
18.218 Topics in Combinatorics Spring 2021 – Lecture 16 

Dor Minzer 

In this lecture, we will discuss the Max-Cut problem in more detail. We will show the Goemans-
Williamson algorithm, and show that assuming the Unique-Games Conjecture presented last time, this al-
gorithm is tight. 

1 The Goemans-Williamson algorithm 
1Recall that last time, we have seen a -approximation algorithm for the Max-Cut problem. In 1995, Goe-2 

mans and Williamson showed that (surprisingly), this simple algorithm is not optimal, and that there is a 
better approximation algorithm that achieves αGW ≈ 0.87856 times the optimum in this problem. Their 
algorithm is very geometric in spirit, and is a prominent example of the use of semi-definite programming 
relaxations in order to solve optimization problems. 

1.1 The integer programming relaxation 

We first phrase the Max-Cut problem as an integer program. For each vertex v ∈ V we create a variable 
xv, whose value is supposed to be in {−1, 1}. The idea is that xv = 1 will represent that v is on the left 
side, and xv = −1 will represent that v is on the right side. Thus, if (u, v) ∈ E, then xuxv = −1 iff (u, v) 
crosses the cut, and otherwise xuxv = 1. Therefore, the following program solves Max-Cut P 

max 1 
2 1 − xuxv 
(u,v)∈E 

subject to xv ∈ {−1, 1} ∀v ∈ V. 

However, integer programming is NP-hard in general. Hence it seems that making this formulation doesn’t 
advance us anywhere. That being said, this formulation does motivate us to look at higher dimensional, 
semi-definite program formulation of the problem (SDP). 

1.2 The semi-definite programming relaxation 

In the SDP formulation of the problem, instead of having a sign ±1 for each xu, we allow xu to take any 
value in the unit ball in Rm (where m has to be chosen appropriately). 

1 P 
max 2 1 − hxu, xvi 

(u,v)∈E 

subject to kxvk2 = 1 ∀v ∈ V. 

The good feature of this program, is that one can solve this optimization problem now. 1 The bad feature of 
this program is that a solution no longer gives us a cut; at least not in a straight-forward. But now we get to 

1At least approximately, and thanks to the convexity that this has introduced to the problem. This is really an optimization 
problem over the cone of PSD matrices; the matrix here is the matrix of inner products J = (hxu, xv i)u,v∈V . We will not 
elaborate on this fact further in this course. 
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the amazing part: one can actually take a vector solution to the SDP program, and salvage from it a pretty 
good cut! 

Here’s the idea. Suppose the optimum size of the cut in our graph G is ρ |E|, where ρ ∈ [1/2, 1], and 
let {xv} be a solution to SDP program. First, it is clear that the optimum of the SDP program is at least v∈V 
ρ |E| (why?), so in particular X1 

1 − hxu, xvi > ρ |E| . 
2 
(u,v)∈E 

We now generate a randomized cut from the vector solution. Take a random vector h from the unit ball in 
Rm, and define 

L = {v | hxv, hi 6 0} ; R = {v | hxv, hi > 0} . 

Our goal is to analyze the expected number of edges that crosses the cur (L, R). Fix an edge (u, v) ∈ E; 
then the probability that (u, v) is cut is θu,v/π, where θu,v is the angle between u and v. Thus, by linearity 
of expectation the expected size of the cut is X X Xθu,v Arccos(hxu, xvi) 

= > αGW (1 − hxu, xvi) > αGW ρ |E| . 
π π 

(u,v)∈E (u,v)∈E (u,v)∈E 

Arccos(z)/πHere, αGW = minz∈[−1,1] ≈ 0.878 . . .; given this expectation calculation, standard tools allows (1−z)/2 
one to design an approximation algorithm that achieves this approximation ratio. 

Note that the calculation that we did here is eerily similar to the calculation we did to compute the 
stability of the majority function. This turns out not to be a coincidence, as we will see later on in this 
lecture. 

1.3 The Goemans-Willaimson algorithm for almost bipartite graphs 

With a more careful analysis, one can show that if the original size of the cut was very large, say ρ = 1 − ε 
for small ε, then the above analysis could be significantly improve. 

Theorem 1.1. Suppose G = (V, E) has a cut of size (1 − ε) |E|. Then the expected size of the cut in the � √ � 
Goemans-Williamson algorithm is at least 1 − 2 ε − O(ε1.5) |E|.π 

2 A hardness result for Max-Cut 

In this section, we prove the following result due to Khot, Kindler, O’Donnell and Mossel. 

