1. 

5.3 Other extensions of the invariance principle 

There are other extensions of the invariance principle: multi-dimensional versions, more relaxed require-
ments, general product domains and more. We will not elaborate on these points further. 

6 Majority is stablest 

We finish this lecture by showing one prominent application of the invariance principle, which was actually 
the original motivation for it. The Gaussian analog of the majority is stablest theorem was already known in 
the 19th century, and the idea of Mossel, O’Donnell and Oleszkiewicz was to deduce the Boolean case from 
it. We will show this reduction, starting with presenting the theorem in the Gaussian case. 

Definition 6.1. For ρ ∈ [0, 1], the operator Tρ acting on functions f : Rn → R is defined as h p i 
Uρ(z) = E f(ρz + 1 − ρ2w) . 

w∼N (0,In) p
Note that the distribution of ρz + 1 − ρ2w is standard Gaussian that is ρ-correlated with z, so this is 

the analog of the noise operator from the Boolean case. It is easy to check that UρχS (z) = ρ|S|χS (z) for 
all monomials χS . 

Definition 6.2. Given ρ ∈ [0, 1] and f : Rn → R, the noise stability of f with parameter ρ is Stabρ(f) = 
hf, Uρfi. 

9 
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The Gaussian analog of the majority is stablest theorem states that half-spaces maximize the noise 
stability of balanced, bounded functions: 

Theorem 6.3. [Borel’s theorem] Let ρ ∈ [0, 1], and f : Rn → [−1, 1] with E[f ] = 0. Then Stabρ(f) 6 
1 − 2 Arccos(ρ).π 

We will not prove this theorem here, though at least for many values of ρ there is a relatively simple 
proof due to Kindler and O’Donnell, and in general there are several known proofs which are not too hard. 
Instead, we will show how to deduce the Majority is Stablest theorem from it. 

Theorem 6.4. For all ε > 0, ρ ∈ (0, 1) there are d ∈ R and τ > 0 such that if f : {−1, 1}n → [−1, 1] is 
balanced and maxi Ii[f

6d] 6 τ , then 

Stabρ(f) 6 1 − 
2 
Arccos(ρ) + ε. 

π 

Proof. Let δ > 0 small to be determined, and let f 0 = T1−δf . In the homework you will show that 
Stabρ(f) 6 Stabρ(f 0) + Oρ(δ), and in the rest of the proof we will upper bound Stabρ(f 0). 

Take d ∈ N to also be determined later, and define the function Square(t) = t2 for t ∈ [0, 1] and 
Square(t) = 0 for t 6 0, and otherwise 1. Then Square is 2-Lipshitz and piecewise smooth, so we may 
apply the invariance principle on it. Now that h i 

Stabρ(f
0) = hf 0 , Tρf

0i = hT√ 
ρf
0 , T√ 

ρf
0i = E Square(T√ 

ρf
0(x)) . 

x∼{−1,1}n 

Thus, by Theorem 5.3 we have 

Stabρ(f
0) 6 E 

h 
Square(T√ 

ρf
0(z)) 

i 
+ 
ε 
+ 4k(T√ 

ρf
0)>dk2 

z∼N(0,In) 2 

for τ (d, ε) > 0 small enough. Note that X 
k(T√ 

ρf
0)>dk2 6 fb0(S)2 6 (1 − δ)2d ,2 

|S|>d 

so the second error term is at most 4(1 − δ)d . Next, we would like to apply Theorem 6.3. Towards this end, 
note first that as f is multilinear, T√ 

ρf
0 = U√ 

ρf
0 . It may not necessarily be the case that f 0 is bounded on 

Rn (in fact it is most likely not), and to get around this issue we will argue that it is “mostly bounded”. 
Define trunc(s) = s if |s| 6 1, and otherwise 1 if s > 1 or −1 if s < −1, and consider the function 

F (z) = trunc(f 0(z)). By Theorem 5.3 � � � � � � 
E F (z) − f 0(z) = E dist(f 0(z), [0, 1]) 6 E dist(f 0(x), [0, 1]) + 4k(f 0)>dk2, 

z∼N(0,In) z∼N (0,In) x∼{−1,1}n 

and the first expectation is 0 whereas the error term is at most 4(1 − δ)d . In particular, it follows that h i h i 
E Square(T√ 

ρf
0(z)) 6 E Square(T√ 

ρF (z)) + 4(1 − δ)d = Stabρ(F ) + 4(1 − δ)d 

z∼N(0,In) z∼N(0,In) 

Finally, to apply Theorem 6.3 we would like F to be balanced. Note that 

E[F ] = E[F ] − E[f 0] 6 E[ F (z) − f 0(z) ] 6 4(1 − δ)d , 
z z z z 
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so F is nearly balanced. It is not hard to show that in that case, the conclusion of Theorem 6.3 holds with 
F −E[F ]bit of an error bound. For example, letting F 0 = 

1+4(1−δ)d , we have that F 0 is balanced and bounded so 

Stabρ(F 0) 6 1 − 2 Arccos(ρ), and π 

Stabρ(F ) − Stabρ(F 0) 6 4kF − F 0k1 6 4 · 4(1 − δ)d(kF k1 + 1) 6 32(1 − δ)d . 

Combining everything, we get that h i 
Stabρ(f) 6 Stabρ(f

0) + Oρ(δ) 6 E Square(T√ 
ρf
0(z)) + Oρ(δ) + O((1 − δ)d) 

z∼N(0,In) 

6 Stabρ(F ) + Oρ(δ) + O((1 − δ)d) 

6 1 − 
2 
Arccos(ρ) + Oρ(δ) + O((1 − δ)d). 

π 

Choosing δ(ρ) > 0 now so that the first error bound is at most ε, and then d so that the second error bound 
is at most ε/2, finishes the proof. 
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