18.218 Topics in Combinatorics Spring 2021 – problem set 3

- 1. Let $f : \{-1,1\}^n \to \{-1,1\}$ be a function, and $\rho > 0$.
 - (a) Show that for all $k \in \mathbb{N}$, $\frac{d^k \operatorname{Stab}_{\rho} f}{d^k \rho}(0) = k! W^{=k}[f].$
 - (b) Use this formula to deduce an asymptotic formula for $W^{=k}[Majority]$ of the form $a_k + err(k, n)$, where $\lim_{n\to\infty} err(k, n) = 0$ for all $k \in \mathbb{N}$.
- 2. (a) Does the KKL theorem hold for $f : \{-1, 1\}^n \to \mathbb{R}$? (b) How about $f : \{-1, 1\}^n \to [-1, 1]$?
- 3. In this question, we will establish a result known as Peres' theorem. A linear threshold function (LTF in short) is a function $f: \{-1, 1\}^n \to \{-1, 1\}$ of the form $f(x) = \text{sign}(\sum_{i=1}^n a_i x_i)$ for some $a_1, \ldots, a_n \in \mathbb{R}$.
 - (a) Show that if f is an LTF, then $I[f] \leq \sqrt{n}$.
 - (b) Let m ∈ N be such that m ≤ n, let π: [n] → [m] and let z ∈ {-1,1}ⁿ. The projection of f along π with signing z is defined as f|_{π,z}: {-1,1}^m → {-1,1} by f|_{π,z}(y) = f(zx), where x_i = y_{π(i)} for all i ∈ [n], and zx represents the coordinatewise product of z and x.
 Show that NS_{1/m}[f] = E_{π,z} [I[f|_{π,z}]/m], where the distribution over π is uniform over all π: [n] → [m] and z is uniform in {-1,1}ⁿ.
 - (c) Deduce that if f is an LTF, then for all $\delta > 0$ we have that $NS_{\delta}[f] \leq \sqrt{2\delta}$.
- 4. An instance of the 3-LIN_{F2} problem is given by a set of variables X = {x₁,...,x_n}, and a set of equations E = {e₁,...,e_m} such that each equation e_i has the form x_jx_kx_ℓ = b_{j,k,ℓ} for some j, k, ℓ ∈ [n] and b_{j,k,ℓ} ∈ {-1,1}. The goal in the problem is to find a {-1,1}-assignment to the variables in X and satisfy as many of the equations as possible.

Given an instance of 3-LIN_{F₂}, for each (j, k, ℓ) such that $x_j x_k x_\ell = b_{j,k,\ell}$ is not an equation, define $b_{j,k,\ell} = 0$, and associate with the system the cubic function $f(x) = \frac{1}{\sqrt{m}} \sum_{\substack{i,k,\ell \in [n]}} b_{j,k,\ell} x_j x_k x_\ell$.

(a) Show that for all $x \in \{-1, 1\}^n$,

$$f(x) = \frac{1}{\sqrt{m}} \left(\left| \{i \mid e_i \text{ is satisfied by } x\} \right| - \left| \{i \mid e_i \text{ is not satisfied by } x\} \right| \right).$$

- (b) Prove that there is an assignment satisfying at least $\frac{1}{2}m$ of the equations.
- (c) Prove that there is an absolute constant c > 0, such that there is an assignment satisfying at least $\frac{1}{2}m + c\sqrt{m}$ of the equations.

5. (*) In this question, we will introduce the decoupling operation for functions over the hypercube. For S,T ⊆ [n] and x, y ∈ {-1,1}ⁿ we denote χ_{S,T}(y,x) = χ_S(y)χ_T(x). Suppose a function f: {-1,1}ⁿ → ℝ is homogenous of degree 3, i.e. f(x) = ∑_{|S|=3} f(S)χ_S(x). We define the function g: {-1,1}ⁿ × {-1,1}ⁿ → ℝ by replacing each character χ_S(x) = ∏_{i∈S} x_i with ∑_{j∈S} χ_{{j},S\j}(y,x), i.e.

$$g(y,x) = \sum_{|S|=3} \sum_{j \in S} \widehat{f}(S) \chi_{\{j\}, S \setminus \{j\}}(y,x).$$

For example, if $f(x) = \frac{1}{2}(x_1x_2x_3 + x_1x_5x_6)$, then

$$g(y,x) = \frac{1}{2} \left(y_1 x_2 x_3 + x_1 y_2 x_3 + x_1 x_2 y_3 + y_1 x_5 x_6 + x_1 y_5 x_6 + x_1 x_5 y_6 \right).$$

Prove that there exists an absolute constant c > 0, such that $||f||_{\infty} \ge c ||g||_{\infty}$ for all homogenous f of degree 3.

6. (*) In this question, we will give an improvement of the result proved in question 4. The number of occurrences of a variable x_j in a 3-LIN_{F₂} instance is the number of equations in the system it appears in. Prove that there is an absolute constant c > 0 such that if (X, E) is an instance of 3-LIN_{F₂} in the number of occurrences of each x_j is at most D, then there is an assignment x ∈ {-1,1}ⁿ satisfying at least (¹/₂ + ^c/_{√D}) m of the equations.

18.218 Topics in Combinatorics: Analysis of Boolean Functions Spring 2021

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.