Theorem 2.1. Assuming the Unique-Games Conjecture, for all ρ ∈ (0, 1) and ε > 0, given a graph 
G = (V, E) it is NP-hard to distinguish between the following two cases: 

1. YES case: G has a cut of fractional size at least 12 + 12 ρ − ε. 

2. NO case: all cuts in G have fractional size at most 1 − 1 Arccos(ρ) + ε.π 

In gap notations, gap-MaxCut[ρ, 1 − Arccos(ρ) + ε] is NP-hard for all ρ ∈ (0, 1), ε > 0, assuming the 
Unique-Games Conjecture. Choosing ρ = −z where achieves the minimum in the definition of αGW (z 
turns out to be negative), this theorem implies the optimality of the Goemans-Williamson algorithm. 

To prove this theorem we shall use gap preserving reductions. First, recall the statement of UGC: 
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Definition 2.2. An instance of Unique-Games, denoted by Ψ, is composed of a bipartite, bi-regular graph 
G = (V = L ∪ R, E), a finite alphabet Σ, and a collection of constraints Φ = (φe)e∈E ) one for each edge. 
Each one the constraint φe is a 1-to-1 map, φe : Σ → Σ. 

For an edge e, the constraint φe defines a collection of tuples which are deemed as satisfactory assign-
ments to the endpoints of the edge, which is {(σ, φe(σ)) | σ ∈ Σ}. 
Conjecture 2.3 (The Unique-Games Conjecture). For all η > 0, there exists k ∈ N such that given a 
Unique-Games instance Ψ, it is NP-hard to distinguish between: 

1. YES case: val(Ψ) > 1 − η. 

2. NO case: val(Ψ) 6 η. 

In other words, gap-UniqueGamesk[1 − ε, δ] is NP-hard. 

We will show a polynomial time procedure M : Ψ → G, that given an instance Ψ of Max-Cut, produces 
a graph G, such that: 

1. If val(Ψ) > 1 − η, then G has a cut of fractional size at least 1 
2 +

1 
2ρ − ε. 

2. If val(Ψ) 6 η, then all cuts in G have fractional size at most 1 − 1 
π Arccos(ρ) + ε. 

In particular, once we show this procedure, this proves Theorem 2.1 (why?). This is the type of reductions 
that most often appear in TCS. 

2.1 Dictatorship vs no-influential-coordinates paradigm 

A basic paradigm to prove hardness of approximation results proceeds by constructing instances of the 
problem we’re interested in over the Boolean cube, wherein good solutions corresponds to dictatorship 
functions, whereas any function that only has small individual influences is automatically guaranteed to not 
be a good solution. In our case, we would like to design a (weighted) graph over {−1, 1}n, such that 

1. For any i ∈ [n], the dictatorship cut, i.e. L = {x | xi = 1}, R = {x | xi = −1}, contains many 
edges. 

2. If f : {−1, 1}n → {−1, 1} is balanced, and has no influential coordinates, then the cut that it defines 
does not contain many edges. 

So how would we design such graph in this case? Let ρ > 0 be a parameter, best thought of as close to 1, 
i.e. ρ = 1 − ε. We look at the graph corresponding to −ρ correlated points, i.e. for each x ∈ {−1, 1}n , the 
distribution over its neighbours is the distribution T−ρx. 

1. For any i ∈ [n], the dictatorship cut, i.e. L = {x | xi = 1}, R = {x | xi = −1} contains edges of 
total weight 1 

2 +
1 
2ρ (why?). 

2. If f : {−1, 1}n → {−1, 1} is balanced odd function, and has no influential coordinates, then the size 
of the cut is � � 

1 1 1 1 1 2 
Pr [f(x) 6= f(y)] = (1 − Stab−ρ(f)) = + Stabρ(f) 6 + 1 − Arccos(ρ) + o(1), 
x 2 2 2 2 2 π 

y∼T−ρx 

which is equal to 1 − 1 
π Arccos(ρ) + o(1). Here, we used the Majority is Stablest theorem. 

Thus, using the Majority is Stablest theorem we managed to construct a graph on the Boolean cube wherein 
dictators correspond to good cuts, and functions that have no influential coordinates correspond to bad cuts. 
In the rest of this lecture, we will see how to transfer this construction into a hardness result, assuming UGC. 
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2.2 A reduction from Unique-Games to Max-Cut 

We are now ready to present the reduction. Let ρ = 1 − ε. Starting with a bi-partite UG instance Ψ = 
(V ∪ U, E, Σ, Φ), we wish to construct a Max-Cut instance with the properties described above. The idea 
will be to introduce, for each vertex v ∈ V a separate hybercube {−1, 1}Σ, and using a cut in that hypercube 
to encode the label that v is supposed to get in Ψ. More specifically, we will want to associate with each 
label σ of v which is supposed to have high value; this will be the dictatorship cut, i.e. the cut defined by 
fv(x) = xσ. Once we do that, we will be able to argue that if Ψ has a good assignment, then the graph we 
produce G will have a large cut corresponding to the dictatorship functions in each hypercube. 

