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1 The BLR lineairty test 

Recall that a function f : {−1, 1}n → {−1, 1} is called linear if for every x, y ∈ {−1, 1}n it holds that 
f(xy) = f(x)f(y) where (xy)i = xiyi. How does test, given a query access to a function f , if f is a linear 
function or is far from any linear function? 

One idea that makes sense is to consider the following problem. Suppose that f(xy) = f(x)f(y) holds 
for 1 

2 
1 

+ δ fraction of the pairs x, y ∈ {−1, 1}n; what can we say about f? Does it have to be close, in some 
way, to a linear function? This question makes sense both for large δ, i.e. δ = 2 − ε, as well as for small 
δ > 0. 

To answer this question, it is convenient to consider the convolution operation that is defined as follows. 
Given f, g : {−1, 1}n → R, we define f ∗ g : {−1, 1}n → R by: 

(f ∗ g)(x) = E [f(y)g(xy)]. 
y 

The most significant property of convolutions is the effect they have in the Fourier domain, as given in the 
following claim. 

Claim 1.1. For all S ⊆ [n] it holds that f[∗ g(S) = fb(S)gb(S). 
Proof. By definition, 

[f ∗ g(S) = E [(f ∗ g)(x)χS (x)] = E [f(y)g(xy)χS (x)] = E [f(y)χS (y)g(xy)χS (xy)] 
x x,y x,y 

= E [f(y)χS (y)g(z)χS (z)], 
y,z 

and as y, z are independent, the last expectation is equal to fb(S)gb(S). 
Armed with the above claim, we are ready to analyze the linearity test proposed above. 

Theorem 1.2. Suppose f : {−1, 1}n → {−1, 1} is a function such that Prx,y [f(x)f(y) = f(xy)] > 

Then there exists S ⊆ [n] such that fb(S) > 2δ. 

1 
2 + δ. 

Proof. Note that whenever the test passes, the value of f(x)f(y)f(xy) is 1, and otherwise the value is −1, 
so 

E [f(x)f(y)f(xy)] = Pr [f(x)f(y) = f(xy)] − Pr [f(x)f(y) 6= f(xy)] = 2Pr [f(x)f(y) = f(xy)] − 1 
x,y x,y x,y x,y 

> 2δ. 
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Next, we relate the left hand side to the Fourier coefficients of f . By definition of the convolution, � � 

E [f(x)f(y)f(xy)] = E f(x)E [f(y)f(xy)] = E [f(x)(f ∗ f)(x)] = hf, f ∗ fi. 
x,y x y x 

Next, using Plancherel and Claim 1.1, we have X X Xb fb(S)3 6 max fb(S)
S 

fb(S)2 6 max fb(S)kfk 
S 

2
2 

bf(S).hf, f ∗ fi = f(S) [f ∗ f(S) = = max 
S 

S S S 

Combining the two inequalities yields the result. 

Recalling that fb(S) = hf, χS i = 2Prx [f(x) = χS (x)] − 1, we get that a function that passes the 
linearity test with probability 1/2 + δ must have correlation with a Fourier character. This very nice result 
exemplifies the power of the basic machinery we have set up so far; proving it without appealing to Fourier 
analysis is highly challenging. 

Note that when δ = 1 
2 − ε, we even get that Prx [f(x) = χS (x)] > 1 − 2ε, so in this case f is close to 

a linear function. This is one of the earliest and basic results in the field of property testing, and later on in 
the course we will use it in the context of hardness of approximation. 

Remark 1.3. Those of you that are familiar with Roth’s theorem regarding the appearance of 3-term arith-
metic progression in dense subsets of [N ] may notice that similarity between the argument. The case here is 
much simpler since we are working with a group. 

2 Random restrictions 

Another basic and useful tool we will want to add to our toolbox is the notion of restrictions and random 
restrictions. 

¯ 

→ R, a set of coordinates J ⊆ [n] and an 

J→z 

¯¯ 

¯ 
Definition 2.1. Suppose we have a function f : {−1, 1}n 

Jassignment to them z ∈ {−1, 1} . The restricted function f 

J→z J 

: {−1, 1}J → R is defined by 

f (y) = f(x = z, xJ = y). 

→ R and J ⊆ [n], a random restriction of f on J is a function f ¯ 

¯ 

¯ 

¯ 
Definition 2.2. Given f : {−1, 1}n 

J→z 
wherein z ∈ {−1, 1}J is sampled uniformly at random. 

Restrictions and random restrictions are a very powerful tool we will see some uses for throughout the 
course. In this lecture, we will focus on seeing some basic properties of it and intuition to where it is useful 
in. In the next lecture we will see a very cool application of them in the problem of learning Fourier sparse 
functions. 

For now, we will begin by investigating several basic and useful properties of it. First, we give a formula 
for the Fourier coefficients of the restricted function. 

J and S ⊆ J . We have 

J 

Claim 2.3. Let f : {−1, 1}n → R, J ⊆ [n], z ∈ {−1, 1}X bf(S ∪ T )χT (z).¯f[J→z(S) = 
T ⊆ 

2 



¯Proof. We write f according to its Fourier transform, decomposing a character into its J and J parts X Xb bf(x) = f(S ∪ T )χS∪T (x) = f(S ∪ T )χS (xJ )χT (xJ̄). 
S⊆J,T ⊆J̄  S⊆J,T ⊆J̄  

Plugging in the value y to xJ and z to xJ̄ , we get that ⎛ ⎞ X X 
f ̄  (y) = f(y, z) = ⎝ fb(S ∪ T )χT (z)⎠ χS (y).J→z 

S⊆J T ⊆J̄  

The claim now follows from the uniqueness of the Fourier decomposition. 

