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Graph Regularity Method

Chapter Highlights

• Szemerédi’s graph regularity lemma: partitioning an arbitrary graph into a bounded num-
ber of parts with random-like edges between parts

• Graph regularity method: recipe and applications
• Graph removal lemma
• Roth’s theorem: a graph theoretic proof using the triangle removal lemma
• Strong regularity and induced graph removal lemma
• Graph property testing
• Hypergraph removal lemma and Szemerédi’s theorem

In this chapter, we discuss a powerful technique in extremal graph theory developed in
the 1970’s, known as Szemerédi’s graph regularity lemma. The graph regularity method
has wide ranging applications, and is now considered a central technique in the field. The
regularity lemma produces a “rough structural” decomposition of an arbitrary graph (though
it is mainly useful for graphs with quadratically many edges). It then allows us to model an
arbitrary graph by a random graph.

The regularity method introduces us to a central theme of the book: the dichotomy
of structure and pseudorandomness. This dichotomy is analogous to the more familiar
concept of “signal and noise,” namely that a complex system can be decomposed into a
structural piece with plenty of information content (the signal) as well as a random-like
residue (the noise). This idea will show up again later in Chapter 6 when we discuss Fourier
analysis in additive combinatorics.

In general, we face two related challenges:
• How to decompose an object into a structured piece and a random-like piece?
• How to analyze the resulting components and their interactions?
We begin the chapter with the statement and the proof of the graph regularity lemma.

We then prove Roth’s theorem using the regularity method. This proof, due to Ruzsa and
Szemerédi (1978), is not the original proof by Roth (1953), whose original Fourier analytic
proof we will see in Chapter 6. Nevertheless, it is important for being historically one of
the first major applications of the graph regularity method. Similar to the proof of Schur’s
theorem in Chapter 0, this graph theoretic proof of Roth’s theorem demonstrates a fruitful
connection between graph theory and additive combinatorics.

By the regularity method, we mean both the graph regularity lemma as well as methods
for applying it. Rather than some specific set of theorems, graph regularity should be viewed
as a general technique malleable to adaptations. Do not get bogged down by specific choices
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54 Graph Regularity Method

of parameters in the statements and proofs below, and rather, focus on the main ideas and
techniques.

Many students experience a steep learning curve when studying the regularity method.
The technical details can obscure the underlying intuition. Also, the style of arguments may
be quite different from the type of combinatorial proofs they encountered earlier in their
studies (e.g., the type of proofs from earlier in this book). Section 2.7 contains important
exercises on applying the graph regularity method, which are essential for understanding the
material.

2.1 Szemerédi’s Graph Regularity Lemma
In this section, we state and prove the graph regularity lemma. Let us first give an informal
statement.

Graph Regularity Lemma (Informal). The vertex set of every graph can be partitioned
into a bounded number of parts so that the graph looks random-like between most pairs of
parts.

Following is an illustration of what the outcome of the partition looks like. Here the vertex
set of a graph is partitioned into five parts. Between a pair of parts (including between a part
and itself) is a random-like graph with a certain edge-density (e.g., 0.4 between the first and
second parts, 0.7 between the first and third parts, . . . ).

Definition 2.1.1 (Edge density)
Let 𝑋 and 𝑌 be sets of vertices in a graph 𝐺. Let 𝑒𝐺 (𝑋,𝑌 ) be the number of edges
between 𝑋 and 𝑌 ; that is,

𝒆𝑮 (𝑿,𝒀) B |{(𝑥, 𝑦) ∈ 𝑋 × 𝑌 : 𝑥𝑦 ∈ 𝐸 (𝐺)}| .
Define the edge density between 𝑋 and 𝑌 in 𝐺 by

𝒅𝑮 (𝑿,𝒀) B
𝑒𝐺 (𝑋,𝑌 )
|𝑋 | |𝑌 | .

We drop the subscript 𝐺 if the context is clear.

We allow 𝑋 and 𝑌 to overlap in the preceding definition. For intuition, it is mostly fine to
picture the bipartite setting, where 𝑋 and 𝑌 are automatically disjoint.

What should it mean for a graph to be “random-like”? We will explore the concept of
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2.1 Szemerédi’s Graph Regularity Lemma 55

pseudorandom graphs in depth in Chapter 3. Given vertex sets 𝑋 and 𝑌 , we would like
the edge density between them to not change much even if we restrict 𝑋 and 𝑌 to smaller
subsets. Intuitively, this says that the edges are somewhat evenly distributed.

𝐴 𝐵𝑈 𝑊

Definition 2.1.2 (𝜀-regular pair)
Let 𝐺 be a graph and 𝑈,𝑊 ⊆ 𝑉 (𝐺). We call (𝑈,𝑊) an 𝜺-regular pair in 𝐺 if for all
𝐴 ⊆ 𝑈 and 𝐵 ⊆ 𝑊 with |𝐴| ≥ 𝜀 |𝑈 | and |𝐵 | ≥ 𝜀 |𝑊 |, one has

|𝑑 (𝐴, 𝐵) − 𝑑 (𝑈,𝑊) | ≤ 𝜀.
If (𝑈,𝑊) is not 𝜀-regular, then we say that their irregularity is witnessed by some 𝐴 ⊆ 𝑈
and 𝐵 ⊆ 𝑊 satisfying |𝐴| ≥ 𝜀 |𝑈 |, |𝐵| ≥ 𝜀 |𝑊 |, and |𝑑 (𝐴, 𝐵) − 𝑑 (𝑈,𝑊) | > 𝜀.

We need the hypotheses |𝐴| ≥ 𝜀 |𝑈 | and |𝐵| ≥ 𝜀 |𝑊 | since the definition would be too
restrictive otherwise. For example, by taking 𝐴 = {𝑥} and 𝐵 = {𝑦}, 𝑑 (𝐴, 𝐵) could end up
being both 0 (if 𝑥𝑦 ∉ 𝐸) and 1 (if 𝑥𝑦 ∈ 𝐸).

Remark 2.1.3 (Different roles of 𝜀). The 𝜀 in |𝐴| ≥ 𝜀 |𝑈 | and |𝐵 | ≥ 𝜀 |𝑊 | plays a different
role from the 𝜀 in |𝑑 (𝐴, 𝐵) − 𝑑 (𝑈,𝑊) | ≤ 𝜀. However, it is usually not important to distinguish
these 𝜀s. So we use only one 𝜀 for convenience of notation.

The “random-like” intuition is justified as random graphs indeed satisfy the above property.
(This can be proved by the Chernoff bound; more on this in the next chapter.)

The following exercises can help you check your understanding of 𝜀-regularity.

Exercise 2.1.4 (Basic inheritance of regularity). Let 𝐺 be a graph and 𝑋,𝑌 ⊆ 𝑉 (𝐺). If
(𝑋,𝑌 ) is an 𝜀𝜂-regular pair, then (𝑋 ′, 𝑌 ′) is 2𝜀-regular for all 𝑋 ′ ⊆ 𝑋 with |𝑋 ′ | ≥ 𝜂 |𝑋 |
and 𝑌 ′ ⊆ 𝑌 with |𝑌 ′ | ≥ 𝜂 |𝑌 |.

Exercise 2.1.5 (An alternate definition of regular pairs). Let 𝐺 be a graph and 𝑋,𝑌 ⊆
𝑉 (𝐺). Say that (𝑋,𝑌 ) is 𝜺-homogeneous if for all 𝐴 ⊆ 𝑋 and 𝐵 ⊆ 𝑌 , one has

|𝑒(𝐴, 𝐵) − |𝐴| |𝐵| 𝑑 (𝑋,𝑌 ) | ≤ 𝜀 |𝑋 | |𝑌 | .
Show that if (𝑋,𝑌 ) is 𝜀-regular, then it is 𝜀-homogeneous. Also, show that if (𝑋,𝑌 ) is
𝜀3-homogeneous, then it is 𝜀-regular.

Exercise 2.1.6 (Robustness of regularity). Prove that for every 𝜀′ > 𝜀 > 0, there exists
𝛿 > 0 so that given an 𝜀-regular pair (𝑋,𝑌 ) in some graph, if we modify the graph by
adding/deleting ≤ 𝛿 |𝑋 | vertices to/from 𝑋 , adding/deleting ≤ 𝛿 |𝑌 | vertices to/from𝑌 , and
adding/deleting ≤ 𝛿 |𝑋 | |𝑌 | edges, then the resulting new (𝑋,𝑌 ) is still 𝜀′-regular.

Next, let us define what it means for a vertex partition to be 𝜀-regular.
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56 Graph Regularity Method

Definition 2.1.7 (𝜀-regular partition)
Given a graph 𝐺, a partition P = {𝑉1, . . . , 𝑉𝑘} of its vertex set is an 𝜺-regular partition
if ∑︁

(𝑖, 𝑗 ) ∈ [𝑘 ]2
(𝑉𝑖 ,𝑉𝑗 ) not 𝜀-regular

|𝑉𝑖 | |𝑉 𝑗 | ≤ 𝜀 |𝑉 (𝐺) |2.

In other words, all but at most an 𝜀-fraction of pairs of vertices of𝐺 lie between 𝜀-regular
parts.

Remark 2.1.8. When |𝑉1 | = · · · = |𝑉𝑘 |, the inequality says that at most 𝜀𝑘2 of pairs (𝑉𝑖, 𝑉 𝑗)
are not 𝜀-regular.

Also, note that the summation includes 𝑖 = 𝑗 . If none of the𝑉𝑖s are too large, say |𝑉𝑖 | ≤ 𝜀𝑛
for each 𝑖, then the terms with 𝑖 = 𝑗 contribute ≤ ∑

𝑖 |𝑉𝑖 |2 ≤ 𝜀𝑛
∑
𝑖 |𝑉𝑖 | = 𝜀𝑛2, which is

neglible.

We are now ready to state Szemerédi’s graph regularity lemma.

Theorem 2.1.9 (Szemerédi’s graph regularity lemma)
For every 𝜀 > 0, there exists a constant 𝑀 such that every graph has an 𝜀-regular partition
into at most 𝑀 parts.

Proof of the Graph Regularity Lemma
Proof idea. We will generate the desired vertex partition according to the following algo-
rithm:

(1) Start with the trivial partition of𝑉 (𝐺). (The trivial partition has a single part consisting
of the whole set.)

(2) While the current partition P is not 𝜀-regular:
(a) For each (𝑉𝑖, 𝑉 𝑗) that is not 𝜀-regular, find a witnessing pair in 𝑉𝑖 and 𝑉 𝑗
(b) Refine P using all the witnessing pairs. (Here given two partitions P and Q of

the same set, we say that Q refines P if each part of Q is contained in a part
of P. In other words, we divide each part of P further to obtain Q.)

We repeat step (2) until the partition is 𝜀-regular, at which point the algorithm terminates.
The resulting partition is always 𝜀-regular by design. It remains to show that the number
of iterations is bounded as a function of 𝜀. To see this, we keep track of a quantity that
necessarily increases at each iteration of the procedure. This is called an energy increment
argument. (The reason that we call it an “energy” is because it is the 𝐿2 norm of a vector of
edge-densities, and the kinetic energy in physics is also an 𝐿2 norm.) ■
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2.1 Szemerédi’s Graph Regularity Lemma 57

Definition 2.1.10 (Energy)
Let 𝐺 be an 𝑛-vertex graph (whose dependence we drop from the notation). Let𝑈,𝑊 ⊆
𝑉 (𝐺). Define

𝒒(𝑼,𝑾) B
|𝑈 | |𝑊 |
𝑛2 𝑑 (𝑈,𝑊)2.

For partitions P𝑈 = {𝑈1, . . . ,𝑈𝑘} of𝑈 and P𝑊 = {𝑊1, . . . ,𝑊𝑙} of𝑊 , define

𝒒(P𝑼 , P𝑾 ) B
𝑘∑︁
𝑖=1

𝑙∑︁
𝑗=1

𝑞(𝑈𝑖,𝑊 𝑗).

Finally, for a partition P = {𝑉1, . . . , 𝑉𝑘} of 𝑉 (𝐺), define its energy to be

𝒒(P) B 𝑞(P,P) =
𝑘∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑞(𝑉𝑖, 𝑉 𝑗) =
𝑘∑︁
𝑖=1

𝑘∑︁
𝑗=1

|𝑉𝑖 |
��𝑉 𝑗 ��
𝑛2 𝑑 (𝑉𝑖, 𝑉 𝑗)2.

Since the edge density is always between 0 and 1, we have 0 ≤ 𝑞(P) ≤ 1 for all
partitions P. The following lemmas show that the energy cannot decrease upon refinement,
and furthermore, it must increase substantially at each step of the preceding algorithm.

Lemma 2.1.11 (Energy never decreases under refinement)
Let 𝐺 be a graph, 𝑈,𝑊 ⊆ 𝑉 (𝐺), P𝑈 a partition of 𝑈, and P𝑊 a partition of 𝑊 . Then
𝑞(P𝑈 ,P𝑊 ) ≥ 𝑞(𝑈,𝑊).

P𝑈

𝑈

P𝑊

𝑊

Proof. Let 𝑛 = 𝑣(𝐺). Let P𝑈 = {𝑈1, . . . ,𝑈𝑘} and P𝑊 = {𝑊1, . . . ,𝑊𝑙}. Choose 𝑥 ∈ 𝑈 and
𝑦 ∈ 𝑊 uniformly and independently at random. Let𝑈𝑖 be the part of P𝑈 that contains 𝑥 and
𝑊 𝑗 be the part of P𝑊 that contains 𝑦. Define the random variable 𝑍 B 𝑑 (𝑈𝑖,𝑊 𝑗). We have

E[𝑍] =
𝑘∑︁
𝑖=1

𝑙∑︁
𝑗=1

|𝑈𝑖 |
|𝑈 |
|𝑊 𝑗 |
|𝑊 | 𝑑 (𝑈𝑖,𝑊 𝑗) = 𝑑 (𝑈,𝑊) =

√︄
𝑛2

|𝑈 | |𝑊 | 𝑞(𝑈,𝑊).

We have

E[𝑍2] =
𝑘∑︁
𝑖=1

𝑙∑︁
𝑗=1

|𝑈𝑖 |
|𝑈 |
|𝑊 𝑗 |
|𝑊 | 𝑑 (𝑈𝑖,𝑊 𝑗)2 = 𝑛2

|𝑈 | |𝑊 | 𝑞(P𝑈 ,P𝑊 ).

By convexity, E[𝑍2] ≥ E[𝑍]2, which implies 𝑞(P𝑈 ,P𝑊 ) ≥ 𝑞(𝑈,𝑊). □
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58 Graph Regularity Method

Lemma 2.1.12 (Energy never decreases under refinement)
Given two vertex partitions P and P′ of some graph, if P′ refines P, then 𝑞(P) ≤ 𝑞(P′).

Proof. The conclusion follows by applying Lemma 2.1.11 to each pair of parts of P. In
more detail, letting P = {𝑉1, . . . , 𝑉𝑚}, and supposing P′ refines each 𝑉𝑖 into a partition
P′𝑉𝑖 = {𝑉 ′𝑖1, . . . , 𝑉 ′𝑖𝑘𝑖 } of 𝑉𝑖, so that P′ = P′𝑉1

∪ · · · ∪ P′𝑉𝑚 , we have

𝑞(P) =
∑︁
𝑖, 𝑗

𝑞(𝑉𝑖, 𝑉 𝑗) ≤
∑︁
𝑖, 𝑗

𝑞(P′𝑉𝑖 ,P′𝑉𝑗 ) = 𝑞(P′). □

Lemma 2.1.13 (Energy boost for an irregular pair)
Let 𝐺 be an 𝑛-vertex graph. If (𝑈,𝑊) is not 𝜀-regular, as witnessed by 𝐴 ⊆ 𝑈 and
𝐵 ⊆ 𝑊 , then

𝑞({𝐴,𝑈 \ 𝐴}, {𝐵,𝑊 \ 𝐵}) > 𝑞(𝑈,𝑊) + 𝜀4 |𝑈 | |𝑊 |
𝑛2 .

