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Graph Limits

Chapter Highlights

• An analytic language for studying dense graphs
• Convergence and limit for a sequence of graphs
• Compactness of the graphon space with respect to the cut metric
• Applications of compactness
• Equivalence of cut metric convergence and left-convergence

The theory of graph limits was developed by Lovász and his collaborators in a series
of works starting around 2003. The researchers were motivated by questions about very
large graphs from several different angles, including from combinatorics, statistical physics,
computer science, and applied math. Graph limits give an analytic framework for analyzing
large graphs. The theory offers both a convenient mathematical language as well as powerful
theorems.

Motivation
Suppose we live in a hypothetical world where we only had access to rational numbers and
had no language for irrational numbers. We are given the following optimization problem:

minimize 𝑥3 − 𝑥 subject to 0 ≤ 𝑥 ≤ 1.

The minimum occurs at 𝑥 = 1/√3, but this answer does not make sense over the rationals.
With only access to rationals, we can state a progressively improving sequence of answers
that converge to the optimum. This is rather cumbersome. It is much easier to write down a
single real number expressing the answer.

Now consider an analogous question for graphs. Fix some real 𝑝 ∈ [0, 1]. We want to

minimize (# closed walks of length 4)/𝑛4

among 𝑛-vertex graphs with ≥ 𝑝𝑛2/2 edges.

We know from Proposition 3.1.14 that every 𝑛-vertex graph with edge density ≥ 𝑝 has at
least 𝑛4𝑝4 closed walks of length 4. On the other hand, every sequence of quasirandom
graphs with edge density 𝑝 + 𝑜(1) has 𝑝4𝑛4 + 𝑜(𝑛4) closed walks of length 4. It follows that
the minimum (or rather, infimum) is 𝑝4 and is attained not by any single graph, but rather by
a sequence of quasirandom graphs.

One of the purposes of graph limits is to provide an easy-to-use mathematical object that
captures the limit of such graph sequences. The central object in the theory of dense graph
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132 Graph Limits

limits is called a graphon (the word comes from combining graph and function), to be
defined shortly. Graphons can be viewed as an analytic generalization of graphs.

Here are some questions that we will consider:
(1) What does it mean for a sequence of graphs (or graphons) to converge?
(2) Are different notions of convergence equivalent?
(3) Does every convergent sequence of graphs (or graphons) have a limit?
Note that it is possible to talk about convergence without a limit. In a first real analysis

course, one learns about a Cauchy sequence in a metric space (X, 𝑑), which is some
sequence 𝑥1, 𝑥2, · · · ∈ X such that for every 𝜀 > 0, there is some 𝑁 so that 𝑑 (𝑥𝑚, 𝑥𝑛) < 𝜀
for all 𝑚, 𝑛 ≥ 𝑁 . For instance, one can have a Cauchy sequence without a limit in Q. A
metric space is complete if every Cauchy sequence has a limit. The completion of X is some
complete metric space X̃ such that X is isometrically embedded in X̃ as a dense subset. The
completion of X is in some sense the smallest complete space containing X. For example, R
is the completion of Q. Intuitively, the completion of a space fills in all of its gaps. A basic
result in analysis says that every space has a unique completion.

Here is a key result about graph limits that we will prove:

The space of graphons is compact, and is the completion of the set of graphs.

To make this statement precise, we also need to define a notion of similarity (i.e., distance)
between graphs, and also between graphons. We will see two different notions, one based
on the cut metric, and another based on subgraph densities. Another important result in the
theory of graph limits is that these two notions are equivalent. We will prove it at the end of
the chapter once we have developed some tools.

4.1 Graphons
Here is the central object in the theory of dense graph limits.

Definition 4.1.1 (Graphon)
A graphon is a symmetric measurable function 𝑊 : [0, 1]2 → [0, 1]. Here symmetric
means𝑊 (𝑥, 𝑦) = 𝑊 (𝑦, 𝑥) for all 𝑥, 𝑦.

