18.218 Topics in Combinatorics Spring 2021 - problem set 1

1. Expand out the Fourier transform of the following functions:
(a) AND function: we have a set $T \subseteq[n]$, and $f:\{-1,1\}^{n} \rightarrow\{0,1\}$ is defined as $f(x)=1$ if and only if $x_{i}=-1$ for all $i \in T$.
(b) The Equality function: $f:\{-1,1\}^{n} \rightarrow\{0,1\}$ is defined as $f(x)=1$ if and only if $x_{1}=x_{2}=$ $\ldots=x_{n}$.
2. A function $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ is called even if $f(x)=f(-x)$ for all $x \in\{-1,1\}^{n}$, and is called odd if $f(-x)=-f(x)$ for all $x \in\{-1,1\}^{n}$.
(a) Prove that f is even if and only if its Fourier transform is supported only on even sized characters.
(b) Prove that f is odd if and only if its Fourier transform is supported only on odd sized characters.
(c) Show that any $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ may be written as a sum of an even and an odd function.
3. The degree of a function $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ is defined as the maximal size of $S \subseteq[n]$ such that $\widehat{f}(S) \neq 0$, and denoted by $\operatorname{deg}(f)$.
(a) Prove that for any integer valued function $f:\{-1,1\}^{n} \rightarrow \mathbb{Z}$ and any $S \subseteq[n]$, the Fourier coefficient $\widehat{f}(S)$ is an integer multiple of $2^{-\operatorname{deg}(f)}$.
(b) Deduce that the support size of the Fourier spectrum of a Boolean function $f:\{-1,1\}^{n} \rightarrow$ $\{-1,1\}$ is at most $2^{2 \operatorname{deg}(f)}$.
4. Suppose $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ satisfies $\operatorname{deg}(f)=1$. Prove that there is an $i \in[n]$ and $b \in$ $\{-1,1\}$ such that $f(x)=b x_{i}$ for all $x \in\{-1,1\}$ (such functions are often called dictatorships / anti-dictatorships).
5. Consider the following variant of the linearity tester we have seen in class. Sample $x, y, z \in\{-1,1\}^{n}$, and check that $f(x) f(y) f(z)=f(x y z)$.
(a) Prove that for any $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$, the probability that the test passes is at least $1 / 2$. Does this assertion hold for the version seen in class?
(b) Let $\varepsilon<\frac{1}{2}$, and suppose that $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ satisfies that

$$
\operatorname{Pr}_{x, y, z \in\{-1,1\}^{n}}[f(x) f(y) f(z)=f(x y z)] \geqslant 1-\varepsilon
$$

Prove that there is $S \subseteq[n]$ and $b \in\{-1,1\}$ such that $\operatorname{Pr}_{x}\left[f(x)=b \chi_{S}(x)\right] \geqslant \sqrt{1-2 \varepsilon}$.
6. (*) Given a function $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ and a basis $B=\left\{b_{1}, \ldots b_{r}\right\}$ of a subspace $W \subseteq \mathbb{F}_{2}^{n}$, the restriction of f to that subspace according to the basis B is $f_{W, B}: \mathbb{F}_{2}^{r} \rightarrow \mathbb{R}$ defined as $f_{W, B}\left(y_{1}, \ldots, y_{r}\right)=$ $f\left(\sum_{i=1}^{r} y_{i} b_{i}\right)$.
(a) Prove that for any subspace W, if B, B^{\prime} are two bases of W, then there is an invertible map $M: P([r]) \rightarrow P([r])$ such that $\widehat{f_{W, B}}(S)=\widehat{f_{W, B^{\prime}}}(M(S))$.
(b) Let $\delta>2 \cdot 2^{-n / 10}$, and consider a uniformly chosen subspace $W \subseteq \mathbb{F}_{2}^{n}$ of dimension $n / 2$. Suppose that for $f:\{0,1\}^{n} \rightarrow\{-1,1\}$ we have
${ }_{W}^{\operatorname{Pr}}\left[f_{W, B}\right.$ has a Fourier coefficient of magnitude at least δ for some basis B of $\left.W\right] \geqslant \delta$.
Show that there exists $S \subseteq[n]$, such that $\widehat{f}(S) \geqslant \frac{\delta^{2} \cdot 5}{\sqrt{2}}$.

MIT OpenCourseWare
https://ocw.mit.edu

18.218 Topics in Combinatorics: Analysis of Boolean Functions

Spring 2021

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