This is the “red bull lemma,” giving an energy boost when feeling irregular.

Proof. Define 𝑍 as in the proof of Lemma 2.1.11 for P𝑈 = {𝐴,𝑈 \ 𝐴} and P𝑊 = {𝐵,𝑊 \𝐵}.
Then

Var(𝑍) = E[𝑍2] − E[𝑍]2 = 𝑛2

|𝑈 | |𝑊 | (𝑞(P𝑈 ,P𝑊 ) − 𝑞(𝑈,𝑊)) .

We have 𝑍 = 𝑑 (𝐴, 𝐵) with probability ≥ |𝐴| |𝐵| /( |𝑈 | |𝑊 |) (corresponding to the event
𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵). So

Var(𝑍) = E[(𝑍 − E[𝑍])2]

≥ |𝐴||𝑈 |
|𝐵 |
|𝑊 | (𝑑 (𝐴, 𝐵) − 𝑑 (𝑈,𝑊))

2

> 𝜀 · 𝜀 · 𝜀2.

Putting the two inequalities together gives the claim. □

The next lemma, corresponding to step (2)(b) of the preceding algorithm, shows that we
can put all the witnessing pairs together to obtain an energy increment.

Lemma 2.1.14 (Energy boost for an irregular partition)
If a partition P = {𝑉1, . . . , 𝑉𝑘} of 𝑉 (𝐺) is not 𝜀-regular, then there exists a refinement
Q of P where every 𝑉𝑖 is partitioned into at most 2𝑘+1 parts, and such that

𝑞(Q) > 𝑞(P) + 𝜀5.

Proof. Let

𝑅 = {(𝑖, 𝑗) ∈ [𝑘]2 : (𝑉𝑖, 𝑉 𝑗) is 𝜀-regular} and 𝑅 = [𝑘]2 \ 𝑅.
For each pair (𝑉𝑖, 𝑉 𝑗) that is not 𝜀-regular, find a pair 𝐴𝑖, 𝑗 ⊆ 𝑉𝑖 and 𝐵𝑖, 𝑗 ⊆ 𝑉 𝑗 that witnesses
the irregularity. Do this simultaneously for all (𝑖, 𝑗) ∈ 𝑅. Note that for 𝑖 ≠ 𝑗 , we can take
𝐴𝑖, 𝑗 = 𝐵 𝑗 ,𝑖 due to symmetry. When 𝑖 = 𝑗 , we should allow for the possibility of 𝐴𝑖,𝑖 and 𝐵𝑖,𝑖
to be distinct.
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Figure 2.1 In the proof of Lemma 2.1.14, we refine the partition by taking a
common refinement using witnesses of irregular pairs.

Let Q be a common refinement of P by all the 𝐴𝑖, 𝑗 and 𝐵𝑖, 𝑗 (i.e., the parts of Q are
maximal subsets that are not “cut up” into small pieces by any element of P or by the 𝐴𝑖, 𝑗
and 𝐵𝑖, 𝑗 ; intuitively, imagine regions of a Venn diagram). See Figure 2.1 for an illustration.
There are ≤ 𝑘 + 1 such distinct nonempty sets inside each 𝑉𝑖. So Q refines each 𝑉𝑖 into at
most 2𝑘+1 parts. Let Q𝑖 be the partition of 𝑉𝑖 given by Q. Then, using the monotonicity of
energy under refinements (Lemma 2.1.11),

𝑞(Q) =
∑︁

(𝑖, 𝑗 ) ∈ [𝑘 ]2
𝑞(Q𝑖,Q 𝑗)

=
∑︁
(𝑖, 𝑗 ) ∈𝑅

𝑞(Q𝑖,Q 𝑗) +
∑︁
(𝑖, 𝑗 ) ∈𝑅

𝑞(Q𝑖,Q 𝑗)

≥
∑︁
(𝑖, 𝑗 ) ∈𝑅

𝑞(𝑉𝑖, 𝑉 𝑗) +
∑︁
(𝑖, 𝑗 ) ∈𝑅

𝑞({𝐴𝑖, 𝑗 , 𝑉𝑖\𝐴𝑖, 𝑗}, {𝐵𝑖, 𝑗 , 𝑉 𝑗\𝐵𝑖, 𝑗}).

By Lemma 2.1.13, the energy boost lemma, the preceding sum is

>
∑︁

(𝑖, 𝑗 ) ∈ [𝑘 ]2
𝑞(𝑉𝑖, 𝑉 𝑗) +

∑︁
(𝑖, 𝑗 ) ∈𝑅

𝜀4 |𝑉𝑖 |
��𝑉 𝑗 ��
𝑛2 .

The first sum equals 𝑞(P), and the second sum is > 𝜀5 by Lemma 2.1.13 since P is not
𝜀-regular. This gives the desired inequality. □

Remark 2.1.15 (Refinements should be done simultaneously). Here is a subtle point in
the preceding proof. The refinement Q must be obtained in a single step by refining P
using all the witnessing sets 𝐴𝑖, 𝑗 simultaneously. If instead we pick out a pair 𝐴𝑖, 𝑗 ⊆ 𝑉𝑖 and
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𝐴 𝑗 ,𝑖 ⊆ 𝑉 𝑗 , refine the partition using just this pair, and then iterate using another irregular
pair (𝑉𝑖′ , 𝑉 𝑗 ′), the energy boost step would not work. This is because 𝜀-regularity (or lack
thereof) is not well-preserved under taking refinements.

Proof of the graph regularity lemma (Theorem 2.1.9). Start with a trivial partition of the
vertex set of the graph. Repeatedly apply Lemma 2.1.14 whenever the current partition is
not 𝜀-regular. By Lemma 2.1.14, the energy of the partition increases by more than 𝜀5 at
each iteration. Since the energy of the partition is ≤ 1, we must stop after < 𝜀−5 iterations,
terminating in an 𝜀-regular partition.

If a partition has 𝑘 parts, then Lemma 2.1.14 produces a refinement with ≤ 𝑘2𝑘+1 parts.
We start with a trivial partition with one part, and then refine < 𝜀−5 times. Observe the crude
bound 𝑘2𝑘+1 ≤ 22𝑘 . So the total number of parts at the end is ≤ tower(⌈2𝜀−5⌉), where

tower(𝒌) B 22· ·
·2
}

height 𝑘
. □

Remark 2.1.16 (The proof does not guarantee that the partition becomes “more regular”
after each step.). Let us stress what the proof is not saying. It is not saying that the partition
gets more and more regular under each refinement. Also, it is not saying that partition gets
more regular as the energy gets higher. Rather, the energy simply bounds the number of
iterations.

The bound on the number of parts guaranteed by the proof is a constant for each fixed
𝜀 > 0, but it grows extremely quickly as 𝜀 gets smaller. Is the poor quantitative dependence
somehow due to a suboptimal proof strategy? Surprisingly, the tower-type bound is necessary,
as shown by Gowers (1997).

Theorem 2.1.17 (Lower bound on the number of parts in a regularity partition)
There exists a constant 𝑐 > 0 such that for all sufficiently small 𝜀 > 0, there exists a
graph with no 𝜀-regular partition into fewer than tower(⌈𝜀−𝑐⌉) parts.

We do not include the proof here. See Moshkovitz and Shapira (2016) for a short proof.
The general idea is to construct a graph that roughly reverse engineers the proof of the
regularity lemma. So there is essentially a unique 𝜀-regular partition, which must have many
parts.

Remark 2.1.18 (Irregular pairs are necessary in the regularity lemma). Recall that in
Definition 2.1.7 of an 𝜀-regular partition, we are allowed to have some irregular pairs. Are
irregular pairs necessary? It turns that we must permit them. Exercise 2.1.24 gives an example
of a canonical example (a “half graph”) where every regularity partition has irregular pairs.

The regularity lemma is quite flexible. For example, we can start with an arbitrary partition
of 𝑉 (𝐺) instead of the trivial partition in the proof, in order to obtain a partition that is a
refinement of a given partition. The exact same proof with this modification yields the
following.
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Theorem 2.1.19 (Regularity starting with an arbitrary initial partition)
For every 𝜀 > 0 and 𝑘 , there exists a constant 𝑀 such that for every graph 𝐺 and a
partition P0 of 𝑉 (𝐺) with at most 𝑘 parts, there exists an 𝜀-regular partition P of 𝑉 (𝐺)
that is a refinement of P0, and such that each part of P0 is refined into at most 𝑀 parts.

Here is another strengthening of the regularity lemma. We impose the additional require-
ment that vertex parts should be as equal in size as possible. We say that a partition is
equitable if all part sizes are within one of each other; that is,

��|𝑉𝑖 | − ��𝑉 𝑗 ���� ≤ 1. In other
words, a partition of a set of size 𝑛 into 𝑘 parts is equitable if every part has size ⌊𝑛/𝑘⌋ or
⌈𝑛/𝑘⌉.

Theorem 2.1.20 (Equitable regularity lemma)
For all 𝜀 > 0 and 𝑚0, there exists a constant 𝑀 such that every graph has an 𝜀-regular
equitable partition of its vertex set into 𝑘 parts with 𝑚0 ≤ 𝑘 ≤ 𝑀 .

Remark 2.1.21. The lower bound 𝑚0 requirement on the number of parts is somewhat
superficial. The reason for including it here is that it is often convenient to discard all the
edges that lie within individual parts of the partition, and since there are most 𝑛2/𝑘 such
edges, they contribute negligibly if the number of parts 𝑘 is not too small, which is true if
we require 𝑚0 ≥ 1/𝜀 in the equitable regularity lemma statement.

There are several ways to guarantee equitability. One method is sketched in what follows.
We equitize the partition at every step of the refinement iteration, so that at each step in the
proof, we both obtain an energy increment and also end up with an equitable partition.

Proof sketch of the equitable regularity lemma (Theorem 2.1.20). Here is a modified al-
gorithm:

(1) Start with an arbitrary equitable partition of the graph into 𝑚0 parts.
(2) While the current equitable partition P is not 𝜀-regular:

(a) (Refinement/energy boost) Refine the partition using pairs that witness irreg-
ularity (as in the earlier proof). The new partition P′ divides each part of P
into ≤ 2 | P | parts.

(b) (Equitization) Modify P′ into an equitable partition by arbitrarily chopping
each part of P′ into parts of size |𝑉 (𝐺) | /𝑚 (for some appropriately chosen
𝑚 = 𝑚( |P′ | , 𝜀)) plus some leftover pieces, which are then combined together
and then divided into parts of size |𝑉 (𝐺) | /𝑚.

The refinement step (2)(a) increases energy by ≥ 𝜀5 as before. The energy might go down
in the equitization step (2)(b), but it should not decrease by much, provided that the𝑚 chosen
in that step is large enough (say, 𝑚 =

⌊
100 |P′ | 𝜀−5⌋). So overall, we still have an energy

increment of ≥ 𝜀5/2 at each step, and hence the process still terminates after 𝑂 (𝜀−5) steps.
The total number of parts at the end is bounded. □

Exercise 2.1.22. Complete the details in the preceding proof sketch.
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Exercise 2.1.23 (Making each part 𝜀-regular to nearly all other parts). Prove that for
all 𝜀 > 0 and 𝑚0, there exists a constant 𝑀 so that every graph has an equitable vertex
partition into 𝑘 parts, with 𝑚0 ≤ 𝑘 ≤ 𝑀 , such that each part is 𝜀-regular with all but at
most 𝜀𝑘 other parts.

The important example in the next exercise shows why we must allow irregular pairs in
the graph regularity lemma.

Exercise 2.1.24 (Unavoidability of irregular pairs). Let the half-graph𝐻𝑛 be the bipartite
graph on 2𝑛 vertices {𝑎1, . . . , 𝑎𝑛, 𝑏1, . . . , 𝑏𝑛} with edges {𝑎𝑖𝑏 𝑗 : 𝑖 ≤ 𝑗}.

(a) For every 𝜀 > 0, explicitly construct an 𝜀-regular partition of 𝐻𝑛 into𝑂 (1/𝜀) parts.
(b) Show that there is some 𝜀 > 0 such that for every integer 𝑘 and sufficiently large

multiple 𝑛 of 𝑘 , every partition of the vertices of 𝐻𝑛 into 𝑘 equal-sized parts
contains at least 𝜀𝑘 pairs of parts none of which are 𝜀-regular.

The next exercise should remind you of the iteration technique from the proof of the graph
regularity lemma.

Exercise 2.1.25 (Existence of a regular pair of subsets). Show that there is some absolute
constant 𝐶 > 0 such that for every 0 < 𝜀 < 1/2, every graph on 𝑛 vertices contains an
𝜀-regular pair of vertex subsets each with size at least 𝛿𝑛, where 𝛿 = 2−𝜀−𝐶 .

Hint:Densityincrement(don’tuseenergy).

This exercise asks for two different proofs of the following theorem.
Given a graph 𝐺, we say that 𝑋 ⊆ 𝑉 (𝐺) is 𝜺-regular if the pair (𝑋, 𝑋) is 𝜀-regular; that

is, for all 𝐴, 𝐵 ⊆ 𝑋 with |𝐴| , |𝐵 | ≥ 𝜀 |𝑋 |, one has |𝑑 (𝐴, 𝐵) − 𝑑 (𝑋, 𝑋) | ≤ 𝜀.

Theorem 2.1.26 (𝜀-regular subset)
For every 𝜀 > 0, there exists 𝛿 > 0 such that every graph contains an 𝜀-regular subset of
vertices that is an ≥ 𝛿 fraction of the vertex set.

Exercise 2.1.27 (𝜀-regular subset).
(a) Prove Theorem 2.1.26 using Szemerédi’s regularity lemma, showing that one can

obtain the 𝜀-regular subset by combining a suitable subcollection of parts from
some regularity partition.

(b*) Give an alternative proof of the theorem with 𝛿 = exp(− exp(𝜀−𝐶)) for some
constant 𝐶.

Exercise 2.1.28∗ (Regularity partition into regular sets). Show that for every 𝜀 > 0 there
exists 𝑀 so that every graph has an 𝜀-regular partition into at most 𝑀 parts, with every
part being 𝜀-regular with itself.

2.2 Triangle Counting Lemma
Szemerédi’s regularity lemma gave us a vertex partition of a graph. How can we use this
partition?

In this section, we begin by establishing the triangle counting lemma. Given three vertex
sets 𝑋,𝑌, 𝑍 , pairwise 𝜀-regular in 𝐺, we can approximate it by a random tripartite graph on
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𝑋,𝑌, 𝑍 with the same edge densities between parts. By comparing 𝐺 to its random model
approximation, we expect the number of triples (𝑥, 𝑦, 𝑧) ∈ 𝑋 × 𝑌 × 𝑍 forming a triangle in
𝐺 to be roughly

𝑑 (𝑋,𝑌 )𝑑 (𝑋, 𝑍)𝑑 (𝑌, 𝑍) |𝑋 | |𝑌 | |𝑍 |.
The triangle counting lemma makes this intuition precise.