Remark 4.1.2. More generally, we can consider an arbitrary probability space Ω and study
symmetric measurable functions Ω × Ω → [0, 1]. In practice, we do not lose much by
restricting to [0, 1].

We will also sometimes consider symmetric measurable functions [0, 1]2 → R (e.g.,
arising as the difference between two graphons). Such an object is sometimes called a kernel
in the literature.

Remark 4.1.3 (Measure theoretic technicalities). We try to sweep measure theoretic tech-
nicalities under the rug in order to focus on key ideas. If you have not seen measure theory
before, do not worry. Just view “measure” as lengths of intervals or areas of boxes (or count-
able unions thereof) in the most natural sense. We always ignore measure zero differences.
For example, we shall treat two graphons as the same if they only differ on a measure zero
subset of the domain.
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4.1 Graphons 133

Turning a Graph into a Graphon
Here is a procedure to turn any graph 𝐺 into a graphon𝑊𝐺:

(1) Write down the adjacency matrix 𝐴𝐺 of the graph;
(2) Replace the matrix by a black-and-white pixelated picture on [0, 1]2, by turning every

1-entry into a black square and every 0-entry into a white square.
(3) View the resulting picture as a graphon 𝑊𝐺 : [0, 1]2 → [0, 1] (with the axes labeled

like a matrix with 𝑥 ∈ [0, 1] running from top to bottom and 𝑦 ∈ [0, 1] running from
left to right), where we write𝑊𝐺 (𝑥, 𝑦) = 1 if (𝑥, 𝑦) is black and𝑊𝐺 (𝑥, 𝑦) = 0 if (𝑥, 𝑦)
is white.

As with everything in this chapter, we ignore measure zero differences, and so it does not
matter what we do with boundaries of the pixels.

Definition 4.1.4 (Associated graphon of a graph)
Given a graph 𝐺 with 𝑛 vertices labeled 1, . . . , 𝑛, we define its associated graphon
𝑾𝑮 : [0, 1]2 → [0, 1] by first partitioning [0, 1] into 𝑛 equal-length intervals 𝐼1, . . . , 𝐼𝑛
and setting𝑊𝐺 to be 1 on all 𝐼𝑖 × 𝐼 𝑗 where 𝑖 𝑗 is an edge of 𝐺, and 0 on all other 𝐼𝑖 × 𝐼 𝑗s.

More generally, we can encode nonnegative vertex and edge weights in a graphon.

Definition 4.1.5 (Step graphon)
A step graphon 𝑊 with 𝑘 steps consists of first partitioning [0, 1] into 𝑘 intervals
𝐼1, . . . , 𝐼𝑘 , and then setting𝑊 to be a constant on each 𝐼𝑖 × 𝐼 𝑗 .

Example 4.1.6 (Half-graph). Consider the bipartite graph on 2𝑛 vertices, with one vertex
part {𝑣1, . . . , 𝑣𝑛} and the other vertex part {𝑤1, . . . , 𝑤𝑛}, and edges 𝑣𝑖𝑤 𝑗 whenever 𝑖 ≤ 𝑗 . Its
adjacency matrix and associated graphon are illustrated below.
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As 𝑛→∞, the associated graphons converge pointwise almost everywhere to the graphon

𝑊 (𝑥, 𝑦) =
{

1 if 𝑥 + 𝑦 ≤ 1/2 or 𝑥 + 𝑦 ≥ 3/2,
0 otherwise.

0 10

1

In general, pointwise convergence turns out to be too restrictive. We will need a more
flexible notion of convergence, which we will discuss more in depth in the next section. Let
us first give some more examples to motivate subsequent definitions.

Example 4.1.7 (Quasirandom graphs). Let 𝐺𝑛 be a sequence of quasirandom graphs with
edge density approaching 1/2, and 𝑣(𝐺𝑛) → ∞. The constant graphon𝑊 ≡ 1/2 seems like
a reasonable candidate for its limit, and later we will see that this is indeed the case.
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−→ 1
2

Example 4.1.8 (Stochastic block model). Consider an 𝑛 vertex graph with two types of
vertices: red and blue. Half of the vertices are red and half of the vertices are blue. Two red
vertices are adjacent with probability 𝑝𝑟 , two blue vertices are adjacent with probability 𝑝𝑏,
and finally, a red vertex and a blue vertex are adjacent with probability 𝑝𝑟𝑏, all independently.
Then as 𝑛→∞, the graphs converge to the step graphon shown below.

