18.218 Topics in Combinatorics Spring 2021 – problem set 1

- 1. Expand out the Fourier transform of the following functions:
 - (a) AND function: we have a set $T \subseteq [n]$, and $f: \{-1, 1\}^n \to \{0, 1\}$ is defined as f(x) = 1 if and only if $x_i = -1$ for all $i \in T$.
 - (b) The Equality function: $f: \{-1, 1\}^n \to \{0, 1\}$ is defined as f(x) = 1 if and only if $x_1 = x_2 = \dots = x_n$.
- 2. A function $f: \{-1,1\}^n \to \mathbb{R}$ is called even if f(x) = f(-x) for all $x \in \{-1,1\}^n$, and is called odd if f(-x) = -f(x) for all $x \in \{-1,1\}^n$.
 - (a) Prove that f is even if and only if its Fourier transform is supported only on even sized characters.
 - (b) Prove that f is odd if and only if its Fourier transform is supported only on odd sized characters.
 - (c) Show that any $f: \{-1, 1\}^n \to \mathbb{R}$ may be written as a sum of an even and an odd function.
- 3. The degree of a function $f: \{-1,1\}^n \to \mathbb{R}$ is defined as the maximal size of $S \subseteq [n]$ such that $\widehat{f}(S) \neq 0$, and denoted by deg(f).
 - (a) Prove that for any integer valued function $f: \{-1, 1\}^n \to \mathbb{Z}$ and any $S \subseteq [n]$, the Fourier coefficient $\widehat{f}(S)$ is an integer multiple of $2^{-\deg(f)}$.
 - (b) Deduce that the support size of the Fourier spectrum of a Boolean function $f: \{-1, 1\}^n \rightarrow \{-1, 1\}$ is at most $2^{2\deg(f)}$.
- 4. Suppose $f: \{-1,1\}^n \to \{-1,1\}$ satisfies deg(f) = 1. Prove that there is an $i \in [n]$ and $b \in \{-1,1\}$ such that $f(x) = bx_i$ for all $x \in \{-1,1\}$ (such functions are often called dictatorships / anti-dictatorships).
- 5. Consider the following variant of the linearity tester we have seen in class. Sample $x, y, z \in \{-1, 1\}^n$, and check that f(x)f(y)f(z) = f(xyz).
 - (a) Prove that for any $f: \{-1, 1\}^n \to \{-1, 1\}$, the probability that the test passes is at least 1/2. Does this assertion hold for the version seen in class?
 - (b) Let $\varepsilon < \frac{1}{2}$, and suppose that $f: \{-1, 1\}^n \to \{-1, 1\}$ satisfies that

$$\Pr_{x,y,z\in\{-1,1\}^n}\left[f(x)f(y)f(z)=f(xyz)\right]\geqslant 1-\varepsilon.$$

Prove that there is $S \subseteq [n]$ and $b \in \{-1, 1\}$ such that $\Pr_x [f(x) = b\chi_S(x)] \ge \sqrt{1 - 2\varepsilon}$.

6. (*) Given a function f: {0,1}ⁿ → R and a basis B = {b₁,...b_r} of a subspace W ⊆ F₂ⁿ, the restriction of f to that subspace according to the basis B is f_{W,B}: F₂^r → R defined as f_{W,B}(y₁,...,y_r) = f(∑_{i=1}^r y_ib_i).

- (a) Prove that for any subspace W, if B, B' are two bases of W, then there is an invertible map $M: P([r]) \to P([r])$ such that $\widehat{f_{W,B}}(S) = \widehat{f_{W,B'}}(M(S))$.
- (b) Let $\delta > 2 \cdot 2^{-n/10}$, and consider a uniformly chosen subspace $W \subseteq \mathbb{F}_2^n$ of dimension n/2. Suppose that for $f: \{0,1\}^n \to \{-1,1\}$ we have

 $\Pr_{W}[f_{W,B} \text{ has a Fourier coefficient of magnitude at least } \delta \text{ for some basis } B \text{ of } W] \ge \delta.$

Show that there exists $S \subseteq [n]$, such that $\ \widehat{f}(S) \ge \frac{\delta^{2.5}}{\sqrt{2}}$.

18.218 Topics in Combinatorics: Analysis of Boolean Functions Spring 2021

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.