18.218 Topics in Combinatorics Spring 2021 - problem set 2

1. Let $f:\{0,1\}^{n} \rightarrow\{0,1\}, 0<p<1$, and let (J, z) be a p-random restriction.
(a) Show that $\mathbb{E}_{(J, z)}\left[I\left[f_{\bar{J} \rightarrow z}\right]\right]=p I[f]$.
(b) Define $W^{\approx d}[f]=\sum_{d<j \leqslant 2 d} W^{=j}[f]$. Show that there is a constant $c>0$, such that if $p=\frac{1}{d}$, then

$$
\underset{(J, z)}{\mathbb{E}}\left[W^{=1}\left[f_{\bar{J} \rightarrow z}\right]\right] \geqslant c W^{\approx d}[f] .
$$

2. Let $f:\{0,1\}^{n} \rightarrow\{-1,1\}$ be a monotone function.
(a) Prove that $\widehat{f}(\{i\})=I_{i}[f]$.
(b) Prove that $I[f] \leqslant \sqrt{n}$.
(c) Prove that among all monotone functions, $I[f]$ is maximized by the majority function, i.e. by $f(x)=1$ if $\sum_{i=1}^{n} x_{i} \geqslant 0$ and otherwise $f(x)=-1$.
3. In this question, we will think of an input $x \in\{0,1\}\}_{\binom{n}{2}}$ as representing a graph G_{x} : the vertices G_{x} of are $[n]$, the coordinates of x are thought of as subset of $[n]$ of size 2 , and the edges of G_{x} are all e such that $x_{e}=1$.
A function $f:\{0,1\} \begin{gathered}\binom{n}{2}\end{gathered} \rightarrow\{0,1\}$ is called a graph property if it is invariant under vertex permutations, i.e. under S_{n}.
(a) Show that there is an absolute constant $c>0$, such that if $f:\{0,1\}\left(\begin{array}{c}\binom{n}{2}\end{array} \rightarrow\{0,1\}\right.$ is a graph property, then $I[f] \geqslant c \operatorname{var}(f) \cdot \log n$.
(b) Show that there is an absolute constant $C>0$ such that if f is a monotone increasing graph property and $\mu_{1 / 2}(f) \geqslant 0.01$, then $\mu_{1 / 2+C / \log n}(f) \geqslant 0.99$. (You can use the fact that the KKL theorem holds for the p-biased measure μ_{p} for all $p \in[1 / 3,2 / 3]$).
4. Design a polynomial time learning algorithm for the following classes:
(a) $\mathcal{C}_{1}=\left\{f:\{-1,1\}^{n} \rightarrow\{-1,1\} \mid I[f] \leqslant \sqrt{\log n}\right\}$ with membership queries.
(b) $\mathcal{C}_{2}=\left\{f:\{-1,1\}^{n} \rightarrow\{-1,1\} \mid f\right.$ is monotone, $\left.I[f] \leqslant \sqrt{\log n}\right\}$ with random queries (i.e. in the PAC model).
5. For a function $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ and $d \in \mathbb{N}$, we define the part of f of degree at most d, denoted as $f^{\leqslant d}$, by $f^{\leqslant d}(x)=\sum_{|S| \leqslant d} \hat{f}(S) \chi_{S}(x)$.
(a) Define the degree d influence of $i \in[n]$ on f as $I_{i}^{\leqslant d}[f]:=I_{i}\left[f^{\leqslant d}\right]$. Show that $\sum_{i=1}^{n} I_{i}^{\leqslant d}[f] \leqslant$ $d\|f\|_{2}^{2}$. Deduce that for all $\tau>0$, the number of coordinates i such that $I_{i}^{\leqslant d}[f] \geqslant \tau$ is at most $\frac{d\|f\|_{2}^{2}}{\tau}$.
(b) Suppose $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ and that $\sum_{0<|S| \leqslant d} \widehat{f}(S)^{2} \geqslant \delta$. Prove that there exists $i \in[n]$ such that

$$
I_{i}^{\leqslant d}[f] \geqslant \frac{\delta^{4}}{9^{d} I[f]^{4}}
$$

6. (*) Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ be a function, $K \geqslant 1$ be such that $I[f] \leqslant K$, and let $\varepsilon>0$. In this question, we will show that the Fourier spectrum of f is concentrated on $2^{O\left(K^{2}\right)}$ distinct Fourier coefficients.
(a) Show that for all $d \in \mathbb{N}, \delta, \tau>0$ it holds that

$$
\sum_{|S| \leqslant d} \widehat{f}(S)^{2} 1_{|\widehat{f}(S)| \leqslant \delta} \leqslant d\left(\frac{d}{\tau}\right)^{d} \delta+\sqrt{3}^{d} \tau^{1 / 4} K
$$

(b) Deduce that there is an absolute constant $C>0$, such that $\sum_{|S| \leqslant K} \widehat{f}(S)^{2} 1_{|\widehat{f}(S)| \leqslant e^{-C K^{2} \log (1 / \varepsilon)}} \leqslant \varepsilon$.
(c) Deduce that there is an absolute constant $C>0$ such that

$$
\sum_{|S| \leqslant K} \widehat{f}(S)^{2} \log \left(\frac{1}{\widehat{f}(S)^{2}}\right) \leqslant C \cdot K^{2}
$$

MIT OpenCourseWare
https://ocw.mit.edu

18.218 Topics in Combinatorics: Analysis of Boolean Functions

Spring 2021

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

