18.218 Topics in Combinatorics Spring 2021 – problem set 5

- 1. In this question, we will establish Borel's theorem about noise stability in Gaussian space for some values of ρ . Let $f \colon \mathbb{R}^n \to \{-1, 1\}$ be a balanced function, and let $M_{\rho} = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$ be the covariance matrix of ρ -correlated Gaussians.
 - (a) Let $\theta \in [0, 2\pi)$, and let X, Z be independent standard Gaussians. Argue that for $Y = \cos(\theta)X + \sin(\theta)Z$, the joint distribution of (X, Y) is of ρ -correlated Gaussians for $\rho = \cos(\theta)$.
 - (b) Prove that for $\rho_1 = \cos(\theta)$, $\rho_2 = \cos(\theta/2)$, it holds that $\Pr_{(X,Y)\sim N(0,M_{\rho_1})^{\otimes n}} [f(X) \neq f(Y)] \leq 2\Pr_{(X,Y)\sim N(0,M_{\rho_2})^{\otimes n}} [f(X) \neq f(Y)].$
 - (c) Prove that if $\rho = \cos(\pi/2k)$ for $k \in \mathbb{N}$, then $\Pr_{(X,Y) \sim N(0,M_{\rho})^{\otimes n}} [f(X) \neq f(Y)] \ge \frac{1}{2k}$
 - (d) Deduce that for $\rho = \cos(\pi/2k)$, it holds that $\mathsf{Stab}_{\rho}(f) \leq 1 \frac{1}{k} = 1 \frac{2}{\pi}\mathsf{Arccos}(\rho)$.
- 2. Let $\varepsilon > 0$, and consider the following variant of the linearity test we have seen early in the course. Given a function $f: \{-1,1\}^n \to \{-1,1\}$, sample $x, y \sim \{-1,1\}^n$ uniformly and sample $z \in \{-1,1\}^n$ by taking $z_i = -1$ with probability ε , and otherwise $z_i = 1$, for each $i \in [n]$ independently. Test that f(x)f(y) = f(xyz), where as usual xyz denotes the coordinatewise product vector.

Show that if f is a function that passes this test with probability at least $\frac{1}{2} + \delta$, then there exists $S \subseteq [n]$ such that $|S| \leq \frac{\log(1/\delta)}{2\varepsilon}$ and $\widehat{f}(S) \geq \delta$.

- 3. Recall that the $3LIN_{\mathbb{F}_2}$ is the problem wherein one is given as input a set of variables $X = \{x_1, \ldots, x_n\}$ and a collection of equations E, each one of the form $x_i x_j x_k = b_{i,j,k}$ where $b_{i,j,k} \in \{-1, 1\}$. The goal is to find an assignment of ± 1 to the x_i 's that satisfies as many of the equations as possible.
 - (a) Let ε, δ > 0. Design an instance of 3LIN_{F2} over the hypercube according to the dictatorship vs noinfluential-coordinates paradigm, such that if f: {−1,1}ⁿ → {−1,1} is a dictatorship, then it solves 1 − ε of the equations, and if f: {−1,1}ⁿ → {−1,1} is balanced with no influential coordinates, then it solves at most ¹/₂ + δ of the equations.
 - (b) Design a reduction from the Unique-Games problem to the Max-3LIN_{\mathbb{F}_2} problem.
 - (c) Using this reduction, show that assuming the Unique-Games Conjecture, Max-3LIN_{\mathbb{F}_2} $[1 \varepsilon, \frac{1}{2} + \delta]$ is NP-hard for all $\varepsilon, \delta > 0$.

Remark 0.1. This result is known to hold without assuming the Unique-Games Conjecture.

- 4. (*) In this question, we will prove a strengthening of the Majority is Stablest theorem.
 - (a) Show that for all $\varepsilon, \tau, \xi > 0$ there are $d, D \in \mathbb{N}$ and $\delta > 0$ such that the following holds. If $f: \{-1,1\}^n \to \{-1,1\}$ is balanced, and $\widehat{f}(S) \leq \delta$ for all $|S| \leq D$, then there is $J \subseteq [n]$ of size at most D such that

$$\Pr_{z \in \{-1,1\}^J} \left[(\exists i \notin J, I_i^{\leqslant d}[f] \ge \tau) \bigvee |\mathbb{E}[f_{J \to z}]| \ge \xi \right] \leqslant \varepsilon.$$

(b) Deduce that for all $\rho \in (0,1)$, $\varepsilon > 0$, there are $d, \delta > 0$, such that if if $f: \{-1,1\}^n \to \{-1,1\}$ is balanced, and $\widehat{f}(S) \leq \delta$ for all $|S| \leq d$, then $\mathsf{Stab}_{\rho}(f) \leq \mathsf{Stab}_{\rho}(\mathsf{Majority}) + \varepsilon$.

18.218 Topics in Combinatorics: Analysis of Boolean Functions Spring 2021

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.