−→
𝑝𝑟 𝑝𝑟𝑏

𝑝𝑟𝑏 𝑝𝑏

The above examples suggest that the limiting graphon looks like a blurry image of the
adjacency matrix. However, there is an important caveat as illustrated in the next example.

Example 4.1.9 (Checkerboard). Consider the 2𝑛×2𝑛 “checkerboard” graphon shown below
(for 𝑛 = 4).

1 2
3 4
5 6
7 8

Since the 0s and 1s in the adjacency matrix are evenly spaced, one might suspect that this
sequence converges to the constant 1/2 graphon. However, this is not so. The checkerboard
graphon is associated to the complete bipartite graph 𝐾𝑛,𝑛, with the two vertex parts in-
terleaved. By relabeling the vertices, we see that below is another representation of the
associated graphon of the same graph.

1 5
2 6
3 7
4 8

So the graphon is the same for all 𝑛. So the graphon shown on the right, which is also 𝑊𝐾2 ,
must be the limit of the sequence, and not the constant 1/2 graphon. This example tells us
that we must be careful about the possibility of rearranging vertices when studying graph
limits.

A graphon is an infinite-dimensional object. We would like some ways to measure the
similarity between two graphons. We will explain two different approaches:
• cut distance, and
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• homomorphism densities.
One of the main results in the theory of graph limits is that these two approaches are equivalent
– we will show this later in the chapter.

4.2 Cut Distance
There are many ways to measure the distance between two graphs. Different methods may
be useful for different applications. For example, we can consider the edit distance between
two graphs (say on the same set of vertices), defined to be the number of edges needed to
be added/deleted to obtain one graph from the other. The notion of edit distance arose when
discussing the induced graph removal lemmas in Section 2.8. However, edit distance is not
suitable for graph limits since it is incompatible with (quasi)random graphs. For example,
given two 𝑛-vertex random graphs, independently generated with edge-probability 1/2, we
would like to say that they are similar as these graphs will end up converging to the constant
1/2 graphon as 𝑛 → ∞ (e.g., Example 4.1.7). However, two independent random graphs
typically only agree on around half of their edges (even if we allow permuting vertices), and
so it takes (1/4 + 𝑜(1))𝑛2 edge additions/deletions to obtain one from the other.

A more suitable notion of distance is motivated by the discrepancy condition from Theo-
rem 3.1.1 on quasirandom graphs. Inspired by the condition DISC, we would like to say that
a graph 𝐺 is 𝜀-close to the constant 𝑝 graphon if

|𝑒𝐺 (𝑋,𝑌 ) − 𝑝 |𝑋 | |𝑌 | | ≤ 𝜀 |𝑉 (𝐺) |2 for all 𝑋,𝑌 ⊆ 𝑉 (𝐺).
Inspired by this notion, we now compare a pair of graphs 𝐺 and 𝐺′ on a common vertex set
𝑉 = 𝑉 (𝐺) = 𝑉 (𝐺′). We say that 𝑮 and 𝑮′ are 𝜺-close in cut norm if

|𝑒𝐺 (𝑋,𝑌 ) − 𝑒𝐺′ (𝑋,𝑌 ) | ≤ 𝜀 |𝑉 |2 for all 𝑋,𝑌 ⊆ 𝑉. (4.1)

(This term “cut” is often used to refer to the set of edges in a graph 𝐺 between some
𝑋 ⊆ 𝑉 (𝐺) and its complement. The cut norm builds on this concept.) With this notion, two
independent 𝑛-vertex random graphs with the same edge-probability are 𝑜(1)-close in cut
norm as 𝑛→∞.