To ensure soundness, we must take care of two potential issues: 

1. Penalizing cuts that are defined by functions that do not “resemble” any dictatorship. We have already 
dealt with this issue the last section, wherein we argued that in that case the cut size would be at most 
1 − 1 Arccos(ρ) + o(1) if f does not have any coordinate with significant low-degree influence. π 

2. Penalizing violating the constraints of Ψ. Namely, suppose we have two vertices v ∈ V , u ∈ U 
that have an edge between them, and they have been assigned by dictatorship functions fv(x) = xσv , 
fu(x) = yσu , but σv, σu do not satisfy the constraint between v and u in Ψ. In that case, we would 
want to penalize this cut, as it does not correspond to a good assignment in Ψ. To deal with this 
issue, our edges will not really be inside the hypercube of each vertex v, but rather across hypercubes. 
For that, it is important to note that there is a natural bijection between the hypercube of v and the 
hypercube of u respecting the constraint between them, which is simply x → y where yi = xφu,v (i). 

This almost finishes the informal overview of the reduction, except that if we were to execute the plan 
as is, we would get a bipartite graph (the sides being the hypercubes of V and the hypercubes of U ), and to 
remedy that we only leave one of these sides alive, and take two steps in the graph of Ψ instead of one. 

We now proceed to the formal construction of the reduction. Given Ψ = (V ∪ U, E, Σ, Φ), we construct 
a weighted max-cut instance G = (V 0, E0, w) as follows. 

• The vertices: For each v ∈ V we construct a cube over Σ, {v} × {−1, 1}Σ , which we refer to as the 
long-code of v. A ±1 assignment to these vertices should be thought as a potential encoding one of 
the labels in Σ for v. 

• The edges are weighted according to the following randomized process. Sample u ∈ U and v, v0 ∈ V 
two neighbours of u independently. Let x be a uniformly chosen vector from {−1, 1}Σ , and sample 
y ∼ T−ρx. Consider the points 

0(x), z 0 (y), where φu,v(y)σz = φu,v = φu,v = yφ(u,v)(σ) ∀σ ∈ Σ. 

The edge output by the process is (z, z0). 

We prove the following lemma, encapsulating the analysis of the reduction. 

Lemma 2.4. For all ρ ∈ (0, 1), δ > 0 there is η > 0 such that: 

1. Completeness: if Ψ is at least 1 − η satisfiable, then there is a cut in G of weight at least 1 (1 + ρ) − δ.2 

2. Soundness: if Ψ is at most η satisfiable, then G has no cut whose weight exceeds 1 − 1 Arccos(ρ)+ δ.π 

4 



2.3 Analysis of the reduction 

We now analyze the construction. First, we show the completeness of the construction, asserting that if Ψ is 
highly satisfiable, then there exists a large cut on the graph we have constructed. 

Completeness 

Suppose there is a coloring A : V ∪ U → Σ satisfying at least 1 − η fraction of the edges. We assign ±1 
values to the cube of v according to the dictatorship assignment of A(v). Namely, we define the cut in the 
graph G by 

f(v, x) = xA(v) for (v, x) ∈ V × {−1, 1}Σ . 

We analyze the weight of the cut defined by f . Looking at the process describing the weights of the edges 
in G0 , Since the graph of Ψ is regular, the marginal distribution of each one of the edges (u, v), (u, v0) is 
uniform; therefore the probability one of them is not satisfied by A is at most 2η, so with probability at least 
1 − 2η both edges are satisfied. 

Sample x, y as in the process, and look at φ(u,v)(x), φ(u,v0)(y). Note that yA(u) =6 xA(u) with probability 
1 1+ ρ, and if that happens, since both edges (u, v) and (u, v0) are satisfied, we get that 2 2 

0f(v, z) = zA(v) = zφu,v (A(u)) = xA(u) 6= yA(u) = z φu,v (A(u)) = f(v, z 0). 

1We conclude that the weight of edges crossing the cut is at least 1 + ρ − 2η.2 2 

Soundness 

In this part, we show that if the UG instance Ψ had no good satisfying assignments then the graph G does 
not have a large cut. This is usually done (and so will be our case) in a counter-positive way. Assuming we 
have a large cut in the graph, we will construct a good assignment for Ψ. 