𝑋

𝑌 𝑍

𝑥

𝑦 𝑧

Theorem 2.2.1 (Triangle counting lemma)
Let 𝐺 be a graph and 𝑋,𝑌, 𝑍 be subsets of the vertices of 𝐺 such that (𝑋,𝑌 ), (𝑌, 𝑍),
(𝑍, 𝑋) are all 𝜀-regular pairs for some 𝜀 > 0. If 𝑑 (𝑋,𝑌 ), 𝑑 (𝑋, 𝑍), 𝑑 (𝑌, 𝑍) ≥ 2𝜀, then

|{(𝑥, 𝑦, 𝑧) ∈ 𝑋 × 𝑌 × 𝑍 : 𝑥𝑦𝑧 is a triangle in 𝐺}|
≥ (1 − 2𝜀) (𝑑 (𝑋,𝑌 ) − 𝜀) (𝑑 (𝑋, 𝑍) − 𝜀) (𝑑 (𝑌, 𝑍) − 𝜀) |𝑋 | |𝑌 | |𝑍 | .

Remark 2.2.2. The vertex sets 𝑋,𝑌, 𝑍 do not have to be disjoint, but one does not lose
any generality by assuming that they are disjoint in this statement. Indeed, starting with
𝑋,𝑌, 𝑍 ⊆ 𝑉 (𝐺), one can always create an auxiliary tripartite graph 𝐺′ with vertex parts
being disjoint replicas of 𝑋,𝑌, 𝑍 and the edge relations in 𝑋 × 𝑌 being the same for 𝐺 and
𝐺′, and likewise for 𝑋 × 𝑍 and 𝑌 × 𝑍 . Under this auxiliary construction, a triple in 𝑋 ×𝑌 × 𝑍
forms a triangle in 𝐺 if and only it forms a triangle in 𝐺′.

𝑋

𝑌 𝑍

𝐺

−→

𝑋

𝑌 𝑍

𝐺′

Now we show that in an 𝜀-regular pair (𝑋,𝑌 ), almost all vertices of 𝑋 have roughly the
same number of neighbors in 𝑌 . (The next lemma only states a lower bound on degree, but
the same argument also gives an analogous upper bound.)
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Lemma 2.2.3 (Most vertices have roughly the same degree)
Let (𝑋,𝑌 ) be an 𝜀-regular pair. Then fewer than 𝜀 |𝑋 | vertices in 𝑋 have fewer than
(𝑑 (𝑋,𝑌 ) − 𝜀) |𝑌 | neighbors in𝑌 . Likewise, fewer than 𝜀 |𝑌 | vertices in𝑌 have fewer than
(𝑑 (𝑋,𝑌 ) − 𝜀) |𝑋 | neighbors in 𝑋 .

Proof. Let 𝐴 be the subset of vertices in 𝑋 with < (𝑑 (𝑋,𝑌 ) − 𝜀) |𝑌 | neighbors in 𝑌 . Then
𝑑 (𝐴,𝑌 ) < 𝑑 (𝑋,𝑌 ) − 𝜀, and thus |𝐴| < 𝜀 |𝑋 | by Definition 2.1.2 as (𝑋,𝑌 ) is an 𝜀-regular
pair. The other claim is similar. □

Proof of Theorem 2.2.1. By Lemma 2.2.3, we can find 𝑋 ′ ⊆ 𝑋 with |𝑋 ′ | ≥ (1 − 2𝜀) |𝑋 |
such that every vertex 𝑥 ∈ 𝑋 ′ has ≥ (𝑑 (𝑋,𝑌 ) − 𝜀) |𝑌 | neighbors in𝑌 and ≥ (𝑑 (𝑋, 𝑍) − 𝜀) |𝑍 |
neighbors in 𝑍 . Write 𝑁𝑌 (𝑥) = 𝑁 (𝑥) ∩ 𝑌 and 𝑁𝑍 (𝑥) = 𝑁 (𝑥) ∩ 𝑍 .

𝜖-regular

𝑋

𝑥

𝑌 𝑍

𝑁𝑌 (𝑥) 𝑁𝑍 (𝑥)

For each such 𝑥 ∈ 𝑋 ′, we have |𝑁𝑌 (𝑥) | ≥ (𝑑 (𝑋,𝑌 ) − 𝜀) |𝑌 | ≥ 𝜀 |𝑌 |. Likewise, |𝑁𝑍 (𝑥) | ≥
𝜀 |𝑍 |. Since (𝑌, 𝑍) is 𝜀-regular, the edge density between 𝑁𝑌 (𝑥) and 𝑁𝑍 (𝑥) is ≥ 𝑑 (𝑌, 𝑍) − 𝜀.
So for each 𝑥 ∈ 𝑋 ′, the number of edges between 𝑁𝑌 (𝑥) and 𝑁𝑍 (𝑥) is

≥ (𝑑 (𝑌, 𝑍) − 𝜀) |𝑁𝑌 (𝑥) | |𝑁𝑍 (𝑥) | ≥ (𝑑 (𝑋,𝑌 ) − 𝜀) (𝑑 (𝑋, 𝑍) − 𝜀) (𝑑 (𝑌, 𝑍) − 𝜀) |𝑌 | |𝑍 |.
Multiplying by |𝑋 ′ | ≥ (1 − 2𝜀) |𝑋 |, we obtain the desired lower bound on the number of
triangles. □

Remark 2.2.4. We only need the lower bound on the triangle count for our applications in
this chapter, but the same proof can also be modified to give an upper bound, which we leave
as an exercise.

2.3 Triangle Removal Lemma
The triangle removal lemma (Ruzsa and Szemerédi 1978) is one of the first major applications
of the regularity method. Informally, the triangle removal lemma says that a graph with few
triangles can be made triangle-free by removing a few edges. Here, “few triangles” means a
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subcubic number of triangles (i.e., asymptotically less than the maximum possible number)
and “few edges” means a subquadratic number of edges.

Theorem 2.3.1 (Triangle removal lemma)
For all 𝜀 > 0, there exists 𝛿 > 0 such that any graph on 𝑛 vertices with fewer than 𝛿𝑛3

triangles can be made triangle-free by removing fewer than 𝜀𝑛2 edges.

The triangle removal lemma can be equivalently stated as:

An 𝑛-vertex graph with 𝑜(𝑛3) triangles can be made triangle-free by removing 𝑜(𝑛2) edges.

Our proof of Theorem 2.3.1 demonstrates how to apply the graph regularity lemma. Here
is a representative “recipe” for the regularity method.

Remark 2.3.2 (Regularity method recipe). Typical applications of the regularity method
proceed in the following steps:

(1) Partition the vertex set of a graph using the regularity lemma.
(2) Clean the graph by removing edges that behave poorly in the regularity partition.

Most commonly, we remove edges that lie between pairs of parts with
(a) irregularity, or
(b) low-density, or
(c) one of the parts too small.

This ends up removing a negligible number of edges.
(3) Count a certain pattern in the cleaned graph using a counting lemma.

To prove the triangle removal lemma, after cleaning the graph (which removes few edges),
we claim that the resulting cleaned graph must be triangle-free, or else the triangle counting
lemma would find many triangles, contradicting the hypothesis.

Proof of the triangle removal lemma (Theorem 2.3.1). Suppose we are given a graph on 𝑛
vertices with < 𝛿𝑛3 triangles, for some parameter 𝛿 we will choose later. Apply the graph
regularity lemma, Theorem 2.1.9, to obtain an 𝜀/4-regular partition of the graph with parts
𝑉1, 𝑉2, · · · , 𝑉𝑚. Next, for each (𝑖, 𝑗) ∈ [𝑚]2, remove all edges between 𝑉𝑖 and 𝑉 𝑗 if

(a) (𝑉𝑖, 𝑉 𝑗) is not 𝜀/4-regular, or
(b) 𝑑 (𝑉𝑖, 𝑉 𝑗) < 𝜀/2, or
(c) min{|𝑉𝑖 |, |𝑉 𝑗 |} < 𝜀𝑛/(4𝑚).

Since the partition is 𝜀/4-regular (recall Definition 2.1.7), the number of edges removed
in (a) from irregular pairs is

≤
∑︁
𝑖, 𝑗

(𝑉𝑖 ,𝑉𝑗 ) not (𝜀/4)-regular

|𝑉𝑖 | |𝑉 𝑗 | ≤ 𝜀4𝑛
2.

The number of edges removed in (b) from low-density pairs is

≤
∑︁
𝑖, 𝑗

𝑑 (𝑉𝑖 ,𝑉𝑗 )<𝜀/2

𝑑 (𝑉𝑖, 𝑉 𝑗) |𝑉𝑖 | |𝑉 𝑗 | ≤ 𝜀2
∑︁
𝑖, 𝑗

|𝑉𝑖 | |𝑉 𝑗 | = 𝜀

2
𝑛2.

The number of edges removed in (c) with an endpoint in a small part is

< 𝑚 · 𝜀𝑛
4𝑚
· 𝑛 = 𝜀

4
𝑛2.
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In total, we removed < 𝜀𝑛2 edges from the graph.
We claim that the remaining graph is triangle-free, provided that 𝛿 was chosen appropri-

ately small. Indeed, suppose there remains a triangle whose three vertices lie in 𝑉𝑖, 𝑉 𝑗 , 𝑉𝑘
(not necessarily distinct parts).

𝑉𝑖

𝑉 𝑗 𝑉𝑘

one triangle

triangle counting lemma

cubically many triangles

Because edges between the pairs described in (a) and (b) were removed, 𝑉𝑖, 𝑉 𝑗 , 𝑉𝑘 satisfy the
hypotheses of the triangle counting lemma (Theorem 2.2.1),

#{triangles in 𝑉𝑖 ×𝑉 𝑗 ×𝑉𝑘} ≥
(
1 − 𝜀

2

) (𝜀
4

)3
|𝑉𝑖 |

��𝑉 𝑗 �� |𝑉𝑘 |
≥

(
1 − 𝜀

2

) (𝜀
4

)3 ( 𝜀𝑛
4𝑚

)3
,

where the final step uses (c) above. Then as long as

𝛿 <
1
6

(
1 − 𝜀

2

) (𝜀
4

)3 ( 𝜀
4𝑚

)3
,

we would contradict the hypothesis that the original graph has < 𝛿𝑛3 triangles. (The extra
factor of 6 above is there to account for the possibility that𝑉𝑖 = 𝑉 𝑗 = 𝑉𝑘 .) Since𝑚 is bounded
for each fixed 𝜀, we see that 𝛿 can be chosen to depend only on 𝜀. □

The next corollary of the triangle removal lemma will soon be used to prove Roth’s
theorem. Here “diamond” refers to the following graph, consisting of two triangles sharing
an edge.

Corollary 2.3.3 (Diamond-free lemma)
Let 𝐺 be an 𝑛-vertex graph where every edge lies in a unique triangle. Then 𝐺 has 𝑜(𝑛2)
edges.

Proof. Let 𝐺 have 𝑚 edges. Because each edge lies in exactly one triangle, the number of
triangles in 𝐺 is 𝑚/3 = 𝑂 (𝑛2) = 𝑜(𝑛3). By the triangle removal lemma (see the statement
after Theorem 2.3.1), we can remove 𝑜(𝑛2) edges to make𝐺 triangle-free. However, deleting
an edge removes at most one triangle from the graph by assumption, so 𝑚/3 edges need to
be removed to make 𝐺 triangle-free. Thus 𝑚 = 𝑜(𝑛2). □
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Remark 2.3.4 (Quantitative dependencies in the triangle removal lemma). Since the above
proof of the triangle removal lemma applies the graph regularity lemma, the resulting
bounds from the proof are quite poor: it shows that one can pick 𝛿 = 1/tower(𝜀−𝑂 (1) ).
Using a different but related method, Fox (2011) proved the triangle removal lemma with
a slightly better dependence 𝛿 = 1/tower(𝑂 (log(1/𝜀))). In the other direction, we know
that the triangle removal lemma does not hold with 𝛿 = 𝜀𝑐 log(1/𝜀) for a sufficiently small
constant 𝑐 > 0. The construction comes from the Behrend construction of large 3-AP-free
sets that we will soon see in Section 2.5. Our knowledge of the quantitative dependence in
Corollary 2.3.3 comes from the same source; specifically, we know that the 𝑜(𝑛2) can be
sharpened to 𝑛2/𝑒Ω(log∗ (1/𝜀) ) (where log∗, the iterated logarithm function, is the number of
iterations of log that one needs to take to bring a number to at most 1) but the statement
is false if the 𝑜(𝑛2) is replaced by 𝑛2𝑒−𝐶

√
log 𝑛 for some sufficiently large constant 𝐶. It is a

major open problem to close the gap between the upper and lower bounds in these problems.

The triangle removal lemma was historically first considered in the following equivalent
formulation.

Theorem 2.3.5 ((6, 3)-theorem)
Let 𝐻 be an 𝑛-vertex 3-uniform hypergraph without a subgraph having six vertices and
three edges. Then 𝐻 has 𝑜(𝑛2) edges.

Exercise 2.3.6. Deduce the (6, 3)-theorem from Corollary 2.3.3, and vice versa.

The following conjectural extension of the (6, 3)-theorem is a major open problem in
extremal combinatorics. The conjecture is attributed to Brown, Erdős, and Sós (1973).

Conjecture 2.3.7 ((7, 4)-conjecture)
Let 𝐻 be an 𝑛-vertex 3-uniform hypergraph without a subgraph having seven vertices
and four edges. Then 𝐻 has 𝑜(𝑛2) edges.

2.4 Graph Theoretic Proof of Roth’s Theorem
We will now prove Roth’s theorem, which we saw in Chapter 0 and is restated below.
The proof below, due to Ruzsa and Szemerédi (1978) connects graph theory and additive
combinatorics, akin to the proof of Schur’s theorem in Chapter 0.

We write 3-AP for “3-term arithmetic progression.” We say that 𝐴 is 3-AP-free if there
are no 𝑥, 𝑥 + 𝑦, 𝑥 + 2𝑦 ∈ 𝐴 with 𝑦 ≠ 0.

Theorem 2.4.1 (Roth’s theorem)
Let 𝐴 ⊆ [𝑁] be 3-AP-free. Then |𝐴| = 𝑜(𝑁).

Proof. Embed 𝐴 ⊆ Z/𝑀Z with 𝑀 = 2𝑁 + 1 (to avoid wraparounds). Since 𝐴 is 3-AP-free
in Z, it is 3-AP-free in Z/𝑀Z as well.

Now, we construct a tripartite graph 𝐺 whose parts 𝑋,𝑌, 𝑍 are all copies of Z/𝑀Z. The
edges of the graph are (since 𝑀 is odd, we are allowed to divide by 2 in Z/𝑀Z):
• (𝑥, 𝑦) ∈ 𝑋 × 𝑌 whenever 𝑦 − 𝑥 ∈ 𝐴;
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• (𝑦, 𝑧) ∈ 𝑌 × 𝑍 whenever 𝑧 − 𝑦 ∈ 𝐴;
• (𝑥, 𝑧) ∈ 𝑋 × 𝑍 whenever (𝑧 − 𝑥)/2 ∈ 𝐴.

Z/𝑀Z

Z/𝑀Z Z/𝑀Z

𝑥

𝑦 𝑧

𝑥 ∼ 𝑦 iff
𝑦 − 𝑥 ∈ 𝐴

𝑥 ∼ 𝑧 iff
(𝑧 − 𝑥)/2 ∈ 𝐴

𝑦 ∼ 𝑧 iff
𝑧 − 𝑦 ∈ 𝐴

In this graph, (𝑥, 𝑦, 𝑧) ∈ 𝑋 × 𝑌 × 𝑍 is a triangle if and only if

𝑦 − 𝑥, 𝑧 − 𝑥
2

, 𝑧 − 𝑦 ∈ 𝐴.
The graph was designed so that the above three numbers form an arithmetic progression in
the listed order. Since 𝐴 is 3-AP-free, these three numbers must all be equal. So, every edge
of 𝐺 lies in a unique triangle, formed by setting the three numbers above to equal.