As illustrated in Example 4.1.9, we also need to consider possible relabelings of vertices.
Intuitively, the cut distance between two graphs will come from the relabeling of vertices that
gives the greatest alignment. The actual definition will be a bit more subtle, allowing vertex
fractionalization. The general definition of cut distance will allow us to compare graphs with
different numbers of vertices. It is conceptually easier to define cut distance using graphons.

The edit distance of graphs corresponds to the 𝐿1 distance for graphons. For every 𝑝 ≥ 1,
we define the 𝑳𝒑 norm of a function𝑊 : [0, 1]2 → R by

∥𝑾∥𝒑 B

(∫
[0,1]2
|𝑊 (𝑥, 𝑦) |𝑝 𝑑𝑥𝑑𝑦

)1/𝑝
,

and the 𝑳∞ norm by

∥𝑾∥∞ B sup
{
𝑡 : 𝑊−1( [𝑡,∞)) has positive measure

}
.

(This is not simply the supremum of 𝑊 ; the definition should be invariant under measure
zero changes of𝑊 .)
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Definition 4.2.1 (Cut norm)
The cut norm of a measurable𝑊 : [0, 1]2 → R is defined as

∥𝑾∥□ B sup
𝑆,𝑇⊆[0,1]

����
∫
𝑆×𝑇

𝑊

���� ,
where 𝑆 and 𝑇 are measurable sets.

Let 𝐺 and 𝐺′ be two graphs sharing a common vertex set. Let 𝑊𝐺 and 𝑊𝐺′ be their
associated graphons (using the same ordering of vertices when constructing the graphons).
Then 𝐺 and 𝐺′ are 𝜀-close in cut norm (see (4.1)) if and only if

∥𝑊𝐺 −𝑊𝐺′ ∥□ ≤ 𝜀.
(There is a subtlety in this claim that is worth thinking about: should we be worried about
sets 𝑆, 𝑇 ⊆ [0, 1] in Definition 4.2.1 of cut norm that contain fractions of some intervals that
represent vertices? See Lemma 4.5.3 for a reformulation of the cut norm that may shed some
light.)

We need a concept for an analog of a vertex set permutation for graphons. We write

𝝀(𝑨) B the Lebesgue measure of 𝐴.

Intuitively, this is the “length” or “area” of 𝐴. We will always be referring to Lebesgue
measurable sets. (Measure theoretic technicalities are not central to the discussions here, so
feel free to ignore them.)

Definition 4.2.2 (Measure preserving map)
We say that 𝜙 : [0, 1] → [0, 1] is a measure preserving map if

𝜆(𝐴) = 𝜆(𝜙−1(𝐴)) for all measurable 𝐴 ⊆ [0, 1] .
We say that 𝜙 is an invertible measure preserving map if there is another measure
preserving map 𝜓 : [0, 1] → [0, 1] such that 𝜙 ◦ 𝜓 and 𝜓 ◦ 𝜙 are both identity maps
outside sets of measure zero.

Example 4.2.3. For any constant 𝛼 ∈ R, the function 𝜙(𝑥) = 𝑥 + 𝛼 mod 1 is measure
preserving (this map rotates the circle R/Z by 𝛼).

A more interesting example is, 𝜙(𝑥) = 2𝑥 mod 1, illustrated below.

0 10

1

𝜙(𝑥) = 2𝑥 mod 1

0 10

1

𝐴

𝜙−1 (𝐴)

This map is also measure preserving. This might not seem to be the case at first, since 𝜙 seems
to shrink some intervals by half. However, the definition of measure preserving actually says
𝜆(𝜙−1(𝐴)) = 𝜆(𝐴) and not 𝜆(𝜙(𝐴)) = 𝜆(𝐴). For any interval [𝑎, 𝑏] ⊆ [0, 1], we have
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𝜙−1( [𝑎, 𝑏]) = [𝑎/2, 𝑏/2] ∪ [1/2 + 𝑎/2, 1/2 + 𝑏/2], which does have the same measure as
[𝑎, 𝑏]. This map is 2-to-1, and it is not invertible.

