18.218 Topics in Combinatorics Spring 2021 – problem set 2

- 1. Let $f \colon \{0,1\}^n \to \{0,1\}, 0 , and let <math>(J, z)$ be a *p*-random restriction.
 - (a) Show that $\mathbb{E}_{(J,z)}[I[f_{\overline{J}\to z}]] = pI[f].$
 - (b) Define $W^{\approx d}[f] = \sum_{d < j \leq 2d} W^{=j}[f]$. Show that there is a constant c > 0, such that if $p = \frac{1}{d}$, then

$$\mathbb{E}_{(J,z)}\left[W^{=1}[f_{\bar{J}\to z}]\right] \geqslant cW^{\approx d}[f].$$

- 2. Let $f: \{0,1\}^n \to \{-1,1\}$ be a monotone function.
 - (a) Prove that $\widehat{f}(\{i\}) = I_i[f]$.
 - (b) Prove that $I[f] \leq \sqrt{n}$.
 - (c) Prove that among all monotone functions, I[f] is maximized by the majority function, i.e. by f(x) = 1 if $\sum_{i=1}^{n} x_i \ge 0$ and otherwise f(x) = -1.
- In this question, we will think of an input x ∈ {0,1}⁽ⁿ⁾/₂ as representing a graph G_x: the vertices G_x of are [n], the coordinates of x are thought of as subset of [n] of size 2, and the edges of G_x are all e such that x_e = 1.

A function $f: \{0,1\}^{\binom{n}{2}} \to \{0,1\}$ is called a graph property if it is invariant under vertex permutations, i.e. under S_n .

- (a) Show that there is an absolute constant c > 0, such that if $f: \{0,1\}^{\binom{n}{2}} \to \{0,1\}$ is a graph property, then $I[f] \ge c \operatorname{var}(f) \cdot \log n$.
- (b) Show that there is an absolute constant C > 0 such that if f is a monotone increasing graph property and $\mu_{1/2}(f) \ge 0.01$, then $\mu_{1/2+C/\log n}(f) \ge 0.99$. (You can use the fact that the KKL theorem holds for the *p*-biased measure μ_p for all $p \in [1/3, 2/3]$).
- 4. Design a polynomial time learning algorithm for the following classes:
 - (a) $C_1 = \{f : \{-1,1\}^n \to \{-1,1\} \mid I[f] \leq \sqrt{\log n}\}$ with membership queries.
 - (b) $C_2 = \{f: \{-1,1\}^n \to \{-1,1\} \mid f \text{ is monotone}, I[f] \leq \sqrt{\log n}\}$ with random queries (i.e. in the PAC model).
- 5. For a function $f: \{-1, 1\}^n \to \mathbb{R}$ and $d \in \mathbb{N}$, we define the part of f of degree at most d, denoted as $f^{\leq d}$, by $f^{\leq d}(x) = \sum_{|S| \leq d} \widehat{f}(S)\chi_S(x)$.

- (a) Define the degree d influence of $i \in [n]$ on f as $I_i^{\leq d}[f] := I_i[f^{\leq d}]$. Show that $\sum_{i=1}^n I_i^{\leq d}[f] \leq d \|f\|_2^2$. Deduce that for all $\tau > 0$, the number of coordinates i such that $I_i^{\leq d}[f] \geq \tau$ is at most $\frac{d \|f\|_2^2}{\tau}$.
- (b) Suppose $f: \{-1,1\}^n \to \{-1,1\}$ and that $\sum_{0 < |S| \leq d} \widehat{f}(S)^2 \ge \delta$. Prove that there exists $i \in [n]$ such that

$$I_i^{\leqslant d}[f] \geqslant \frac{\delta^4}{9^d I[f]^4}$$

- 6. (*) Let $f: \{-1,1\}^n \to \{-1,1\}$ be a function, $K \ge 1$ be such that $I[f] \le K$, and let $\varepsilon > 0$. In this question, we will show that the Fourier spectrum of f is concentrated on $2^{O(K^2)}$ distinct Fourier coefficients.
 - (a) Show that for all $d \in \mathbb{N}$, $\delta, \tau > 0$ it holds that

$$\sum_{|S| \leqslant d} \widehat{f}(S)^2 \mathbf{1}_{\left|\widehat{f}(S)\right| \leqslant \delta} \leqslant d\left(\frac{d}{\tau}\right)^d \delta + \sqrt{3}^d \tau^{1/4} K.$$

- (b) Deduce that there is an absolute constant C > 0, such that $\sum_{|S| \leq K} \widehat{f}(S)^2 \mathbf{1}_{|\widehat{f}(S)| \leq e^{-CK^2 \log(1/\varepsilon)}} \leq \varepsilon$.
- (c) Deduce that there is an absolute constant C > 0 such that

$$\sum_{|S|\leqslant K} \widehat{f}(S)^2 \log\left(\frac{1}{\widehat{f}(S)^2}\right) \leqslant C \cdot K^2.$$

18.218 Topics in Combinatorics: Analysis of Boolean Functions Spring 2021

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.