The graph 𝐺 has exactly 3𝑀 = 6𝑁 + 3 vertices and 3𝑀 |𝐴| edges. Corollary 2.3.3 implies
that 𝐺 has 𝑜(𝑁2) edges. So |𝐴| = 𝑜(𝑁). □

Now we prove a higher-dimensional generalization of Roth’s theorem.
A corner in Z2 is a three-element set of the form {(𝑥, 𝑦), (𝑥 + 𝑑, 𝑦), (𝑥, 𝑦 + 𝑑)} with 𝑑 > 0.

(Note that one could relax the assumption 𝑑 > 0 to 𝑑 ≠ 0, allowing “negative” corners. As
shown in the first step in the proof below, the assumption 𝑑 > 0 is inconsequential.)

Theorem 2.4.2 (Corner-free)
Every corner-free subset of [𝑁]2 has size 𝑜(𝑁2).

Remark 2.4.3 (History). The theorem is due to Ajtai and Szemerédi (1974), who originally
proved it by invoking the full power of Szemerédi’s theorem. Here we present a much simpler
proof using the triangle removal lemma due to Solymosi (2003).

Proof. First we show how to relax the assumption in the definition of a corner from 𝑑 > 0
to 𝑑 ≠ 0.

Let 𝐴 ⊆ [𝑁]2 be a corner-free set. For each 𝑧 ∈ Z2, let 𝐴𝑧 = 𝐴 ∩ (𝑧 − 𝐴). Then |𝐴𝑧 | is the
number of ways that one can write 𝑧 = 𝑎+𝑏 for some (𝑎, 𝑏) ∈ 𝐴×𝐴. So

∑
𝑧∈[2𝑁 ]2 |𝐴𝑧 | = |𝐴|2,

so there is some 𝑧 ∈ [2𝑁] with |𝐴𝑧 | ≥ |𝐴|2 /(2𝑁)2. To show that |𝐴| = 𝑜(𝑁2), it suffices
to show that |𝐴𝑧 | = 𝑜(𝑁2). Moreover, since 𝐴𝑧 = 𝑧 − 𝐴𝑧 , it being corner-free implies that it
does not contain three points {(𝑥, 𝑦), (𝑥 + 𝑑, 𝑦), (𝑥, 𝑦 + 𝑑)} with 𝑑 ≠ 0.

Write 𝐴 = 𝐴𝑧 from now on. Build a tripartite graph 𝐺 with parts 𝑋 = {𝑥1, . . . , 𝑥𝑁 },
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𝑌 = {𝑦1, . . . , 𝑦𝑁 } and 𝑍 = {𝑧1, . . . , 𝑧2𝑁 }, where each vertex 𝑥𝑖 corresponds to a vertical line
{𝑥 = 𝑖} ⊆ Z2, each vertex 𝑦 𝑗 corresponds to a horizontal line {𝑦 = 𝑗}, and each vertex 𝑧𝑘
corresponds to a slanted line {𝑦 = −𝑥 + 𝑘} with slope −1. Join two distinct vertices of 𝐺
with an edge if and only if the corresponding lines intersect at a point belonging to 𝐴. Then,
each triangle in the graph 𝐺 corresponds to a set of three lines of slopes 0,∞,−1 pairwise
intersecting at a point of 𝐴.

𝑥 = 𝑖

𝑦 = 𝑗

𝑥 + 𝑦 = 𝑘

𝑋

𝑌 𝑍

𝑥𝑖

𝑦 𝑗

𝑧𝑘

Since 𝐴 is corner-free in the sense stated at the end of the previous paragraph, 𝑥𝑖, 𝑦 𝑗 , 𝑧𝑘 form
a triangle in 𝐺 if and only if the three corresponding lines pass through the same point of 𝐴
(i.e., forming a trivial corner with 𝑑 = 0). Since there is exactly one line of each direction
passing through every point of 𝐴, it follows that each edge of 𝐺 belongs to exactly one
triangle. Thus, by Corollary 2.3.3, 3 |𝐴| = 𝑒(𝐺) = 𝑜(𝑁2). □

The upper bound on corner-free sets actually implies Roth’s theorem, as shown below. So
we now have a second proof of Roth’s theorem. (Though, this second proof is secretly the
same as the first proof.)

Proposition 2.4.4 (Corner-free sets vs. 3-AP-free sets)
Let 𝑟3(𝑁) be the size of the largest subset of [𝑁] which contains no 3-term arithmetic
progression, and 𝑟⌞ (𝑁) be the size of the largest subset of [𝑁]2 which contains no corner.
Then, 𝑟3(𝑁)𝑁 ≤ 𝑟⌞ (2𝑁).

0 𝑁 2𝑁

𝑁

2𝑁

𝐴

𝐵

Proof. Given a 3-AP-free set 𝐴 ⊆ [𝑁] of size 𝑟3(𝑁), define a set

𝐵 B
{(𝑥, 𝑦) ∈ [2𝑁]2 : 𝑥 − 𝑦 ∈ 𝐴} .

Each element 𝑎 ∈ 𝐴 gives rise to ≥ 𝑁 different elements (𝑥, 𝑦) of 𝐵 with 𝑥 − 𝑦 = 𝑎. So
|𝐵| ≥ 𝑁 |𝐴|. Furthermore, 𝐵 is corner-free, since each corner (𝑥 + 𝑑, 𝑦), (𝑥, 𝑦), (𝑥, 𝑦 + 𝑑) in
𝐵 gives rise to a 3-AP 𝑥 − 𝑦− 𝑑, 𝑥 − 𝑦, 𝑥 − 𝑦 + 𝑑 with common difference 𝑑. So |𝐵| ≤ 𝑟⌞ (2𝑁).
Thus 𝑟3(𝑁)𝑁 ≤ |𝐴| 𝑁 ≤ |𝐵| ≤ 𝑟⌞ (2𝑁). □
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Remark 2.4.5 (Quantitative bounds). Both proofs above rely on the graph regularity lemma,
and hence give poor quantitative bounds. They tell us that a 3-AP-free 𝐴 ⊆ [𝑁] has |𝐴| ≤
𝑁/(log∗ 𝑁)𝑐, where log∗ 𝑁 is the iterated logarithm (the number of times the logarithm
function must be applied to bring 𝑁 to less than or equal to 1). Later in Chapter 6 we discuss
Roth’s original Fourier analytic proof, which uses different methods (though sharing the
structure and randomness dichotomy theme) and gives much better quantitative bounds.

The current best upper bound on the size of a 3-AP-free subset of [𝑁] is 𝑁/(log 𝑁)1+𝑐
for some constant 𝑐 > 0 (Bloom and Sisask 2020). The current best upper bound on the size
of corner-free subsets of [𝑁]2 is 𝑁2/(log log 𝑁)𝑐 for some constant 𝑐 > 0 (Shkredov 2006).
Both use Fourier analysis.

For the next exercise, apply the triangle removal lemma to an appropriate graph.

Exercise 2.4.6∗ (Arithmetic triangle removal lemma). Show that for every 𝜀 > 0, there
exists 𝛿 > 0 such that if 𝐴 ⊆ [𝑛] has fewer than 𝛿𝑛2 many triples (𝑥, 𝑦, 𝑧) ∈ 𝐴3 with
𝑥 + 𝑦 = 𝑧, then there is some 𝐵 ⊆ 𝐴 with |𝐴 \ 𝐵 | ≤ 𝜀𝑛 such that 𝐵 is sum-free (i.e., no
𝑥, 𝑦, 𝑧 ∈ 𝐵 with 𝑥 + 𝑦 = 𝑧).

2.5 Large 3-AP-Free Sets: Behrend’s Construction
How can we construct a large 3-AP-free subset of [𝑁]?

We can do it greedily. Starting with 0 (which produces a nicer pattern), we successively put
in each positive integer if adding it does not create a 3-AP with the already chosen integers.
This would produce the following sequence:

0 1 3 4 9 10 12 13 27 28 30 31 . . . .

The above sequence is known as a Stanley sequence. It consists of all nonnegative integers
whose ternary representations have only the digits 0 and 1. (Why?) Up to 𝑁 = 3𝑘 , the subset
𝐴 ⊆ [𝑁] so constructed has size |𝐴| = 2𝑘 = 𝑁 log3 2.

For quite some time, people thought the above example was close to the optimal. Salem
and Spencer (1942) then found a much larger 3-AP-free subset of [𝑁], with size 𝑁1−𝑜 (1) .
Their result was further improved by Behrend (1946), whose construction we present below.
This construction has not yet been substantially improved (see Elkin (2011) and Green and
Wolf (2010) for some lower order improvements).

Behrend’s construction has surprising applications, such as in the design of fast matrix
multiplication algorithms (Coppersmith and Winograd 1990).

Theorem 2.5.1 (Behrend’s construction)
There exists a constant 𝐶 > 0 such that for every positive integer 𝑁 , there exists a
3-AP-free 𝐴 ⊆ [𝑁] with |𝐴| ≥ 𝑁𝑒−𝐶

√
log 𝑁 .

The rough idea is to first find a high-dimensional sphere with many lattice points via the
pigeonhole principle. The sphere contains no 3-AP due to convexity. We then project these
lattice points onto Z in a way that creates no additional 3-APs. This is done by treating the
coordinates as the base-𝑞 expansion of an integer with some large 𝑞.
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Proof. Let 𝑚 and 𝑑 be two positive integers depending on 𝑁 to be specified later. Consider
the lattice points of 𝑋 = [𝑚]𝑑 that lie on a sphere of radius

√
𝐿:

𝑋𝐿 B
{(𝑥1, . . . , 𝑥𝑑) ∈ 𝑋 : 𝑥2

1 + · · · + 𝑥2
𝑑 = 𝐿

}
.

Then, 𝑋 =
⋃𝑑𝑚2

𝑖=1 𝑋𝑖. So by the pigeonhole principle, there exists an 𝐿 ∈ [𝑑𝑚2] such that
|𝑋𝐿 | ≥ 𝑚𝑑/(𝑑𝑚2). Define the base 2𝑚 digital expansion

𝜙(𝑥1, . . . , 𝑥𝑑) B
𝑑∑︁
𝑖=1

𝑥𝑖 (2𝑚)𝑖−1.

Then 𝜙 is injective on 𝑋 . Furthermore, 𝑥, 𝑦, 𝑧 ∈ [𝑚]𝑑 satisfy 𝑥 + 𝑧 = 2𝑦 if and only if
𝜙(𝑥) + 𝜙(𝑧) = 2𝜙(𝑦) (there are no wraparounds in base 2𝑚 with all coordinates in [𝑚]).
Since 𝑋𝐿 is a subset of a sphere, it is 3-AP-free. Thus 𝜙(𝑋) ⊆ [(2𝑚)𝑑] is a 3-AP-free
set of size ≥ 𝑚𝑑/(𝑑𝑚2). We can optimize the parameters and take 𝑚 = ⌊𝑒

√
log 𝑁/2⌋ and

𝑑 = ⌊
√︁

log 𝑁⌋, thereby producing a 3-AP-free subset of [𝑁] with of size ≥ 𝑁𝑒−𝐶
√

log 𝑁 ,
where 𝐶 is some absolute constant. □

The Behrend construction also implies lower bound constructions for the other problems
we saw earlier. For example, since we used the diamond-free lemma (Corollary 2.3.3) to
deduce an upper bound on the size of 3-AP-free set, turning this implication around, we
see that having a large 3-AP-free set implies the following quantitative limitation on the
diamond-free lemma.

Corollary 2.5.2 (Lower bound for the diamond-free lemma)
For every 𝑛 ≥ 3, there is some 𝑛-vertex graph with at least 𝑛2𝑒−𝐶

√
log 𝑛 edges where every

edge lies on a unique triangle. Here 𝐶 is some absolute constant.

Proof. In the proof of Theorem 2.4.1, starting from a 3-AP-free set 𝐴 ⊆ [𝑁], we constructed a
graph with 6𝑁+3 vertices and (6𝑁+3) |𝐴| edges such that every edge lies in a unique triangle.
Choosing 𝑁 = ⌊(𝑛− 3)/6⌋ and letting 𝐴 be the Behrend construction of Theorem 2.5.1 with
|𝐴| ≥ 𝑁𝑒−𝐶

√
log 𝑁 , we obtain the desired graph. □

Remark 2.5.3 (More lower bounds from Behrend’s construction). The same graph con-
struction also shows, after examining the proof of Corollary 2.3.3, that in the triangle removal
lemma, Theorem 2.3.1, one cannot take 𝛿 = 𝑒−𝑐 (log(1/𝜀) )2 if the constant 𝑐 > 0 is too small.

In Proposition 2.4.4 we deduced an upper bound 𝑟3(𝑁)𝑁 ≤ 𝑟⌞ (2𝑁) on corner-free sets
using 3-AP-free sets. The Behrend construction then also gives a corner-free subset of [𝑁]2
of size ≥ 𝑁2𝑒−𝐶

√
log 𝑁 .

Exercise 2.5.4 (Modifying Behrend’s construction). Prove that there is some constant
𝐶 > 0 so that for all 𝑁 , there exists 𝐴 ⊆ [𝑁] with |𝐴| ≥ 𝑁 exp(−𝐶

√︁
log 𝑁) so that there

do not exist 𝑤, 𝑦, 𝑥, 𝑧 ∈ 𝐴 not all equal and satisfying 𝑥 + 𝑦 + 𝑧 = 3𝑤.

Exercise 2.5.5∗ (Avoiding 5-term quadratic configurations). Prove that there is some
constant 𝐶 > 0 so that for all 𝑁 , there exists 𝐴 ⊆ [𝑁] with |𝐴| ≥ 𝑁 exp(−𝐶

√︁
log 𝑁) so

that there does not exist a nonconstant quadratic polynomial 𝑃 so that 𝑃(0), 𝑃(1), 𝑃(2),
𝑃(3), 𝑃(4) ∈ 𝐴.
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2.6 Graph Counting and Removal Lemmas
In this section, we generalize the triangle counting lemma from triangles to other graphs and
discuss applications.

Graph Counting Lemma
Let us first illustrate the technique for 𝐾4. Similar to the triangle counting lemma, we embed
the vertices of 𝐾4 one at a time. At each stage we ensure that many eligible vertices remain
for the yet to be embedded vertices.

Proposition 2.6.1 (𝐾4 counting lemma)
Let 0 < 𝜀 < 1. Let 𝑋1, . . . , 𝑋4 be vertex subsets of a graph 𝐺 such that (𝑋𝑖, 𝑋 𝑗) is 𝜀-
regular with edge-density 𝑑𝑖 𝑗 B 𝑑 (𝑋𝑖, 𝑋 𝑗) ≥ 3

√
𝜀 for each pair 𝑖 < 𝑗 . Then the number

of quadruples (𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ 𝑋1 × 𝑋2 × 𝑋3 × 𝑋4 such that 𝑥1𝑥2𝑥3𝑥4 is a clique in 𝐺 is

≥ (1 − 3𝜀) (𝑑12 − 3𝜀) (𝑑13 − 𝜀) (𝑑14 − 𝜀) (𝑑23 − 𝜀) (𝑑24 − 𝜀) (𝑑34 − 𝜀) |𝑋1 | |𝑋2 | |𝑋3 | |𝑋4 | .

Proof. We repeatedly apply the following statement, which is a simple consequence of the
definition of 𝜀-regularity (and a small extension of Lemma 2.2.3):

Given an 𝜀-regular pair (𝑋,𝑌 ), and 𝐵 ⊆ 𝑌 with |𝐵| ≥ 𝜀 |𝑌 |, the number of vertices in 𝑋
with < (𝑑 (𝑋,𝑌 ) − 𝜀) |𝐵| neighbors in 𝐵 is < 𝜀 |𝑋 |.

