18.218 Topics in Combinatorics Spring 2021 - problem set 5

1. In this question, we will establish Borel's theorem about noise stability in Gaussian space for some values of ρ. Let $f: \mathbb{R}^{n} \rightarrow\{-1,1\}$ be a balanced function, and let $M_{\rho}=\left(\begin{array}{ll}1 & \rho \\ \rho & 1\end{array}\right)$ be the covariance matrix of ρ-correlated Gaussians.
(a) Let $\theta \in[0,2 \pi)$, and let X, Z be independent standard Gaussians. Argue that for $Y=\cos (\theta) X+$ $\sin (\theta) Z$, the joint distribution of (X, Y) is of ρ-correlated Gaussians for $\rho=\cos (\theta)$.
(b) Prove that for $\rho_{1}=\cos (\theta), \rho_{2}=\cos (\theta / 2)$, it holds that $\operatorname{Pr}_{(X, Y) \sim N\left(0, M_{\rho_{1}}\right) \otimes n}[f(X) \neq f(Y)] \leqslant$ $2 \operatorname{Pr}_{(X, Y) \sim N\left(0, M_{\rho_{2}}\right)}{ }^{\otimes n}[f(X) \neq f(Y)]$.
(c) Prove that if $\rho=\cos (\pi / 2 k)$ for $k \in \mathbb{N}$, then $\operatorname{Pr}_{(X, Y) \sim N\left(0, M_{\rho}\right)}{ }^{\otimes n}[f(X) \neq f(Y)] \geqslant \frac{1}{2 k}$
(d) Deduce that for $\rho=\cos (\pi / 2 k)$, it holds that $\operatorname{Stab}_{\rho}(f) \leqslant 1-\frac{1}{k}=1-\frac{2}{\pi} \operatorname{Arccos}(\rho)$.
2. Let $\varepsilon>0$, and consider the following variant of the linearity test we have seen early in the course. Given a function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$, sample $x, y \sim\{-1,1\}^{n}$ uniformly and sample $z \in\{-1,1\}^{n}$ by taking $z_{i}=-1$ with probability ε, and otherwise $z_{i}=1$, for each $i \in[n]$ independently. Test that $f(x) f(y)=$ $f(x y z)$, where as usual $x y z$ denotes the coordinatewise product vector.
Show that if f is a function that passes this test with probability at least $\frac{1}{2}+\delta$, then there exists $S \subseteq[n]$ such that $|S| \leqslant \frac{\log (1 / \delta)}{2 \varepsilon}$ and $\widehat{f}(S) \geqslant \delta$.
3. Recall that the $3 \operatorname{LIN}_{\mathbb{F}_{2}}$ is the problem wherein one is given as input a set of variables $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and a collection of equations E, each one of the form $x_{i} x_{j} x_{k}=b_{i, j, k}$ where $b_{i, j, k} \in\{-1,1\}$. The goal is to find an assignment of ± 1 to the x_{i} 's that satisfies as many of the equations as possible.
(a) Let $\varepsilon, \delta>0$. Design an instance of $3 \operatorname{LIN}_{\mathbb{F}_{2}}$ over the hypercube according to the dictatorship vs no-influential-coordinates paradigm, such that if $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ is a dictatorship, then it solves $1-\varepsilon$ of the equations, and if $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ is balanced with no influential coordinates, then it solves at most $\frac{1}{2}+\delta$ of the equations.
(b) Design a reduction from the Unique-Games problem to the Max-3LIN \mathbb{F}_{2} problem.
(c) Using this reduction, show that assuming the Unique-Games Conjecture, $\operatorname{Max}^{\left(3 \operatorname{LIN}_{\mathbb{F}_{2}}\left[1-\varepsilon, \frac{1}{2}+\delta\right] \text { is }\right.}$ NP-hard for all $\varepsilon, \delta>0$.
Remark 0.1. This result is known to hold without assuming the Unique-Games Conjecture.
4. (*) In this question, we will prove a strengthening of the Majority is Stablest theorem.
(a) Show that for all $\varepsilon, \tau, \xi>0$ there are $d, D \in \mathbb{N}$ and $\delta>0$ such that the following holds. If $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ is balanced, and $\widehat{f}(S) \leqslant \delta$ for all $|S| \leqslant D$, then there is $J \subseteq[n]$ of size at most D such that

$$
\operatorname{Pr}_{z \in\{-1,1\}^{J}}\left[\left(\exists i \notin J, I_{i}^{\leqslant d}[f] \geqslant \tau\right) \bigvee\left|\mathbb{E}\left[f_{J \rightarrow z}\right]\right| \geqslant \xi\right] \leqslant \varepsilon .
$$

(b) Deduce that for all $\rho \in(0,1), \varepsilon>0$, there are $d, \delta>0$, such that if if $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ is balanced, and $\widehat{f}(S) \leqslant \delta$ for all $|S| \leqslant d$, then $\operatorname{Stab}_{\rho}(f) \leqslant \operatorname{Stab}_{\rho}($ Majority $)+\varepsilon$.

MIT OpenCourseWare
https://ocw.mit.edu

18.218 Topics in Combinatorics: Analysis of Boolean Functions

Spring 2021

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