Using the last claim, we have the following corollary. 

Claim 2.4. Let f : {−1, 1}n → R, J ⊆ [n] and S ⊆ J . We have h i X 
E fJ̄→z .[ (S)2 = fb(S ∪ T )2 

z 
T ⊆J̄  

[Proof. Defining g(z) = f ̄  (S), the left hand side is kgk22 , and the claim follows from the last claim and J→z 
Parseval. 

In some applications, it is useful to consider p-random restrictions, which are random restrictions in 
which the set J of live variables is also chosen randomly. 

Definition 2.5. Given a function f : {−1, 1}n → R and a parameter p ∈ [0, 1], a p-random restriction is 
sampled by: taking J ⊆ [n] randomly by including each i ∈ [n] in J with probability p, and then taking 

J̄  
z ∈ {−1, 1} . 

What is the effect of a random restriction on a function? Let us consider a few examples. Q
1. Monomials: suppose f(x) = χS(x) = xi. Then if we take (J, z) a p-random restriction, we 

i∈S 
expect the restricted function fJ→z to be a (signed) monomial of degree ≈ p |S|. That is, random 
restriction “reduce” the degree of monomials; we will later see a more general statement along these 
lines. W 

2. An OR function, i.e. function of the form i∈I xi. Under random restriction (J, z), the function either 
¯trivializes to 1, if there is a variable Ii in J receiving the value 1, and otherwise the function reduces 

to an OR on roughly p |Ii| variables. V W m3. CNF formulas: i.e. a function f : {0, 1}n → {0, 1} of the form f(x) = xj . Analyzingi=1 j∈Ii 

the effect of random restrictions on such functions is significantly more difficult (the H°astad switching 
lemma). For now it will be enough for us to understand that intuitively, random restrictions signifi-
cantly simplify them: if there is a term that becomes completely 0, the function trivializes to 1; terms 
that become 1 disappear, and the rest considerably shrink in width. 

We will now establish more rigorously several more properties that align and express some of the above 
intuition. We will try to capture the sense in which random restrictions reduce degrees, and for that we 
define the Fourier weight of a function on degrees. 
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Definition 2.6. Let f : {−1, 1}n → R be a function, and d ∈ N. The level d Fourier weight of a function f 
is defined as X 

W =d[f ] = fb(S)2 . 
|S|=d 

We also define W 6d[f ] = 
P 

W =i[f ] and W >d[f ] = 
P 

W =i[f ]. 
i6d i>d 

Claim 2.7. Let f : {−1, 1}n → R, d ∈ N, and let (J, z) be a p-random restriction. Then h i X 
E W =d[f ̄  ] = fb(Q)2Pr [Bin(|Q| , p) = d].J→z 
J,z 

Q 

Proof. Expanding, ⎡ ⎤ ⎡ ⎤ h i X X h i 
=d[f ̄  ⎣ [ (S)2⎦ = E ⎣ [ (S)2 ⎦E W J→z] = E fJ̄→z f ̄  .1S⊆J E J→z 

J,z J,z J z 
S⊆J,|S|=d |S|=d 

Using Claim 2.4 we calculate the innermost expectation and hence get that ⎡ ⎤ h i X X X � � bE W =d[fJ̄→z] = E ⎣ 1S⊆J fb(S ∪ T )2⎦ = E 1|Q∩J |=d f(Q)
2 

J,z J J 
|S|=d T ⊆J̄  QX b= f(Q)2Pr [Bin(|Q| , p) = d]. 

Q 

There are two immediate corollaries one may derive from the above claim. The first one is that if f has 
most of its Fourier mass below level d, then f ̄  has most of its Fourier mass below level ≈ pd.J→z 

Corollary 2.8. Suppose that f : {−1, 1}n → {−1, 1} satisfies W>d[f ] 6 ε, and let (J, z) be a p-random 
restriction. Then h i 

W >2pd[f ̄E J→z] 6 ε + exp(−Θ(pd)). 
J,z 

Proof. Summing the previous claim, we have that h i X X 
E W >2pd[fJ̄→z] = fb(Q)2Pr [Bin(|Q| , p) > 2pd] = W =k[f ]Pr [Bin(k, p) > 2pd]. 
J,z 

Q k>0 

We break the last sum into two. For k > d, we bound it by W >d[f ], which by the premise of the statement 
is at most ε. For k < d, we have that 

Pr [Bin(k, p) > 2pd] 6 Pr [Bin(d, p) > 2pd] 6 exp(−Θ(pd)), 

P 
so the total contribution from these summands is at most W =k[f ]exp(−Θ(pd)) = kfk22exp(−Θ(pd)) = 

k>0 

exp(−Θ(pd)). 

The second corollary asserts that if f has sizable mass around level d, then f ̄  has sizable weight J→z 
around level pd. 
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P 
Definition 2.9. We define the weight around level d to be W ≈d[f ] = W =k[f ]. 

d6k62d 

Corollary 2.10. Let d ∈ N and p ∈ [0, 1] be such that pd > 10. Suppose that f : {−1, 1}n → {−1, 1}
satisfies W>d[f ] 6 ε, and let (J, z) be a p-random restriction. Then h i 

W ≈pd[f ̄E ] > Ω(W ≈d[f ]).J→z 
J,z 

Proof. The proof is similar to the proof of the last statement and is left to the reader. 
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