The number of vertices 𝑋1 with ≥ (𝑑1𝑖 − 𝜀) |𝑋𝑖 | neighbors in 𝑋𝑖 for each 𝑖 = 2, 3, 4 is
≥ (1 − 3𝜀) |𝑋1 |. Fix a choice of such an 𝑥1 ∈ 𝑋1. For each 𝑖 = 2, 3, 4, let 𝑌𝑖 be the neighbors
of 𝑥1 in 𝑋𝑖, so that |𝑌𝑖 | ≥ (𝑑1𝑖 − 𝜀) |𝑋𝑖 |.

𝑋1

𝑥1

𝑋2

𝑌2

𝑋3

𝑌3

𝑋4

𝑌4

𝑌2

𝑥2

𝑌3

𝑍3

𝑌4

𝑍4

The number of vertices in𝑌2 with ≥ (𝑑2𝑖 −𝜀) |𝑌𝑖 | common neighbors in𝑌𝑖 for each 𝑖 = 3, 4
is ≥ |𝑌2 | − 2𝜀 |𝑋2 | ≥ (𝑑12 − 3𝜀) |𝑋2 |. Fix a choice of such an 𝑥2 ∈ 𝑌2. For each 𝑖 = 3, 4, let 𝑍𝑖
be the neighbors of 𝑥2 in 𝑌𝑖.

For each 𝑖 = 3, 4, |𝑍𝑖 | ≥ (𝑑1𝑖 − 𝜀) (𝑑2𝑖 − 𝜀) |𝑋𝑖 | ≥ 𝜀 |𝑋𝑖 |, and so

𝑒(𝑍3, 𝑍4) ≥ (𝑑34 − 𝜀) |𝑍3 | |𝑍4 |
≥ (𝑑34 − 𝜀) · (𝑑13 − 𝜀) (𝑑23 − 𝜀) |𝑋3 | · (𝑑14 − 𝜀) (𝑑24 − 𝜀) |𝑋4 | .

Any edge between 𝑍3 and 𝑍4 forms a 𝐾4 together with 𝑥1 and 𝑥2. Multiplying the above
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quantity with the earlier lower bounds on the number of choices of 𝑥1 and 𝑥2 gives the
result. □

The same strategy works more generally for counting any graph. To find copies of 𝐻, we
embed vertices of 𝐻 one at a time.

Theorem 2.6.2 (Graph counting lemma)
For every graph 𝐻 and real 𝛿 > 0, there exists an 𝜀 > 0 such that the following is true.

Let 𝐺 be a graph, and 𝑋𝑖 ⊆ 𝑉 (𝐺) for each 𝑖 ∈ 𝑉 (𝐻) such that for each 𝑖 𝑗 ∈ 𝐸 (𝐻),
(𝑋𝑖, 𝑋 𝑗) is an 𝜀-regular pair with edge density 𝑑𝑖 𝑗 B 𝑑 (𝑋𝑖, 𝑋 𝑗) ≥ 𝛿. Then the number of
graph homomorphisms 𝐻 → 𝐺 where each 𝑖 ∈ 𝑉 (𝐻) is mapped to 𝑋𝑖 is

≥ (1 − 𝛿)
∏

𝑖 𝑗∈𝐸 (𝐻 )
(𝑑𝑖 𝑗 − 𝛿)

∏
𝑖∈𝑉 (𝐻 )

|𝑋𝑖 |.

Remark 2.6.3. (a) For a fixed 𝐻, as |𝑋𝑖 | → ∞ for each 𝑖, all but a negligible fraction of
such homomorphisms from 𝐻 are injective (i.e., yielding a copy of 𝐻 as a subgraph).

(b) It is useful (and in fact equivalent) to think about the setting where 𝐺 is a multipartite
graph with parts 𝑋𝑖, as illustrated below.

𝑋1

𝑋2 𝑋3

𝑋4

𝐺

−→

1

2 3

4
𝐻

In the multipartite setting, we see that the graph counting lemma can be adapted to variants
such as counting induced copies of 𝐻. Indeed, an induced copy of 𝐻 is the same as a 𝑣(𝐻)-
clique in an auxiliary graph 𝐺′ obtained by replacing the bipartite graph in 𝐺 between 𝑋𝑖
and 𝑋 𝑗 by its complementary bipartite graph between 𝑋𝑖 and 𝑋 𝑗 for each 𝑖 𝑗 ∉ 𝐸 (𝐻).

𝐺12

𝐺23

𝐺13

𝑋1

𝑋2 𝑋3

𝐺

in

induced 𝐻

⇐⇒ 𝐺12 𝐺13

𝐺23

𝑋1

𝑋2 𝑋3

modified 𝐺

in

𝐾𝑣 (𝐻 )

(c) We will see a different proof in Section 4.5 using the language of graphons. There,
instead of embedding 𝐻 one vertex at a time, we compare the density of 𝐻 and 𝐻 \ {𝑒}.

We establish the following stronger statement, which has the additional advantage that one
can choose the regularity parameter 𝜀 to depend on the maximum degree of 𝐻 rather than
𝐻 itself. You may wish to skip reading the proof, as it is notationally rather heavy. The main
ideas were already illustrated in the 𝐾4 counting lemma.

MIT OCW: Graph Theory and Additive Combinatorics --- Yufei Zhao



74 Graph Regularity Method

Theorem 2.6.4 (Graph counting lemma)
Let 𝐻 be a graph with maximum degree Δ ≥ 1 and 𝑐(𝐻) connected components.
Let 𝜀 > 0. Let 𝐺 be a graph. Let 𝑋𝑖 ⊆ 𝑉 (𝐺) for each 𝑖 ∈ 𝑉 (𝐻). Suppose that for each
𝑖 𝑗 ∈ 𝐸 (𝐻), (𝑋𝑖, 𝑋 𝑗) is an 𝜀-regular pair with edge density 𝑑𝑖 𝑗 B 𝑑 (𝑋𝑖, 𝑋 𝑗) ≥ (Δ+1)𝜀1/Δ.
Then the number of graph homomorphisms 𝐻 → 𝐺 where each 𝑖 ∈ 𝑉 (𝐻) is mapped to
𝑋𝑖 is

≥ (1 − Δ𝜀)𝑐 (𝐻 )
∏

𝑖 𝑗∈𝐸 (𝐻 )
(𝑑𝑖 𝑗 − Δ𝜀1/Δ) ·

∏
𝑖∈𝑉 (𝐻 )

|𝑋𝑖 | .

Furthermore, if |𝑋𝑖 | ≥ 𝑣(𝐻)/𝜀 for each 𝑖, then there exists such a homomorphism𝐻 → 𝐺
that is injective (i.e., an embedding of 𝐻 as a subgraph).

Proof. Let us order and label the vertices of 𝐻 by 1, . . . , 𝑣(𝐻) arbitrarily. We will select
vertices 𝑥1 ∈ 𝑋1, 𝑥2 ∈ 𝑋2, . . . in order. The idea is to always make sure that they have
enough neighbors in 𝐺 so that there are many ways to continue the embedding of 𝐻. We
say that a partial embedding 𝑥1, . . . , 𝑥𝑠−1 (here partial embedding means that 𝑥𝑖𝑥 𝑗 ∈ 𝐸 (𝐺)
whenever 𝑖 𝑗 ∈ 𝐸 (𝐻) for all the 𝑥𝑖s chosen so far) is abundant if for each 𝑗 ≥ 𝑠, the number
of valid extensions 𝑥 𝑗 ∈ 𝑋 𝑗 (meaning that 𝑥𝑖𝑥 𝑗 ∈ 𝐸 (𝐺) whenever 𝑖 < 𝑠 and 𝑖 𝑗 ∈ 𝐸 (𝐻)) is
≥ |𝑋 𝑗 |

∏
𝑖<𝑠:𝑖 𝑗∈𝐸 (𝐻 ) (𝑑𝑖 𝑗 − 𝜀).

For each 𝑠 = 1, 2, . . . , 𝑣(𝐻) in order, suppose we have already fixed an abundant partial
embedding 𝑥1, . . . , 𝑥𝑠−1. For each 𝑗 ≥ 𝑠, let

𝑌 𝑗 = {𝑥 𝑗 ∈ 𝑋 𝑗 : 𝑥𝑖𝑥 𝑗 ∈ 𝐸 (𝐺) whenever 𝑖 < 𝑠 and 𝑖 𝑗 ∈ 𝐸 (𝐻)}
be the set of valid extensions of the 𝑗 th vertex in 𝑋 𝑗 given the partial embeddings of
𝑥1, . . . , 𝑥𝑠−1, so that the abundance hypothesis gives

|𝑌 𝑗 | ≥ |𝑋 𝑗 |
∏
𝑖<𝑠

𝑖 𝑗∈𝐸 (𝐻 )

(𝑑𝑖 𝑗 − 𝜀) ≥ (𝜀1/Δ) | {𝑖<𝑠:𝑖 𝑗∈𝐸 (𝐻 ) } | |𝑋 𝑗 | ≥ 𝜀 |𝑋 𝑗 |.

Thus, as in the proof of Proposition 2.6.1 for 𝐾4, the number of choices 𝑥𝑠 ∈ 𝑋𝑠 that would
extend 𝑥1, . . . , 𝑥𝑠−1 to an abundant partial embedding is

≥ |𝑌𝑠 | − |{𝑖 > 𝑠 : 𝑠𝑖 ∈ 𝐸 (𝐻)}| 𝜀 |𝑋𝑠 |
≥ |𝑋𝑠 |

∏
𝑖<𝑠

𝑖𝑠∈𝐸 (𝐻 )

(𝑑𝑖 𝑗 − 𝜀) − |{𝑖 > 𝑠 : 𝑠𝑖 ∈ 𝐸 (𝐻)}| 𝜀 |𝑋𝑠 | . (†)

If none of 1, . . . , 𝑠 − 1 is a neighbor of 𝑠 in 𝐻, then the first term in (†) is |𝑋𝑠 |, and so

(†) ≥ (1 − Δ𝜀) |𝑋𝑠 | .
Otherwise we can absorb the second term into the product and obtain

(†) ≥ |𝑋𝑠 |
∏
𝑖<𝑠

𝑖𝑠∈𝐸 (𝐻 )

(𝑑𝑖 𝑗 − 𝜀) − (Δ − 1)𝜀 |𝑋𝑠 | ≥ |𝑋𝑠 |
∏
𝑖<𝑠

𝑖𝑠∈𝐸 (𝐻 )

(𝑑𝑖 𝑗 − Δ𝜀1/Δ).

Fix such a choice of 𝑥𝑠. And now we move onto embedding the next vertex 𝑥𝑠+1.
Multiplying together these lower bounds for the number of choices of each 𝑥𝑠 over all

𝑠 = 1, . . . , 𝑣(𝐻), we obtain the lower bound on the number of homomorphisms 𝐻 → 𝐺.
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Finally, note that in both cases (†) ≥ 𝜀 |𝑋𝑠 |, and so if |𝑋𝑠 | ≥ 𝑣(𝐻)/𝜀, then (†) ≥ 𝑣(𝐻) and
so we can choose each 𝑥𝑠 to be distinct from the previously embedded vertices 𝑥1, . . . , 𝑥𝑠−1,
thereby yielding an injective homomorphism. □

Graph Removal Lemma
As an application, we have the following graph removal lemma, generalizing the triangle
removal lemma, Theorem 2.3.1. The proof is basically the same as Theorem 2.3.1 except
with the above graph counting lemma taking the role of the triangle counting lemma, so we
will not repeat the proof here.

Theorem 2.6.5 (Graph removal lemma)
For every graph 𝐻 and constant 𝜀 > 0, there exists a constant 𝛿 = 𝛿(𝐻, 𝜀) > 0 such
that every 𝑛-vertex graph 𝐺 with fewer than 𝛿𝑛𝑣 (𝐻 ) copies of 𝐻 can be made 𝐻-free by
removing fewer than 𝜀𝑛2 edges.

The next exercise asks you to show that, if 𝐻 is bipartite, then one can prove the 𝐻-removal
lemma without using regularity, and thereby getting a much better bound.

Exercise 2.6.6 (Removal lemma for bipartite graphs with polynomial bounds). Prove
that for every bipartite graph 𝐻, there is a constant 𝐶 such that for every 𝜀 > 0, every
𝑛-vertex graph with fewer than 𝜀𝐶𝑛𝑣 (𝐻 ) copies of 𝐻 can be made 𝐻-free by removing at
most 𝜀𝑛2 edges.

Erdős–Stone–Simonovits Theorem
As another application, let us give a different proof of the Erdős–Stone–Simonovits theorem
from Section 1.5, restated below, which gives the asymptotics (up to a +𝑜(𝑛2) error term)
for ex(𝑛, 𝐻), the maximum number of edges in an 𝑛-vertex 𝐻-free graph. We saw a proof in
Section 1.5 using supersaturation and the hypergraph KST theorem. The proof below follows
the partition-clean-count strategy in Remark 2.3.2 combined with an application of Turán’s
theorem. A common feature of many regularity applications is that they “boost” an exact
extremal graph theoretic result (e.g., Turán’s theorem) to an asymptotic result involving more
complex derived structures (e.g., from the existence of a copy of 𝐾𝑟 to embedding a complete
𝑟-partite graph).

Theorem 2.6.7 (Erdős–Stone–Simonovits theorem)
Fix graph 𝐻 with at least one edge. Then

ex(𝑛, 𝐻) =
(
1 − 1

𝜒(𝐻) − 1
+ 𝑜(1)

)
𝑛2

2
.

Proof. Fix 𝜀 > 0. Let 𝐺 be any 𝑛-vertex graph with at least
(
1 − 1

𝜒 (𝐻 )−1 + 𝜀
)
𝑛2

2 edges. The
theorem is equivalent to the claim that for 𝑛 = 𝑛(𝜀, 𝐻) sufficiently large, 𝐺 contains 𝐻 as a
subgraph.

Apply the graph regularity lemma to obtain an 𝜂-regular partition 𝑉 (𝐺) = 𝑉1 ∪ · · · ∪ 𝑉𝑚
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for some sufficiently small 𝜂 > 0 only depending on 𝜀 and 𝐻, to be decided later. Then the
number 𝑚 of parts is also bounded for fixed 𝐻 and 𝜀.

Remove an edge (𝑥, 𝑦) ∈ 𝑉𝑖 ×𝑉 𝑗 if
(a) (𝑉𝑖, 𝑉 𝑗) is not 𝜂-regular, or
(b) 𝑑 (𝑉𝑖, 𝑉 𝑗) < 𝜀/8, or
(c) min{|𝑉𝑖 | ,

��𝑉 𝑗 ��} < 𝜀𝑛/(8𝑚).
Then, as in Theorem 2.3.1, the number of edges in (a) is ≤ 𝜂𝑛2 ≤ 𝜀𝑛2/8, the number of
edges in (b) is < 𝜀𝑛2/8, and the number of edges in (c) is < 𝑚𝜀𝑛2/(8𝑚) ≤ 𝜀𝑛2/8. Thus, the
total number of edges removed is ≤ (3/8)𝜀𝑛2. After removing all these edges, the resulting
graph 𝐺′ has still has >

(
1 − 1

𝜒 (𝐻 )−1 + 𝜀
4

)
𝑛2

2 edges.

