
18.218 Topics in Combinatorics Spring 2021 – Lecture 6

Dor Minzer

In this lecture, we will present more advanced applications of the hypercontractive inequality.

1 The FKN theorem

Recall that in the homework assignment, you have seen that degree 1 Boolean functions must be a dicta-
torship or an anti-dictatorship. The following theorem is a stability-version of that statement, showing that
Boolean functions that are close to being degree 1 are close to dictatorships or anti-dictatorships.

Theorem 1.1. Suppose a function f : {−1, 1}n → {−1, 1} is ε-close to a degree 1 function in `22, i.e.
‖f − f=1‖22 6 ε. Then, there exists bi ∈ {−1, 1} and i ∈ [n] such that ‖f − bixi‖2 = O(ε).

Proof. Let `(x) = f=1(x) =
n∑
i=1

aixi. Expanding, we see that

`(x)2 =

n∑
i=1

a2i + 2
∑
i<j

aiajxixj .

Therefore, var(`2) = 4
∑
i<j

a2i a
2
j = 2

((
n∑
i=1

a2i

)2

−
n∑
i=1

a4i

)
. We will argue that the variance of `2 is small,

and
n∑
i=1

a2i ≈ 1, from which the proof will quickly be concluded.

Bounding
n∑
i=1

a2i . Note that
n∑
i=1

a2i = E
[
`2
]

= E
[
f2
]
− E

[
(f − `)2

]
> 1− ε.

Bounding var(`2). Letting h(x) = `2(x)−E
[
`2
]

=
∑
i6=j

aiajxixj , we have var(`2) = ‖h‖22, and our goal

is to bound the 2-norm of h. By the 1-norm trick, as h is a degree 2 function ‖h‖2 6 9‖h‖1, and computing

‖h‖1 6 ‖`2 − f2‖1 +

∣∣∣∣E [`2]− 1

∣∣∣∣ 6 ‖`− f‖2‖`+ f‖2 + ε 6
√
ε2 + ε 6 3

√
ε.

Thus, ‖h‖2 6 27
√
ε.

Finishing the proof. Staring now at var(`2) =

(
n∑
i=1

a2i

)2

−
n∑
i=1

a4i , we get that

(27
√
ε)2 > (1− ε)2 −

n∑
i=1

a4i ,
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so
n∑
i=1

a4i > 1−O(ε). Thus,

max
i
a2i

n∑
i=1

a2i > 1−O(ε),

and as
n∑
i=1

a2i 6 1, we get maxi a
2
i > 1 − O(ε). This shows that there is i? such that |ai? | > 1 − O(ε).

Assume without loss of generality that ai? > 1−O(ε); we thus get

1−O(ε) 6 ai? = f̂({i?}) = 2Pr
x

[f(x) = xi? ]− 1,

and so Prx [f(x) = xi? ] > 1−O(ε).

Remark 1.2. An interesting question which is not fully understood asks for extensions of this theorem
to degree d functions. Namely, what can one say about a degree d function that is close to Boolean? The
question however is more delicate, as the precise notion of closeness depends on d, and we will not elaborate
on this further for now.

2 The Fourier spectrum of small-sets

Suppose S ⊆ {−1, 1}n is a small set, i.e. |S| = δ2n for a small δ. What can we say about the Fourier
spectrum of 1S?

Claim 2.1. deg(1S) > Ω(log(1/δ)).

Proof. Let d be the degree of 1S . Then

δ = ‖1S‖22 = 〈1S , 1S〉 6 ‖1S‖4/3‖1S‖4 6 ‖1S‖4/3
√

3
d‖1S‖2 =

√
3
d
δ5/4,

so
√

3
d
> δ−1/4, hence d > 1

4 log
√
3

log(1/δ).

While this proof is very simple, there is an even simpler argument to prove this statement based on the
Schwarz-Zippel argument (which says that a degree d function on the Boolean cube must be non-zero on
at least 2−d fraction of the points). However, one can adapt the above argument to say something much
stronger: not only is the degree of 1S must be Ω(log(1/δ)), but in fact most of its Fourier mass lies on such
levels.

For technical reasons, we will prove the following slightly more general statement.

Lemma 2.2. Let f : {−1, 1}n → {−1, 0, 1} be a function such that 0 < Prx [f(x) 6= 0] 6 δ. Then∑
|S|6 1

20
log(1/δ)

f̂(S)2 6 δ24/20.

Proof. Let d = 1
20 log(1/δ). Introducing the notation f6d(x) =

∑
|S|6d

f̂(S)χS(x), our quantity of interest

to bound is ‖f6d‖22 =
∑
|S|6d

f̂(S)2. We do that as follows:

‖f6d‖22 = 〈f6d, f6d〉 = 〈f6d, f〉 6 ‖f6d‖4‖f‖4/3 6
√

3
d‖f6d‖2‖f‖4/3 6

√
3
d‖f‖2‖f‖4/3.

By the premise ‖f‖2 6 δ1/2 and ‖f‖4/3 6 δ3/4. We thus get ‖f6d‖22 6 edδ5/4 6 δ−1/20δ5/4 6 δ24/20.
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Note that as the overall Fourier mass of f is δ, and δ24/20 � δ for small δ, the lemma says that a (signed)
indicator of a small set has almost all of its mass on the high-degrees.

