18.218 Topics in Combinatorics Spring 2021 - problem set 3

1. Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ be a function, and $\rho>0$.
(a) Show that for all $k \in \mathbb{N}, \frac{d^{k} \operatorname{Stab}_{\rho} f}{d^{k} \rho}(0)=k!W^{=k}[f]$.
(b) Use this formula to deduce an asymptotic formula for $W^{=k}[$ Majority $]$ of the form $a_{k}+\operatorname{err}(k, n)$, where $\lim _{n \rightarrow \infty} \operatorname{err}(k, n)=0$ for all $k \in \mathbb{N}$.
2. (a) Does the KKL theorem hold for $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$?
(b) How about $f:\{-1,1\}^{n} \rightarrow[-1,1]$?
3. In this question, we will establish a result known as Peres' theorem. A linear threshold function (LTF in short) is a function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ of the form $f(x)=\operatorname{sign}\left(\sum_{i=1}^{n} a_{i} x_{i}\right)$ for some $a_{1}, \ldots, a_{n} \in \mathbb{R}$.
(a) Show that if f is an LTF, then $I[f] \leqslant \sqrt{n}$.
(b) Let $m \in \mathbb{N}$ be such that $m \leqslant n$, let $\pi:[n] \rightarrow[m]$ and let $z \in\{-1,1\}^{n}$. The projection of f along π with signing z is defined as $\left.f\right|_{\pi, z}:\{-1,1\}^{m} \rightarrow\{-1,1\}$ by $\left.f\right|_{\pi, z}(y)=f(z x)$, where $x_{i}=y_{\pi(i)}$ for all $i \in[n]$, and $z x$ represents the coordinatewise product of z and x.
Show that $\mathrm{NS}_{1 / m}[f]=\mathbb{E}_{\pi, z}\left[\frac{I[f \mid \pi, z]}{m}\right]$, where the distribution over π is uniform over all $\pi:[n] \rightarrow$ $[m]$ and z is uniform in $\{-1,1\}^{n}$.
(c) Deduce that if f is an LTF, then for all $\delta>0$ we have that $\mathrm{NS}_{\delta}[f] \leqslant \sqrt{2 \delta}$.
4. An instance of the $3-\operatorname{LIN}_{\mathbb{F}_{2}}$ problem is given by a set of variables $X=\left\{x_{1}, \ldots, x_{n}\right\}$, and a set of equations $E=\left\{e_{1}, \ldots, e_{m}\right\}$ such that each equation e_{i} has the form $x_{j} x_{k} x_{\ell}=b_{j, k, \ell}$ for some $j, k, \ell \in[n]$ and $b_{j, k, \ell} \in\{-1,1\}$. The goal in the problem is to find a $\{-1,1\}$-assignment to the variables in X and satisfy as many of the equations as possible.
Given an instance of $3-\operatorname{LIN}_{\mathbb{F}_{2}}$, for each (j, k, ℓ) such that $x_{j} x_{k} x_{\ell}=b_{j, k, \ell}$ is not an equation, define $b_{j, k, \ell}=0$, and associate with the system the cubic function $f(x)=\frac{1}{\sqrt{m}} \sum_{j, k, \ell \in[n]} b_{j, k, \ell} x_{j} x_{k} x_{\ell}$.
(a) Show that for all $x \in\{-1,1\}^{n}$,

$$
f(x)=\frac{1}{\sqrt{m}}\left(\mid\left\{i \mid e_{i} \text { is satisfied by } x\right\}|-|\left\{i \mid e_{i} \text { is not satisfied by } x\right\} \mid\right)
$$

(b) Prove that there is an assignment satisfying at least $\frac{1}{2} m$ of the equations.
(c) Prove that there is an absolute constant $c>0$, such that there is an assignment satisfying at least $\frac{1}{2} m+c \sqrt{m}$ of the equations.
5. (*) In this question, we will introduce the decoupling operation for functions over the hypercube. For $S, T \subseteq[n]$ and $x, y \in\{-1,1\}^{n}$ we denote $\chi_{S, T}(y, x)=\chi_{S}(y) \chi_{T}(x)$. Suppose a function $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ is homogenous of degree 3, i.e. $f(x)=\sum_{|S|=3} \widehat{f}(S) \chi_{S}(x)$. We define the function $g:\{-1,1\}^{n} \times\{-1,1\}^{n} \rightarrow \mathbb{R}$ by replacing each character $\chi_{S}(x)=\prod_{i \in S} x_{i}$ with $\sum_{j \in S} \chi_{\{j\}, S \backslash j}(y, x)$, i.e.

$$
g(y, x)=\sum_{|S|=3} \sum_{j \in S} \widehat{f}(S) \chi_{\{j\}, S \backslash\{j\}}(y, x) .
$$

For example, if $f(x)=\frac{1}{2}\left(x_{1} x_{2} x_{3}+x_{1} x_{5} x_{6}\right)$, then

$$
g(y, x)=\frac{1}{2}\left(y_{1} x_{2} x_{3}+x_{1} y_{2} x_{3}+x_{1} x_{2} y_{3}+y_{1} x_{5} x_{6}+x_{1} y_{5} x_{6}+x_{1} x_{5} y_{6}\right)
$$

Prove that there exists an absolute constant $c>0$, such that $\|f\|_{\infty} \geqslant c\|g\|_{\infty}$ for all homogenous f of degree 3.
6. (*) In this question, we will give an improvement of the result proved in question 4. The number of occurrences of a variable x_{j} in a $3-\operatorname{LIN}_{\mathbb{F}_{2}}$ instance is the number of equations in the system it appears in. Prove that there is an absolute constant $c>0$ such that if (X, E) is an instance of $3-\operatorname{LIN}_{\mathbb{F}_{2}}$ in the number of occurrences of each x_{j} is at most D, then there is an assignment $x \in\{-1,1\}^{n}$ satisfying at least $\left(\frac{1}{2}+\frac{c}{\sqrt{D}}\right) m$ of the equations.

MIT OpenCourseWare
https://ocw.mit.edu

18.218 Topics in Combinatorics: Analysis of Boolean Functions

Spring 2021

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