𝑉𝑖2 𝑉𝑖3

𝑉𝑖1
𝐺′𝐻

By Turán’s theorem (Corollary 1.2.6),𝐺′ contains a copy of 𝐾𝜒 (𝐻 ) . Suppose that the 𝜒(𝐻)
vertices of this 𝐾𝜒 (𝐻 ) land in 𝑉𝑖1 , . . . , 𝑉𝑖𝜒 (𝐻) (allowing repeated indices). Since each pair of
these sets is 𝜂-regular, has edge density ≥ 𝜀/8, and each has size ≥ 𝜀𝑛/(8𝑚), by applying
the graph counting lemma, Theorem 2.6.2, we see that as long as 𝜂 is sufficiently small in
terms of 𝜀 and 𝐻, and 𝑛 is sufficiently large, there exists an injective embedding of 𝐻 into
𝐺′ where the vertices of 𝐻 in the 𝑟th color class are mapped into 𝑉𝑖𝑟 . So 𝐺 contains 𝐻 as a
subgraph. □

2.7 Exercises on Applying Graph Regularity
The regularity method can be difficult at first to grasp conceptually. The following exercises
are useful for gaining familiarity in applying the regularity lemma. For these exercises, you
are welcome to use the equitable form of the graph regularity lemma (Theorem 2.1.20),
which is more convenient to apply.

Exercise 2.7.1 (Ramsey–Turán).
(a) Show that for every 𝜀 > 0, there exists 𝛿 > 0 such that every 𝑛-vertex 𝐾4-free graph

with at least ( 18 + 𝜀)𝑛2 edges contains an independent set of size at least 𝛿𝑛.
(b) Show that for every 𝜀 > 0, there exists 𝛿 > 0 such that every 𝑛-vertex 𝐾4-free graph

with at least ( 18 − 𝛿)𝑛2 edges and independence number at most 𝛿𝑛 can be made
bipartite by removing at most 𝜀𝑛2 edges.

Exercise 2.7.2 (Nearly homogeneous subset). Show that for every 𝐻 and 𝜀 > 0 there
exists 𝛿 > 0 such that every graph on 𝑛 vertices without an induced copy of 𝐻 contains an
induced subgraph on at least 𝛿𝑛 vertices whose edge density is at most 𝜀 or at least 1 − 𝜀.
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Exercise 2.7.3 (Ramsey numbers of bounded degree graphs). Show that for every Δ
there exists a constant𝐶Δ so that if𝐻 is a graph with maximum degree at mostΔ, then every
2-edge-coloring of a complete graph on at least𝐶Δ𝑣(𝐻) vertices contains a monochromatic
copy of 𝐻.

Exercise 2.7.4 (Counting 𝐻-free graphs).
(a) Show that the number of 𝑛-vertex triangle-free graphs is 2(1/4+𝑜 (1) )𝑛2 .
(b) More generally, show that for any fixed graph 𝐻, the number of 𝑛-vertex 𝐻-free

graphs is 2ex(𝑛,𝐻 )+𝑜 (𝑛2 ) .

Exercise 2.7.5∗ (Induced Ramsey). Show that for every graph 𝐻 there is some graph 𝐺
such that if the edges of 𝐺 are colored with two colors, then some induced subgraph of 𝐺
is a monochromatic copy of 𝐻.

Exercise 2.7.6∗ (Finding a degree-regular subgraph). Show that for every 𝛼 > 0, there
exists 𝛽 > 0 such that every graph on 𝑛 vertices with at least 𝛼𝑛2 edges contains a 𝑑-regular
subgraph for some 𝑑 ≥ 𝛽𝑛. (Here 𝑑-regular refers to every vertex having degree 𝑑.)

2.8 Induced Graph Removal and Strong Regularity
Recall that 𝐻 is an induced subgraph of 𝐺 if one can obtain 𝐻 from 𝐺 by deleting vertices
from 𝐺 (but you are not allowed to simply remove edges from 𝐺). We say that 𝐺 is induced
𝑯-free if𝐺 contains no induced subgraph isomorphic to 𝐻. (See Notation and Conventions.)

The following removal lemma for induced subgraphs is due to Alon, Fischer, Krivelevich,
and Szegedy (2000).

Theorem 2.8.1 (Induced graph removal lemma)
For any graph 𝐻 and 𝜀 > 0, there exists 𝛿 > 0 such that if an 𝑛-vertex graph has fewer
than 𝛿𝑛𝑣 (𝐻 ) induced copies of 𝐻, then it can be made induced 𝐻-free by adding and/or
deleting fewer than 𝜀𝑛2 edges.

Remark 2.8.2. Given two graphs on the same vertex set, the minimum number of edges
that one needs to add/delete to obtain the second graph from the first graph is called the edit
distance between the two graphs. The induced graph removal lemma can be rephrased as
saying that every graph with few induced copies of 𝐻 is close in edit distance to an induced
𝐻-free graph.

Unlike the previous graph removal lemma, for the induced version, it is important that
we allow both adding and deleting edges. The statement would be false if we only allow
edge deletion but not addition. For example, suppose 𝐺 = 𝐾𝑛 \𝐾3 (i.e., a complete graph on
𝑛 vertices with three edges of a single triangle removed). If 𝐻 is an empty graph on three
vertices, then 𝐺 has exactly one induced copy of 𝐻, but 𝐺 cannot be made induced 𝐻-free
by only deleting edges.

To see why the earlier proof of the graph removal lemma (Theorem 2.6.5) does not apply
in a straightforward way to prove the induced graph removal lemma, let us attempt to follow
the earlier strategy and see where things go wrong.

MIT OCW: Graph Theory and Additive Combinatorics --- Yufei Zhao



78 Graph Regularity Method

First we apply the graph regularity lemma. Then we need to clean up the graph. In the
induced graph removal lemma, edges and nonedges play symmetric roles. We can handle
low-density pairs (edge density less than 𝜀) by removing edges between such pairs. Naturally,
for the induced graph removal lemma, we also need to handle high-density pairs (density
more than 1 − 𝜀), and we can add all the edges between such pairs. However, it is not clear
what to do with irregular pairs. Earlier, we just removed all edges between irregular pairs. The
problem is that this may create many induced copies of 𝐻 that were not present previously
(see illustration below). Likewise, we cannot simply add all edges between irregular pairs.

irregular

Perhaps we can always find a regularity partition without irregular pairs? Unfortunately, this
is false, as shown in Exercise 2.1.24. One must allow for the possibility of irregular pairs.

Strong Regularity Lemma
We will iterate the regularity partitioning lemma to obtain a stronger form of the regularity
lemma. Recall the energy 𝑞(P) of a partition (Definition 2.1.10) as the mean-squared edge
density between parts.

Theorem 2.8.3 (Strong regularity lemma)
For any sequence of constants 𝜀0 ≥ 𝜀1 ≥ 𝜀2 ≥ . . . > 0, there exists an integer 𝑀 so that
every graph has two vertex partitions P and Q so that

(a) Q refines P,
(b) P is 𝜀0-regular and Q is 𝜀 | P |-regular,
(c) 𝑞(Q) ≤ 𝑞(P) + 𝜀0, and
(d) |Q| ≤ 𝑀 .

Remark 2.8.4. One should think of the sequence 𝜀1, 𝜀2, . . . as rapidly decreasing. This
strong regularity lemma outputs a refining pair of partitions P and Q such that P is regular,
Q is extremely regular, and P and Q are close to each other (as captured by 𝑞(P) ≤ 𝑞(Q) ≤
𝑞(P) + 𝜀0; see Lemma 2.8.7 below). A key point here is that we demand Q to be extremely
regular relative to the number of parts of P. The more parts P has, the more regular Q should
be.

Proof. We repeatedly apply the following version of Szemerédi’s regularity lemma:

Theorem 2.1.19 (restated): For all 𝜀 > 0 and 𝑘 , there exists an integer 𝑀0 = 𝑀0(𝑘, 𝜀) so
that for all partitions P of 𝑉 (𝐺) with at most 𝑘 parts, there exists a refinement P′ of P with
each part in P refined into ≤ 𝑀0 parts so that P′ is 𝜀-regular.

By iteratively applying the above regularity partition, we obtain a sequence of partitions
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P0,P1, . . . of 𝑉 (𝐺) starting with P0 = {𝑉 (𝐺)} being the trivial partition. Each P𝑖+1 is
𝜀 | P𝑖 |-regular and refines P𝑖. The regularity lemma guarantees that we can have |P𝑖+1 | ≤
𝑀0( |P𝑖 | , 𝜀 | P𝑖 |).

Since 0 ≤ 𝑞(·) ≤ 1, there exists 𝑖 ≤ 𝜀−1
0 so that 𝑞(P𝑖+1) ≤ 𝑞(P𝑖) +𝜀0. Then setting P = P𝑖

and Q = P𝑖+1 satisfies the desired requirements. Indeed, the number of parts of Q is bounded
by a function of the sequence (𝜀0, 𝜀1, . . . ) since there are a bounded number of iterations
and each iteration produced a refining partition with a bounded number of parts. □

Remark 2.8.5 (Bounds in the strong regularity lemma). The bound on 𝑀 produced by the
proof depends on the sequence (𝜀0, 𝜀1, . . . ). In the application below, we use 𝜀𝑖 = 𝜀0/poly(𝑖).
Then the size of 𝑀 is comparable to applying 𝑀0 to 𝜀0 in succession 1/𝜀0 times. Note that
𝑀0 is a tower function, and this makes 𝑀 a tower function iterated 𝑖 times. This iterated
tower function is called the wowzer function:

wowzer(𝒌) B tower(tower(· · · (tower(2)) · · · ))
(with 𝑘 applications of tower). The wowzer function is one step up from the tower function
in the Ackermann hierarchy. It grows extremely quickly.

Remark 2.8.6 (Equitability). We can further ensure that the parts have nearly equal size.
This can be done by adapting the ideas sketched in the proof sketch of Theorem 2.1.20.

The following lemma explains the significance of the inequality 𝑞(Q) ≤ 𝑞(P) + 𝜀 from
earlier.

Lemma 2.8.7 (Energy and approximation)
LetP andQ both be vertex partitions of a graph𝐺, withQ refiningP. For each 𝑥 ∈ 𝑉 (𝐺),
write 𝑉𝑥 for the part of P that 𝑥 lies in and𝑊𝑥 for the part of Q that 𝑥 lies in. If

𝑞(Q) ≤ 𝑞(P) + 𝜀3,

then ��𝑑 (𝑉𝑥 , 𝑉𝑦) − 𝑑 (𝑊𝑥 ,𝑊𝑦)
�� ≤ 𝜀

for all but 𝜀𝑛2 pairs (𝑥, 𝑦) ∈ 𝑉 (𝐺)2.

Proof. Let 𝑥, 𝑦 ∈ 𝑉 (𝐺) be chosen uniformly at random. As in the proof of Lemma 2.1.11,
we have 𝑞(P) = E[𝑍2

P], where 𝑍P = 𝑑 (𝑉𝑥 , 𝑉𝑦). Likewise, 𝑞(Q) = E[𝑍2
Q], where 𝑍Q =

𝑑 (𝑊𝑥 ,𝑊𝑦).
We have

𝑞(Q) − 𝑞(P) = E[𝑍2
Q] − E[𝑍2

P] = E[(𝑍Q − 𝑍P)2],
where the final step above is a “Pythagorean identity.”

𝑍Q − 𝑍P

𝑍P
𝑍Q
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Indeed, the identity E[𝑍2
Q] −E[𝑍2

P] = E[(𝑍Q − 𝑍P)2] is equivalent to E[𝑍P (𝑍Q − 𝑍P)] = 0,
which is true since as 𝑥 and 𝑦 each vary over their own parts of P, the expression 𝑍Q − 𝑍P
averages to zero.

So 𝑞(Q) ≤ 𝑞(P) + 𝜀3 is equivalent to E[(𝑍Q − 𝑍P)2] ≤ 𝜀3, which in turn implies,
by Markov’s inequality, that P( |𝑍Q − 𝑍P | > 𝜀) ≤ 𝜀, which is the same as the desired
conclusion. □

Exercise 2.8.8. Let 0 < 𝜀 < 1. Using the notation of Lemma 2.8.7, show that if
|𝑑 (𝑉𝑥 , 𝑉𝑦) − 𝑑 (𝑊𝑥 ,𝑊𝑦) | ≤ 𝜀 for all but 𝜀𝑛2 pairs (𝑥, 𝑦) ∈ 𝑉 (𝐺)2, then 𝑞(Q) ≤ 𝑞(P) + 2𝜀.

We now deduce the following form of the strong regularity lemma, which considers only
select subsets of vertex parts but does not require irregular pairs.

Theorem 2.8.9 (Strong regularity lemma)
For any sequences of constants 𝜀0 ≥ 𝜀1 ≥ 𝜀2 ≥ · · · > 0, there exists a constant 𝛿 > 0
so that every 𝑛-vertex graph has an equitable vertex partition 𝑉1 ∪ · · · ∪ 𝑉𝑘 and a subset
𝑊𝑖 ⊆ 𝑉𝑖 for each 𝑖 satisfying

(a) |𝑊𝑖 | ≥ 𝛿𝑛,
(b) (𝑊𝑖,𝑊 𝑗) is 𝜀𝑘-regular for all 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑘 , and
(c)

��𝑑 (𝑉𝑖, 𝑉 𝑗) − 𝑑 (𝑊𝑖,𝑊 𝑗)
�� ≤ 𝜀0 for all but < 𝜀0𝑘

2 pairs (𝑖, 𝑗) ∈ [𝑘]2.

𝑉1

𝑉2 𝑉3

𝑊1

𝑊2 𝑊3

Remark 2.8.10. It is significant that all (rather than nearly all) pairs (𝑊𝑖,𝑊 𝑗) are regular.
We will need this fact in our applications below.

Proof sketch.. Here we show how to prove a slightly weaker result where 𝑖 ≤ 𝑗 in (b) is
replaced by 𝑖 < 𝑗 . In other words, this proof does not promise that each𝑊𝑖 is 𝜀𝑘-regular. To
obtain the stronger conclusion as stated (requiring each𝑊𝑖 to be regular with itself), we can
adapt the ideas in Exercise 2.1.27. We omit the details.

By decreasing the 𝜀𝑖s if needed (we can do this since a smaller sequence of 𝜀𝑖s yields a
stronger conclusion), we may assume that 𝜀𝑖 ≤ 1/(10𝑖2) and 𝜀𝑖 ≤ 𝜀0/4 for every 𝑖 ≥ 1.

Let us apply the strong regularity lemma, Theorem 2.8.3, with equitable partitions (see
above Remark 2.8.6). That is, we have (we make the simplifying assumption that all partitions
are exactly equitable, to avoid unimportant technicalities):
• an equitable 𝜀0-regular partition P = {𝑉1, . . . , 𝑉𝑘} of 𝑉 (𝐺) and
• an equitable 𝜀𝑘-regular partition Q refining P

satisfying
• 𝑞(Q) ≤ 𝑞(P) + 𝜀3

0/8, and
• |Q| ≤ 𝑀 = 𝑀 (𝜀0, 𝜀1, . . . ).
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Inside each part 𝑉𝑖, let us choose a part 𝑊𝑖 of Q uniformly at random. Since |Q| ≤ 𝑀 ,
the equitability assumption implies that each part of Q has size ≥ 𝛿𝑛 for some constant
𝛿 = 𝛿(𝜀0, 𝜀1, . . . ). So (a) is satisfied.

Since Q is 𝜀𝑘-regular, all but at most an 𝜀𝑘-fraction of pairs of parts of Q are 𝜀𝑘-regular.
Summing over all 𝑖 < 𝑗 , using linearity of expectations, the expected the number of pairs
(𝑊𝑖,𝑊 𝑗) that are not 𝜀𝑘-regular is ≤ 𝜀𝑘𝑘2 ≤ 1/10. It follows that with probability ≥ 9/10,
(𝑊𝑖,𝑊 𝑗) is 𝜀𝑘-regular for all 𝑖 < 𝑗 , so (b) is satisfied (this argument ignores 𝑖 = 𝑗 as
mentioned at the beginning of the proof).

