18.218 Topics in Combinatorics Spring 2021 – problem set 4

- 1. Let $f: \{-1,1\}^n \to \{0,1\}$ be a function, let $\alpha, \varepsilon > 0$ and assume that $\Pr_{x \sim \{-1,1\}^n} [f(x) = 1] = \alpha$.
 - (a) Suppose that S_1, \ldots, S_r are characters whose indicator vectors $1_{S_1}, \ldots, 1_{S_r}$ are linearly independent over \mathbb{F}_2 . Show that there is $g: \{-1, 1\}^n \to \{0, 1\}$ with $\Pr_{x \sim \{-1, 1\}^n} [g(x) = 1] = \alpha$ and $\widehat{g}(\{i\}) = \widehat{f}(S_i)$ for all $i = 1, \ldots, r$.
 - (b) Consider the set of indicator vectors of heavy Fourier coefficients of f,

$$H = \left\{ 1_S \in \{0,1\}^n \mid S \subseteq [n], \ \widehat{f}(S) \ge \varepsilon \right\}.$$

Prove that $\dim_{\mathbb{F}_2}(\operatorname{Span}_{\mathbb{F}_2}(H)) \leqslant O\left(\frac{\alpha^2 \log(1/\alpha)}{\varepsilon^2}\right)$.

- 2. Let $f: \{0,1\}^n \to \{0,1\}, r \in \mathbb{N}$ and $\varepsilon > 0$ and suppose that p = 1/2.
 - (a) Show that if f is (r, ε) quasi-random with respect to μ_p , then for any non-empty $S \subseteq [n]$ of size at most r, it holds that $\widehat{f}(S) \leq 2^r \varepsilon$.
 - (b) Show that if $\max_{|S| \leq r} \widehat{f}(S) \leq \varepsilon$, then f is $(r, 2^r \varepsilon)$ quasi-random with respect to μ_p .
- 3. In this question we prove the 2 function version of the majority is stablest theorem. Prove that for all $\rho \in (0,1)$, $\varepsilon > 0$ there are $\tau > 0$ and $d \in \mathbb{N}$, such that if $f, g: \{-1,1\}^n \to [-1,1]$ are balanced functions such that $I_i^{\leq d}[f], I_i^{\leq d}[g] \leq \tau$ for all $i \in [n]$, then

$$\langle T_{\rho}f,g\rangle \leqslant \mathsf{Stab}_{\rho}(\mathsf{Majority}) + \varepsilon.$$

- 4. In this question we will establish a multi-dimensional form of the invariance principle. Let $\rho \in (0, 1)$ and let μ be a probability measure on $(x_1, y_1) \in \{-1, 1\} \times \{-1, 1\}$ whose marginal on each one of x_1, y_1 is uniform and $\mathbb{E}[x_1y_1] = \rho$ (i.e. x_1 and y_1 are ρ -correlated). Let (z_1, w_1) be distributed as standard Gaussians with correlation ρ , i.e. (z, w) has covariance matrix $M = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$.
 - (a) Prove that for all $d \in \mathbb{N}$, and C > 0 there is K > 0 such that if $f(x_1, \ldots, x_n), g(y_1, \ldots, y_n)$ are multilinear polynomials of degree at most d, and $\psi \colon \mathbb{R}^2 \to \mathbb{R}$ is smooth whose 3rd order partial derivatives are all bounded by C, then

$$\mathbb{E}_{(x,y)\sim\mu^{\otimes n}}\left[\psi(f(x),g(y))\right] - \mathbb{E}_{(z,w)\sim N(0,M)^{\otimes n}}\left[\psi(f(z),g(w))\right] \leq K \sum_{i=1}^{n} I_i[f]^{3/2} + I_i[g]^{3/2}.$$

(b) Deduce that for all d ∈ N, ε, C > 0 there is τ > 0 such that if f(x₁,...,x_n), g(y₁,...,y_n) are multilinear polynomials of degree at most d, such that ||f||₂, ||g||₂ ≤ 1 and max(I_i[f], I_i[g]) ≤ τ for all i ∈ [n], then for all smooth ψ: ℝ² → ℝ whose 3rd order partial derivatives are bounded by C it holds that

$$\mathop{\mathbb{E}}_{(x,y)\sim\mu^{\otimes n}}\left[\psi(f(x),g(y))\right] - \mathop{\mathbb{E}}_{(z,w)\sim N(0,M)^{\otimes n}}\left[\psi(f(z),g(w))\right] \leqslant \varepsilon.$$

- 5. (*)
 - (a) A family of subsets $\mathcal{F} \subseteq P([n])$ is called *t*-intersecting if for any $A, B \in \mathcal{F}$ it holds that $|A \cap B| \ge t$. Prove that for all $t \in \mathbb{N}, \zeta, \varepsilon > 0$ there is $N, J \in \mathbb{N}$, such that if $\zeta and <math>\mathcal{F} \subseteq P([n])$ is *t*-intersecting, then there exists a *J*-junta $\mathcal{J} \subseteq P([n])$ such that (a) $\mu_p(\mathcal{F} \setminus \mathcal{J}) \le \varepsilon$, and (b) \mathcal{J} is *t*-intersecting.
 - (b) A family of subsets *F* ⊆ *P*([*n*]) is called (*t* − 1)-avoiding if for any *A*, *B* ∈ *F* it holds that |*A* ∩ *B*| ≠ *t* − 1. In this question, we will prove that the assertion of the previous question continues to hold for (*t* − 1)-avoiding families.
 - i. Explain why the proof from the previous question no longer works in this case.
 - ii. Show how to fix that proof so that it works for (t 1)-avoiding families.
- 6. (*) In this question, we will prove a regularity lemma for low-degree influences. For $\rho \in (0, 1)$, a function $f: \{0, 1\}^n \to \{0, 1\}$ and a coordinate $i \in [n]$, the ρ -noisy influence of i on f is $I_i^{(\rho)}[f] = I_i[T_\rho f]$.
 - (a) Show that for every $\rho \in (0, 1)$ and $\varepsilon, \tau > 0$, there exists $D \in \mathbb{N}$ such that the following holds. For any $f: \{-1, 1\}^n \to \{-1, 1\}$, there is $J \subseteq [n]$ of size at most D such that

$$\Pr_{z \in \{-1,1\}^J} \left[\exists i \notin J, I_i^{(\rho)}[f_{J \to z}] \geqslant \tau \right] \leqslant \varepsilon.$$

(b) Deduce that for every $\varepsilon > 0$ and $d \in \mathbb{N}$, there is $D \in \mathbb{N}$, such that the following holds. For any $f: \{-1, 1\}^n \to \{-1, 1\}$, there is $J \subseteq [n]$ of size at most D such that

$$\Pr_{z \in \{-1,1\}^J} \left[\exists i \notin J, I_i^{\leqslant d} [f_{J \to z}] \geqslant \tau \right] \leqslant \varepsilon.$$

18.218 Topics in Combinatorics: Analysis of Boolean Functions Spring 2021

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.