Remark 2.3. With a bit more effort, one may even show a bound of the form δ2 logd(1/δ), and for some
applications this quantitative difference is important; see homework assignment.

3 The KKL theorem

What can we say about Boolean functions that have small average degree, i.e. I[f ] 6 Kvar(f)?

Theorem 3.1. Let f : {−1, 1}n → {−1, 1} be such that I[f ] 6 Kvar(f). Then there exists i ∈ [n] such
that

Ii[f ] > e−O(K).

Proof overview. Before giving the proof, we will give the rough intuition. First, as I[f ] 6 Kvar(f) and
I[f ] is the average degree, a Markov-inequality type bound shows that all but little bit of the Fourier mass of
f lies on degrees O(K), and hence it makes sense to consider the low-degree part of f . We will decompose
this low-degree part according to the contribution of different coordinates to it (via the derivatives), and then
upper bound each one of these contributions separately using the tools we have developed so far. Since
the total Fourier mass we have is roughly var(f), the contribution of at least one of these coordinates is
meaningful, and that will be the influential coordinate we are looking for.

Proof. Suppose towards contradiction that Ii[f ] 6 e−C·K =: δ for all i ∈ [n], where C is an absolute
constant to be determined later. Fix i, and consider the function g = ∂if(x); note that g is −1, 0, 1 valued,
and the probability it is non-zero is Ii[f ] 6 δ, so by Lemma 2.2 we have∑

S:|S|6 1
20

log(1/δ)

ĝ(S)2 6 Ii[f ]24/20.

Let us translate this now into information about the Fourier spectrum of f . If i ∈ S, ĝ(S) = f̂(S) and
otherwise it is 0, so we get that ∑

S:|S|6 1
20

log(1/δ)
i∈S

f̂(S)2 6 Ii[f ]24/20.

Summing this over i, we get that

∑
S:0<|S|6 1

20
log(1/δ)

|S| f̂(S)2 6
n∑
i=1

Ii[f ]24/20 6 δ1/5I[f ] 6 δ1/5Kvar(f) 6 e−CKKvar(f).

Therefore, ∑
S:|S|6 C

20
K

f̂(S)2 6 δ1/5Kvar(f),
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and on the other hand

∑
S:|S|> C

20
K

f̂(S)2 6

∑
S:|S|> C

20
K

|S| f̂(S)2

C
20K

6
I[f ]
C
20K

6
20

C
var(f).

Combining the two inequalities, we get that∑
S:0<|S|

f̂(S)2 6
20

C
var(f) + e−CKKvar(f) < var(f),

where the last inequality holds for appropriate C (C = 40 will do), and contradiction.

As an immediate corollary, we get a more standard formulation of the KKL theorem.

Corollary 3.2. For any f : {−1, 1}n → {−1, 1}, there is i ∈ [n] such that Ii[f ] > Ω
(
logn
n var(f)

)
.

Proof. Let C > 0 be the implicit constant from Theorem 3.1, i.e. absolute C such that maxi Ii[f ] >

e
−C I[f ]

var(f) . If I[f ] 6 1
2C var(f) log n, we get from Theorem 3.1 that

max
i
Ii[f ] > e− logn/2 =

1√
n
>

log n

n
var(f).

Otherwise, I[f ] > 1
2C var(f) log n, and so

max
i
Ii[f ] >

I[f ]

n
>

1

2C

log n

n
var(f).

4 Tightness of the KKL theorem

The following example, called the “Tribes” function, shows that the KKL theorem as well as Friedgut’s
theorem are tight.

Claim 4.1. There exists f : {0, 1}n → {0, 1} with var(f) > Ω(1) and Ii[f ] = O(log n/n) for all i ∈ [n].

Proof. Take k, ` ∈ N such that `k 6 n, and take I1, . . . , Ik ⊆ [n] disjoint each of size `. Define the function
f(x) =

∨k
j=1

∧
i∈Ij xi. Note that

E[f ] = Pr
x

[f(x) = 1] = 1− Pr
x

[f(x) = 0] = 1−
k∏
j=1

Pr

∧
i∈Ij

xi = 0

 = 1− (1− 2−`)k,

so if we take k = 2` we will have that E[f ] is bounded away from 0 and 1, and hence var(f) > Ω(1).
Indeed, we choose k = 2`, and then the constraint on `, k turns into `2` 6 n, and it is enough to choose

` = blog n− log log nc.
We finish the proof by computing the influences of f . Fix i, and assume without loss of generality

i ∈ I1. Note that i is influential on x if and only if
∧
q∈Ij xq = 0 for all j > 1, and

∧
q∈I1\{i} xq = 1, so

Pr
x

[f(x) 6= f(x⊕ ei)] = Pr
x

 ∧
q∈I1\{i}

xq = 1

 k∏
j=2

Pr
x

∧
q∈Ij

xq = 0

 = 2`−1(1− 2−`)k−1 = Θ(log n/n).
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