Let 𝑋 denote the number of pairs (𝑖, 𝑗) ∈ [𝑘]2 with
��𝑑 (𝑉𝑖, 𝑉 𝑗) − 𝑑 (𝑊𝑖,𝑊 𝑗)

�� > 𝜀0. Since
𝑞(Q) ≤ 𝑞(P) + (𝜀0/2)3, by Lemma 2.8.7 and linearity of expectations, E𝑋 ≤ (𝜀0/2)𝑘2. So
by Markov’s inequality, 𝑋 ≤ 𝜀0𝑘

2 with probability ≥ 1/2, so that (c) is satisfied.
It follows that (a) and (b) are both satisfied with probability ≥ 1 − 1/10 − 1/2. Therefore,

there exist valid choices of𝑊𝑖s. □

Induced Graph Removal Lemma
As with earlier regularity applications, we follow the partition-clean-count recipe from
Remark 2.3.2.

Proof of the induced graph removal lemma (Theorem 2.8.1). Apply Theorem 2.8.9 to ob-
tain a partition 𝑉1 ∪ · · · ∪𝑉𝑘 of the vertex set of the graph, along with𝑊𝑘 ⊆ 𝑉𝑘 , so that:

(a) (𝑊𝑖,𝑊 𝑗) is 𝜀′-regular for every 𝑖 ≤ 𝑗 , with some sufficiently small constant 𝜀′ > 0
depending on 𝜀 and 𝐻,

(b)
��𝑑 (𝑉𝑖, 𝑉 𝑗) − 𝑑 (𝑊𝑖,𝑊 𝑗)

�� ≤ 𝜀/8 for all but < 𝜀𝑘2/8 pairs (𝑖, 𝑗) ∈ [𝑘]2, and
(c) |𝑊𝑖 | ≥ 𝛿0𝑛, for some constant 𝛿0 depending only on 𝜀 and 𝐻.

Now we clean the graph. For each pair 𝑖 ≤ 𝑗 (including 𝑖 = 𝑗),
• if 𝑑 (𝑊𝑖,𝑊 𝑗) ≤ 𝜀/8, then remove all edges between (𝑉𝑖, 𝑉 𝑗), and
• if 𝑑 (𝑊𝑖,𝑊 𝑗) ≥ 1 − 𝜀/8, then add all edges between (𝑉𝑖, 𝑉 𝑗).

Note that we are not simply add/removing edges within each pair (𝑊𝑖,𝑊 𝑗), but rather all of
(𝑉𝑖, 𝑉 𝑗). To bound the number of edges add/deleted, recall (b) from the previous paragraph. If
𝑑 (𝑊𝑖,𝑊 𝑗) ≤ 𝜀/8 and

��𝑑 (𝑉𝑖, 𝑉 𝑗) − 𝑑 (𝑊𝑖,𝑊 𝑗)
�� ≤ 𝜀/8, then 𝑑 (𝑉𝑖, 𝑉 𝑗) ≤ 𝜀/4, and the number

of edges in all such (𝑉𝑖, 𝑉 𝑗) is at most 𝜀𝑛2/4. Likewise for 𝑑 (𝑊𝑖,𝑊 𝑗) ≥ 1 − 𝜀/8. For the
remaining < 𝜀𝑘2/8 pairs (𝑖, 𝑗) not satisfying

��𝑑 (𝑉𝑖, 𝑉 𝑗) − 𝑑 (𝑊𝑖,𝑊 𝑗)
�� ≤ 𝜀/8, the total number

of edges among all such pairs is at most 𝜀𝑛2/8. All together, we added/deleted < 𝜀𝑛2 edges
from 𝐺. Call the resulting graph 𝐺′. There are no irregular pairs (𝑊𝑖,𝑊 𝑗) for us to worry
about.

It remains to show that 𝐺′ is induced 𝐻-free. Suppose otherwise. Let us count induced
copies of 𝐻 in 𝐺 as in the proof of the graph removal lemma, Theorem 2.6.5. We have
some induced copy of 𝐻 in 𝐺′, with each vertex 𝑣 ∈ 𝑉 (𝐻) embedded in 𝑉𝜙 (𝑣) for some
𝜙 : 𝑉 (𝐻) → [𝑘].

Consider a pair of distinct vertices 𝑢, 𝑣 of 𝐻. If 𝑢𝑣 ∈ 𝐸 (𝐻), there must be an edge in 𝐺′
between 𝑉𝜙 (𝑢) and 𝑉𝜙 (𝑣) (here 𝜙(𝑢) and 𝜙(𝑣) are not necessarily different). So we must not
have deleted all the edges in 𝐺 between 𝑉𝜙 (𝑢) and 𝑉𝜙 (𝑣) in the cleaning step. By the cleaning
algorithm above, this means that 𝑑𝐺 (𝑊𝑖,𝑊 𝑗) > 𝜀/8. Likewise, if 𝑢𝑣 ∉ 𝐸 (𝐻) for any pair of
distinct 𝑢, 𝑣 ∈ 𝑉 (𝐻), we have 𝑑𝐺 (𝑊𝑖,𝑊 𝑗) < 1 − 𝜀/8.
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Since (𝑊𝑖,𝑊 𝑗) is 𝜀′-regular in 𝐺 for every 𝑖 ≤ 𝑗 , provided that 𝜀′ is small enough (in
terms of 𝜀 and 𝐻), the graph counting lemma, (Theorem 2.6.2 with the induced variation as
in Remark 2.6.3(b)) applied to 𝐺 gives

# induced copies of 𝐻 in 𝐺 ≥ (1 − 𝜀)
( 𝜀
10

) (𝑣 (𝐻)2 ) (𝛿0𝑛)𝑣 (𝐻 ) C 𝛿𝑛𝑣 (𝐻 )

(recall |𝑊𝑖 | ≥ 𝛿0𝑛). Setting 𝛿 as above, this contradicts the hypothesis that 𝐺 has < 𝛿𝑛𝑣 (𝐻 )
copies of 𝐻. Thus 𝐺′ must be induced 𝐻-free. □

Infinite Graph Removal Lemma
Finally, let us prove a graph removal lemma with an infinite number of forbidden induced
subgraphs (Alon and Shapira 2008). Given a (possibly infinite) setH of graphs, we say that
𝐺 is induced H-free if 𝐺 is induced 𝐻-free for every 𝐻 ∈ H .

Theorem 2.8.11 (Infinite graph removal lemma)
For each (possibly infinite) set of graphs H and 𝜀 > 0, there exist ℎ0 and 𝛿 > 0 so that
if 𝐺 is an 𝑛-vertex graph with fewer than 𝛿𝑛𝑣 (𝐻 ) induced copies of 𝐻 for every 𝐻 ∈ H
with at most ℎ0 vertices, then 𝐺 can be made inducedH -free by adding/removing fewer
than 𝜀𝑛2 edges.

Remark 2.8.12. The presence of ℎ0 may seem a bit strange at first. In the next section, we
will see a reformulation of this theorem in the language of property testing, where ℎ0 comes
up naturally.

Proof. The proof is mostly the same as the proof of the induced graph removal lemma that
we just saw. The main tricky issue here is how to choose the regularity parameter 𝜀′ for every
pair (𝑊𝑖,𝑊 𝑗) in condition (a) of the earlier proof. Previously, we did not use the full strength
of Theorem 2.8.9, which allowed 𝜀′ to depend on 𝑘 , but now we are going to use it. Recall
that we had to make sure that this 𝜀′ was chosen to be small enough for the 𝐻-counting
lemma to work. Now that there are possibly infinitely many graphs inH , we cannot naively
choose 𝜀′ to be sufficiently small. The main point of the proof is to reduce the problem to a
finite subset ofH for each 𝑘 .

Define a template 𝑇 to be an edge-coloring of the looped 𝑘-clique (i.e., a complete graph
on 𝑘 vertices along with a loop at a every vertex) where each edge is colored by one of
{white, black, gray}. We say that a graph 𝐻 is compatible with a template 𝑇 if there exists a
map 𝜙 : 𝑉 (𝐻) → 𝑉 (𝑇) such that for every distinct pair 𝑢, 𝑣 of vertices of 𝐻:
• if 𝑢𝑣 ∈ 𝐸 (𝐻), then 𝜙(𝑢)𝜙(𝑣) is colored black or gray in 𝑇 ; and
• if 𝑢𝑣 ∉ 𝐸 (𝐻), then 𝜙(𝑢)𝜙(𝑣) is colored white or gray in 𝑇 .

That is, a black edge in a template means an edge of 𝐻, a white edge means a nonedge of 𝐻,
and a gray edge is a wildcard. An example is shown below.
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𝐻

𝑏

𝑏

𝑐𝑎

𝑐

−→
𝜙

𝑇

𝑎

𝑏 𝑐

black
gray

(none) white

As another example, every graph is compatible with every completely gray template.
For every template 𝑇 , pick some representative 𝐻𝑇 ∈ H compatible with 𝑇 , as long as

such a representative exists (and ignore 𝑇 otherwise). A graph in H is allowed to be the
representative of more than one template. Let H𝑘 be a set of all 𝐻 ∈ H that arise as the
representative of some 𝑘-vertex template. Note thatH𝑘 is finite since there are finitely many
𝑘-vertex templates. We can pick each 𝜀𝑘 > 0 to be small enough so that the conclusion of
the counting step later can be guaranteed for all elements ofH𝑘 .

Now we proceed nearly identically as in the proof of the induced removal lemma, Theo-
rem 2.8.1, that we just saw. In applying Theorem 2.8.9 to obtain the partition 𝑉1 ∪ · · · ∪ 𝑉𝑘
and finding𝑊𝑖 ⊆ 𝑉𝑖, we ensure the following condition instead of the earlier (a):
(a) (𝑊𝑖,𝑊 𝑗) is 𝜀𝑘-regular for every 𝑖 ≤ 𝑗 .

We set ℎ0 to be the maximum number of vertices of a graph inH𝑘 .
Now we do the cleaning step. Along the way, we create a 𝑘-vertex template 𝑇 with vertex

set [𝑘] corresponding to the parts {𝑉1, . . . , 𝑉𝑘} of the partition. For each 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛,
• if 𝑑 (𝑊𝑖,𝑊 𝑗) ≤ 𝜀/4, then remove all edges between (𝑉𝑖, 𝑉 𝑗) from 𝐺, and color the edge
𝑖 𝑗 in template 𝑇 white;
• if 𝑑 (𝑊𝑖,𝑊 𝑗) ≥ 1 − 𝜀/4, then add all edges between (𝑉𝑖, 𝑉 𝑗), and color the edge 𝑖 𝑗 in

template 𝑇 black;
• otherwise, color the edge in 𝑖 𝑗 in template 𝑇 gray.
Finally, suppose some induced 𝐻 ∈ H remains in 𝐺′. Due to our cleaning procedure, 𝐻

must be compatible with the template 𝑇 . Then the representative 𝐻𝑇 ∈ H𝑘 of 𝑇 is a graph on
at most ℎ0 vertices, and furthermore, the counting lemma guarantees that, provided 𝜀𝑘 > 0
is small enough (subject to a finite number of pre-chosen constraints, one for each element
of H𝑘), the number of copies of 𝐻𝑇 in 𝐺 is ≥ 𝛿𝑛𝑣 (𝐻𝑇 ) for some constant 𝛿 > 0 that only
depends on 𝜀 andH . This contradicts the hypothesis, and thus 𝐺′ is inducedH -free. □

All the techniques above work nearly verbatim for a generalization to colored graphs.

Theorem 2.8.13 (Infinite edge-colored graph removal lemma)
For every 𝜀 > 0, positive integer 𝑟 , and a (possibly infinite) set H of 𝑟-edge-colored
graphs, there exists some ℎ0 and 𝛿 > 0 such that if 𝐺 is an 𝑟-edge-coloring of the
complete graph on 𝑛 vertices with < 𝛿𝑛𝑣 (𝐻 ) copies of 𝐻 for every H with at most ℎ0
vertices, then 𝐺 can be madeH -free by recoloring < 𝜀𝑛2 edges (using the same palette
of 𝑟 colors throughout).

The induced graph removal lemma corresponds to the special case 𝑟 = 2, with the two
colors representing edges and nonedges respectively.
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2.9 Graph Property Testing
We are given random query access to a very large graph. The graph may be too large for us to
see every vertex or edge. What can we learn about the graph by sampling a constant number
of vertices and the edges between them?

For example, we cannot distinguish two graphs if they only differ on a small number of
vertices or edges. We also need some error tolerance.

A graph propertyP is simply a set of isomorphism classes of graphs. The graph properties
that we usually encounter have some nice name and/or compact description, such as triangle-
free, planar, and 3-colorable.

We say that an 𝑛-vertex graph 𝐺 is 𝜺-far from property P if one cannot change 𝐺 into a
graph in P by adding/deleting 𝜀𝑛2 edges.

The following theorem gives a straightforward algorithm, with a probabilistic guarantee,
on testing triangle-freeness. It allows us to distinguish two types of graphs from each other:

triangle-free vs. far from triangle-free.

Theorem 2.9.1 (Triangle-freeness is testable)
For every 𝜀 > 0, there exists 𝐾 = 𝐾 (𝜀) so that the following algorithm satisfies the
probabilistic guarantees below.
Input: A graph 𝐺.
Algorithm: Sample 𝐾 vertices from 𝐺 uniformly at random without replacement (if 𝐺
has fewer than 𝐾 vertices, then return the entire graph). If 𝐺 has no triangles among
these 𝐾 vertices, then output that 𝐺 is triangle-free; else output that 𝐺 is 𝜀-far from
triangle-free.
Probabilistic guarantees:

(a) If the input graph 𝐺 is triangle-free, then the algorithm always correctly outputs
that 𝐺 is triangle-free;

(b) If the input graph 𝐺 is 𝜀-far from triangle-free, then with probability ≥ 0.99 the
algorithm outputs that 𝐺 is 𝜀-far from triangle-free;

(c) We do not make any guarantees when the input graph is neither triangle-free nor
𝜀-far from triangle-free.

Remark 2.9.2. This is an example of a one-sided tester, meaning that it always outputs a
correct answer when 𝐺 satisfies property P and only has a probabilistic guarantee when
𝐺 does not satisfy property 𝐺. (In contrast, a two-sided tester would have probabilistic
guarantees for both situations.)

For a one-sided tester, there is nothing special about the number 0.99 above in (b). It can
be any positive constant 𝛿 > 0. If we run the algorithm 𝑚 times, then the probability of
success improves from ≥ 𝛿 to ≥ 1− (1− 𝛿)𝑚, which can be made arbitrarily close to 1 if we
choose 𝑚 large enough.

The probabilistic guarantee turns out to be essentially a rephrasing of the triangle removal
lemma.

Proof. If the graph 𝐺 is triangle-free, the algorithm clearly always outputs correctly. On
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the other hand, if 𝐺 is 𝜀-far from triangle-free, then by the triangle removal lemma (The-
orem 2.3.1), 𝐺 has ≥ 𝛿 (𝑛3) triangles with some constant 𝛿 = 𝛿(𝜀) > 0. If we sample three
vertices from𝐺 uniformly at random, then then they form a triangle with probability ≥ 𝛿. And
if run 𝐾/3 independent trials, then the probability that we see a triangle is ≥ 1 − (1 − 𝛿)𝐾/3,
which is ≥ 0.99 as long as 𝐾 is a sufficiently large constant (depending on 𝛿, which in turn
depends on 𝜀).

In the algorithm as stated in the theorem, 𝐾 vertices are sampled without replacement.
Above we had𝐾 independent trials of picking a triple of vertices at random. But this difference
hardly matters. We can couple the two processes by adding additional random vertices to the
latter process until we see 𝐾 distinct vertices. □

Just as the guarantee of the above algorithm is essentially a rephrasing of the triangle
removal lemma, other graph removal lemmas can be rephrased as graph property testing
theorems. For the infinite induced graph removal lemma, Theorem 2.8.11, we can rephrase
the result in terms of graph property testing for hereditary properties.