Let f : V × {−1, 1}Σ → {−1, 1} be a function corresponding to a large cut, that is a cut of size at least 
1 Arccos(ρ) + δ. The fractional size of the cut is exactly π � � 

Pr f(v 0 , z) 6= f(v, z) . 
0u,v,v 
0x,y,z,z 

Let ν be a vector from {−1, 1}σ such each coordinate is −1 with probability 1 (1 − ρ). Then the previous 2 
probability is the same as � � 

Pr f(v, φ(u,w)x) 6= f(v 0, ν · φ(u,w0)x) . 0u,v,v 
x,ν 

Define for u ∈ U , v ∈ V � � 
gu(x) = E f(v, φ(u,v)x) , gv(x) = f(v, x). 

v:(u,v)∈E 

Intuitively, u asks his neighbours what side it should be on, and takes the average of the suggestions. Then 
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0 

� � 1 � � 
Pr f(v, φ(u,w)x) 6= f(v 0, ν · φ(u,w0)x) = (1 − E f(v, φ(u,w)x)f(v 0, ν · φ(u,w0)x) ) 

u,v,v 2 u,v,v0 
x,ν x,ν⎛ ⎞� � 

1 � � � � 
= ⎝1 − E E f(v, φ(u,w)x) E f(v 0, φ(u,w0)(ν · x)) ⎠ 
2 u v v0 

x,ν 

1 
= (1 − E [gu(x)gu(ν · x)])
2 u 

x,ν 

1 
= (1 − E [Stab−ρ[gu]]). 
2 u 

We conclude that since the fractional size of the cut is at least 1 − 1 Arccos(ρ) + δ, it holds that π 

2 
E [Stab−ρ[gu]] < Arccos(ρ) − 1 − 2δ. 
u π 

Therefore for at least δ fractional of the u’s, Stab−ρ[gu] < 1 − 2 Arccos(ρ) − δ. We need a version of π 
the Majority is Stablest theorem for negative correlation parameters. 

Theorem 2.5. For all ρ ∈ (0, 1), δ > 0 there exist d ∈ N, τ > 0 such that if f : {−1, 1}n → [−1, 1] is a 
function for which maxi I6d[f ] 6 τ , then i 

2 
Stab−ρ(f) > Arccos(ρ) − 1 − δ. 

π 

Proof. Let fodd be the odd part of f . Then fodd is balanced and we have by the Fourier expression for 
stability that Stab−ρ(f) > Stab−ρ(fodd) = −Stabρ(fodd). By the Majority is stablest theorem we get that 
for appropriate choice of d, τ , Stabρ(fodd) 6 1 − 2 Arccos(ρ) + δ.π 

We fix d, τ corresponding to ρ, δ as in Theorem 2.5 and apply it to get that there is i such that I≤d[gu] >i 
δ. We call such u good. Define n o 

6dListξ(v) = i | Ii [gv] > ξ . 

Since the sum of the d degree influence is at most d, |ListS(v)| 6 d/ξ; the important point is that this 
quantity only depends on ρ, ε (and not on |Σ|). We finish by showing that if u is good and i ∈ Listδ(u), then 
a non-negligible fraction of his neighbours v have φ(u,v)(i) ∈ Listδ/2(w) X

6dIi [gu] = gbu 
2(S) 

S:i∈S,|S|6dX � �2 
= E gbv(φ(u,v)S) , 

v:(u,v)∈E 
S:i∈S,|S|6d 

where we used the definition of low degree influence and the following simple lemma � � 
Lemma 2.6. gbu(S) = Ew:(u,w)∈E gcw(φ(u,w)S) . 
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We continue by using Jensen ⎡ ⎤ X � � X ≤dIi [gu] ≤ E gbv(φ(u,v)S)2 = E ⎣ gbv(φ(u,v)S)2⎦ 
v:(u,v)∈E v:(u,v)∈E 

S:i∈S,|S|≤d S:i∈S,|S|≤d⎡ ⎤ X 
= E ⎣ gbv(T )2⎦ 

v:(u,v)∈E 
T :φ(u,v)(i)∈T,|T |≤d h i 
I≤d = E [gv] .φ(u,v)(i)v:(u,v)∈E 

≤dFrom I [gu] > δ and the above it follows that for at least δ/2 fraction of the v neighbours of u it holds that i 
≤dI [gv] ≥ δ/2, or in other words φ(u,v)(i) ∈ List(v).φ(u,v)(i) 

Randomized assignment to the Unique-Games instance 

Now we finish the proof. For each good u ∈ U assign a label i ∈ Listδ(u) randomly, and for each v ∈ V 
assign a label from Listδ/2(v) randomly. We now lower the probability a randomly chosen edge from Ψ is 
satisfied. 

Choose (u, v) randomly. With probability at least δ, the vertex u is good, and conditioned on that with 
probability at least δ/2, Listδ/2(v) is not empty. We know that it has at most 2d/δ elements and at least one 
of them matches label we assigned to u, and hence the probability the edge is satisfied conditioned on the 

1previous events happening it at least 2d/δ = δ/2d. We conclude that the probability that a random edge is 
satisfied is at least 

δ δ 
δ · · > η, 
2 2k 

in contradiction to the fact we started with a NO case instance of Unique-Games. 
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