A graph property P is hereditary if it is closed under vertex-deletion: if 𝐺 ∈ P, then
every induced subgraph of𝐺 is in P. Here are some examples of hereditary graph properties:
𝐻-free, induced 𝐻-free, planar, 3-colorable, perfect. Every hereditary property P can be
characterized as the set of induced H -free graphs for some (possibly infinite) family of
graphsH ; we can takeH = {𝐻 : 𝐻 ∉ P}.

Theorem 2.9.3 (Every hereditary graph property is testable)
For every hereditary graph property P, and constant 𝜀 > 0, there exists a constant
𝐾 = 𝐾 (P, 𝜀) so that the following algorithm satisfies the probabilistic guarantees listed
below.
Input: A graph 𝐺.
Algorithm: Sample 𝐾 vertices from 𝐺 uniformly at random without replacement and
let 𝐻 be the induced subgraph on these 𝐾 vertices. If 𝐻 ∈ P, then output that 𝐺 satisfies
P; else output that 𝐺 is 𝜀-far from P.
Probabilistic guarantees:

(a) If the input graph 𝐺 satisfies P, then the algorithm always correctly outputs that
𝐺 satisfies P;

(b) If the input graph 𝐺 is 𝜀-far from P, then with probability ≥ 0.99 the algorithm
outputs that 𝐺 is 𝜀-far from P;

(c) We do not make any guarantees when the input graph is neither in P nor 𝜀-far
from P.

Proof. If 𝐺 ∈ P, then since P is hereditary, 𝐻 ∈ P, and so the algorithm always correctly
outputs that 𝐺 ∈ P. So suppose 𝐺 is 𝜀-far from P. Let H be such that P is the set of
induced H -free graphs. By the infinite induced graph removal lemma, there is some ℎ0
and 𝛿 > 0 so that 𝐺 has ≥ 𝛿

( 𝑛
𝑣 (𝐻 )

)
copies of some 𝐻 ∈ H with at most ℎ0 vertices. So

with probability ≥ 𝛿, a sample of ℎ0 vertices sees an induced subgraph not satisfying P.
Running 𝐾/ℎ0 independent trials, we see some induced subgraph not satisfying P with
probability ≥ 1 − (1 − 𝛿)𝐾/ℎ0 , which can be made arbitrarily close to 1 by choosing 𝐾 to
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be sufficiently large. As with earlier, this implies the result about choosing 𝐾 random points
without replacement. □

2.10 Hypergraph Removal and Szemerédi’s Theorem
We showed earlier how to deduce Roth’s theorem from the triangle removal lemma. However,
the graph removal lemma, or the graph regularity method more generally, is insufficient for
understanding longer arithmetic progressions.

Szemerédi’s theorem follows as a corollary of a hypergraph generalization of the triangle
removal lemma. (Note that historically, Szemerédi’s theorem was initially shown using other
methods; see the discussion in Section 0.2). The hypergraph removal lemma turns out to be
substantially more difficult. The following theorem was proved by Rödl et al. (2005) and
Gowers (2007). The special case of the tetrahedron removal lemma in 3-graphs was proved
earlier by Frankl and Rödl (2002).

Theorem 2.10.1 (Hypergraph removal lemma)
For every 𝑟-graph 𝐻 and 𝜀 > 0, there exists 𝛿 > 0 so that every 𝑛-vertex 𝑟-graph with
< 𝛿𝑛𝑣 (𝐻 ) copies of 𝐻 can be made 𝐻-free by removing < 𝜀𝑛𝑟 edges.

Recall that Szemerédi’s theorem says that for every fixed 𝑘 ≥ 3, every 𝑘-AP-free subset
of [𝑁] has size 𝑜(𝑁). We will prove it as a corollary of the hypergraph removal lemma for
𝐻 = 𝐾 (𝑘−1)

𝑘 , the complete (𝑘 − 1)-graph on 𝑘 vertices (also known as a simplex; when 𝑘 = 3
it is called a tetrahedron). For concreteness, we will show how the deduction works in the
case 𝑘 = 4 (it is straightforward to generalize).

Here is a corollary of the tetrahedron removal lemma. It is analogous to Corollary 2.3.3.

Corollary 2.10.2
If 𝐺 is a 3-graph such that every edge is contained in a unique tetrahedron (i.e., a clique
on four vertices), then 𝐺 has 𝑜(𝑛3) edges.

Proof of Szemerédi’s theorem for 4-APs. Let 𝐴 ⊆ [𝑁] be 4-AP-free. Let 𝑀 = 6𝑁 + 1.
Then 𝐴 is also a 4-AP-free subset of Z/𝑀Z (there are no wraparounds). Build a 4-partite
3-graph 𝐺 with parts 𝑊 , 𝑋 , 𝑌 , 𝑍 , all of which are 𝑀-vertex sets indexed by the elements
of Z/𝑀Z. We define edges as follows, where 𝑤, 𝑥, 𝑦, 𝑧 range over elements of 𝑊 , 𝑋 , 𝑌 , 𝑍 ,
respectively:

𝑤𝑥𝑦 ∈ 𝐸 (𝐺) ⇐⇒ 3𝑤 + 2𝑥 + 𝑦 ∈ 𝐴,
𝑤𝑥𝑧 ∈ 𝐸 (𝐺) ⇐⇒ 2𝑤 + 𝑥 − 𝑧 ∈ 𝐴,
𝑤𝑦𝑧 ∈ 𝐸 (𝐺) ⇐⇒ 𝑤 − 𝑦 − 2𝑧 ∈ 𝐴,
𝑥𝑦𝑧 ∈ 𝐸 (𝐺) ⇐⇒ −𝑥 − 2𝑦 − 3𝑧 ∈ 𝐴.

What is important here is that the 𝑖th expression does not contain the 𝑖th variable.
The vertices 𝑥𝑦𝑧𝑤 form a tetrahedron if and only if

3𝑤 + 2𝑥 + 𝑦, 2𝑤 + 𝑥 − 𝑧, 𝑤 − 𝑦 − 2𝑧,−𝑥 − 2𝑦 − 3𝑧 ∈ 𝐴.
However, these values form a 4-AP with common difference −𝑥 − 𝑦 − 𝑧 − 𝑤. Since 𝐴 is
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4-AP-free, the only tetrahedra in 𝐴 are trivial 4-APs (those with common difference zero).
For each triple (𝑤, 𝑥, 𝑦) ∈ 𝑊×𝑋×𝑌 , there is exactly one 𝑧 ∈ Z/𝑀Z such that 𝑥+𝑦+𝑧+𝑤 = 0.
Thus, every edge of the hypergraph lies in exactly one tetrahedron.

By Corollary 2.10.2, the number of edges in the hypergraph is 𝑜(𝑀3). On the other hand,
the number of edges is exactly 4𝑀2 |𝐴| (for example, for every 𝑎 ∈ 𝐴, there are exactly 𝑀2

triples (𝑤, 𝑥, 𝑦) ∈ (Z/𝑀Z)3 with 3𝑤 + 2𝑥 + 𝑦 = 𝑎). Therefore |𝐴| = 𝑜(𝑀) = 𝑜(𝑁). □

The hypergraph removal lemma is proved using a substantial and difficult generalization
of the graph regularity method to hypergraphs. We will not be able to prove it in this book.
In the next section, we sketch some key ideas in hypergraph regularity.

It is instructive to work out the proof in the special cases below. For the next two exercises,
you should assume Corollary 2.10.2.

Exercise 2.10.3 (3-dimensional corners). Suppose 𝐴 ⊆ [𝑁]3 contains no four points of
the form

(𝑥, 𝑦, 𝑧), (𝑥 + 𝑑, 𝑦, 𝑧), (𝑥, 𝑦 + 𝑑, 𝑧), (𝑥, 𝑦, 𝑧 + 𝑑), with 𝑑 > 0.

Show that |𝐴| = 𝑜(𝑁3).
Exercise 2.10.4 (Multidimensional Szemerédi for axis-aligned squares). Suppose 𝐴 ⊆
[𝑁]2 contains no four points of the form

(𝑥, 𝑦), (𝑥 + 𝑑, 𝑦), (𝑥, 𝑦 + 𝑑), (𝑥 + 𝑑, 𝑦 + 𝑑), with 𝑑 ≠ 0.

Show that |𝐴| = 𝑜(𝑁2).
Exercise 2.10.5 (Multidimensional Szemerédi theorem from the hypergraph removal
lemma). Generalizing the previous exercise, prove the multidimensional Szemerédi theo-
rem (Theorem 0.2.6) using the hypergraph removal lemma.

2.11 Hypergraph Regularity
Hypergraph regularity is substantially more difficult to prove than graph regularity. We
only sketch some key ideas here. For concreteness, we focus our discussion on 3-graphs.
Throughout this section, 𝐺 will be a 3-graph with vertex set 𝑉 .

What should correspond to an “𝜀-regular pair” from the graph regularity lemma? Here is
an initial attempt.

Definition 2.11.1 (Initial attempt at 3-graph regularity)
Given vertex subsets𝑉1, 𝑉2, 𝑉3 ⊆ 𝑉 , we say that (𝑉1, 𝑉2, 𝑉3) is 𝜺-regular if, for all 𝐴𝑖 ⊆ 𝑉𝑖
such that |𝐴𝑖 | ≥ 𝜀 |𝑉𝑖 | , we have

|𝑑 (𝑉1, 𝑉2, 𝑉3) − 𝑑 (𝐴1, 𝐴2, 𝐴3) | ≤ 𝜀.
Here, the edge density 𝑑 (𝑋,𝑌, 𝑍) is the fraction of elements of 𝑋 ×𝑌 × 𝑍 that are edges
of 𝐺.

By following the proof of the graph regularity lemma nearly verbatim, we can show the
following.
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Proposition 2.11.2 (Initial attempt at 3-graph regularity partition)
For all 𝜀 > 0, there exists 𝑀 = 𝑀 (𝜀) such that every 3-graph has a partition into at most
𝑀 parts so that all but at most an 𝜀-fraction of triples of vertices lie in 𝜀-regular triples
of vertex parts.

Can this result be used to prove the hypergraph removal lemma? Unfortunately, no.
Recall that our graph regularity recipe (Remark 2.3.2) involves three steps: partition, clean,

and count. It turns out that no counting lemma is possible for the above notion of 3-graph
regularity.

The notion of 𝜀-regularity is supposed to model pseudorandomness. So why don’t we
try truly random hypergraphs and see what happens? Let us consider two different random
3-graph constructions:

(a) First pick constants 𝑝, 𝑞 ∈ [0, 1] . Build a random graph 𝐺 (2) = G(𝑛, 𝑝), an ordinary
Erdős–Rényi graph. Then construct 𝐺 (3) by including each triangle of 𝐺 (2) as an
edge of 𝐺 (3) with probability 𝑞. Call this 3-graph 𝑋 .

(b) For each possible edge (i.e. triple of vertices), include the edge with probability 𝑝3𝑞,
independent of all other edges. Call this 3-graph 𝑌 .

The edge density in both 𝑋 and 𝑌 are close to 𝑝3𝑞, even when restricted to linearly sized
triples of vertex subsets. So both graphs satisfy our above notion of 𝜀-regularity with high
probability. However, we can compute the tetrahedron densities in both of these graphs and
see that they do not match.

The tetrahedron density in 𝑋 is around 𝑞4 times the 𝐾4 density in the underlying random
graph 𝐺 (2) . The 𝐾4 density in 𝐺 (2) is around 𝑝6. So the tetrahedron density in 𝑋 is around
𝑝6𝑞4.

On the other hand, the tetrahedron density in 𝑌 is around (𝑝3𝑞)4, different from 𝑝6𝑞4

earlier. So we should not expect a counting lemma with this notion of 𝜀-regularity. (Unless
the 3-graph we are counting is linear, as in the exercise below.)

Exercise 2.11.3. Under the notion of 3-graph regularity in Definition 2.11.1, formulate
and prove an 𝐻-counting lemma for every linear 3-graph 𝐻. Here a hypergraph is said to
be linear if every pair of its edges intersects in at most one vertex.

As hinted by the first random hypergraph above, a more useful notion of hypergraph
regularity should involve both vertex subsets as well as subsets of vertex-pairs (i.e., an
underlying 2-graph).

Given a 3-graph 𝐺, a regularity decomposition will consist of
(1) a partition of

(𝑉
2
)

into 2-graphs 𝐺 (2)1 ∪ · · · ∪ 𝐺 (2)𝑙 so that 𝐺 sits in a random-like way
on top of most triples of these 2-graphs (we won’t try to make it precise), and

(2) a partition of𝑉 that gives an extremely regular partition for all 2-graphs𝐺 (2)1 , . . . , 𝐺 (2)𝑙
(this should be somewhat reminiscent of the strong graph regularity lemma from
Section 2.8).

For such a decomposition to be applicable, it should come with a corresponding counting
lemma.

There are several ways to make the above notions precise. Certain formulations make the
regularity partition easier to prove while the counting lemma harder, and some vice versa.
The interested readers should consult Rödl et al. (2005), Gowers (2007) (see Gowers (2006)
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for an exposition of the case of 3-uniform hypergraphs), and Tao (2006) for three different
approaches to the hypergraph regularity lemma.

Remark 2.11.4 (Quantitative bounds). Whereas the proof of the graph regularity lemma
gives tower-type bounds tower(𝜀−𝑂 (1) ), the proof of the 3-graph regularity lemma has
wowzer-type bounds. The 4-graph regularity lemma moves us one more step up in the Ack-
ermann hierarchy (i.e., iterating wowzer), and so on. Just as with the tower-type lower bound
(Theorem 2.1.17) for the graph regularity lemma, Ackermann-type bounds are necessary for
hypergraph regularity as well (Moshkovitz and Shapira 2019).

Further Reading
For surveys on the graph regularity method and applications, see Komlós and Simonovits
(1996) and Komlós, Shokoufandeh, Simonovits, and Szemerédi (2002).

The survey Graph Removal Lemmas by Conlon and Fox (2013) discusses many variants,
extensions, and proof techniques of graph removal lemmas.

For a well-motivated introduction to the hypergraph regularity lemma, see the article
Quasirandomness, Counting and Regularity for 3-Uniform Hypergraphs by Gowers (2006).

Chapter Summary

• Szemerédi’s graph regularity lemma. For every 𝜀 > 0, there exists a constant 𝑀 such
that every graph has an 𝜀-regular partition into at most 𝑀 parts.
– Proof method: energy increment.

• Regularity method recipe: partition, clean, count.
• Graph counting lemma. The number of copies of 𝐻 among 𝜀-regular parts is similar to

random.
• Graph removal lemma. Fix 𝐻. Every 𝑛-vertex graph with 𝑜(𝑛𝑣 (𝐻 ) ) copies of 𝐻 can be

made 𝐻-free by removing 𝑜(𝑛2) edges.
• Roth’s theorem can be proved by applying the triangle removal lemma to a graph whose

triangles correspond to 3-APs.
• Szemerédi’s theorem follows from the hypergraph removal lemma, whose proof uses

the hypergraph regularity method (not covered in this book).
• Induced removal lemma. Fix 𝐻. Every 𝑛-vertex graph with 𝑜(𝑛𝑣 (𝐻 ) ) induced copies of
𝐻 can be made induced 𝐻-free by adding/removing 𝑜(𝑛2) edges
– Proof uses a strong regularity lemma, which involves iterating the earlier graph

regularity lemma.
• Every hereditary graph property is testable.

– One can distinguish graphs that have property P from those that are 𝜀-far from property
P (far in the sense of edit distance ≥ 𝜀𝑛2) by sampling a subgraph induced by a constant
number of random vertices.

– The probabilistic guarantee is essentially equivalent to removal lemmas.
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