Given𝑊 : [0, 1]2 → R and an invertible measure preserving map 𝜙 : [0, 1] → [0, 1], we
write

𝑾𝝓
(𝒙, 𝒚) B 𝑊 (𝜙(𝑥), 𝜙(𝑦)).

Intuitively, this operation relabels the vertex set.

Definition 4.2.4 (Cut metric)
Given two symmetric measurable functions 𝑈,𝑊 : [0, 1]2 → R, we define their cut
distance (or cut metric) to be

𝜹□(𝑼,𝑾) B inf
𝜙



𝑈 −𝑊 𝜙



□

= inf
𝜙

sup
𝑆,𝑇⊆[0,1]

����
∫
𝑆×𝑇
(𝑈 (𝑥, 𝑦) −𝑊 (𝜙(𝑥), 𝜙(𝑦))) 𝑑𝑥𝑑𝑦

���� ,
where the infimum is taken over all invertible measure preserving maps 𝜙 : [0, 1] →
[0, 1]. Define the cut distance between two graphs 𝐺 and 𝐺′ by the cut distance of their
associated graphons:

𝜹□(𝑮, 𝑮′
) B 𝛿□(𝑊𝐺 ,𝑊𝐺′).

Likewise, we can also define the cut distance between a graph and a graphon𝑈:

𝜹□(𝑮,𝑼) B 𝛿□(𝑊𝐺 ,𝑈).

Definition 4.2.5 (Convergence in cut metric)
We say that a sequence of graphs or graphons converges in cut metric if they form a
Cauchy sequence with respect to 𝛿□. Furthermore, we say that𝑊𝑛 converges to 𝑾 in cut
metric if 𝛿□(𝑊𝑛,𝑊) → 0 as 𝑛→∞.

Note that in 𝛿□(𝐺,𝐺′), we are doing more than just permuting vertices. A measure
preserving map on [0, 1] is also allowed to split a single node into fractions.

It is possible for two different graphons to have cut distance zero. For example, they could
differ on a measure-zero set, or they could be related via measure preserving maps.

Space of Graphons
We can form a metric space by identifying graphons with measure zero (i.e., treating such
two graphs with cut distance zero as the same point).

Definition 4.2.6 (Graphon space)
Let W̃0 be the set of graphons (i.e., symmetric measurable functions [0, 1]2 → [0, 1])
where any pair of graphons with cut distance zero are considered the same point in the
space. This is a metric space under cut distance 𝛿□.

We view every graph 𝐺 as a point in W̃0 via its associated graphon (note that several
graphs can be identified as the same point in W̃0).
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(The subscript 0 in W̃0 is conventional. Sometimes, without the subscript, W̃ is used to
denote the space of symmetric measurable functions [0, 1]2 → R.)

Here is a central theorem in the theory of graph limits, proved by Lovász and Szegedy
(2007).

Theorem 4.2.7 (Compactness of graphon space)
The metric space (W̃0, 𝛿□) is compact.

One of the main goals of this chapter is to prove this theorem and show its applications.
The compactness of graphon space is related to the graph regularity lemma. In fact,

we will use the regularity method to prove compactness. Both compactness and the graph
regularity lemma tell us that despite the infinite variability of graphs, every graph can be
𝜀-approximated by a graph from a finite set of templates.

We close this section with the following observation.

Theorem 4.2.8 (Graphs are dense in the space of graphons)
The set of graphs is dense in (W̃0, 𝛿□).

Proof. Let 𝜀 > 0. It suffices to show that for every graphon 𝑊 there exists a graph 𝐺 such
that 𝛿□(𝐺,𝑊) < 𝜀.

We approximate𝑊 in several steps, illustrated below.

𝑊 𝑊1 𝑊2

First, by rounding down the values of 𝑊 (𝑥, 𝑦), we construct a graphon 𝑊1 whose values
are all integer multiples of 𝜀/3, such that

∥𝑊 −𝑊1∥∞ ≤ 𝜀/3.
Next, since every Lebesgue measurable subset of [0, 1]2 can be arbitrarily well approx-

imated using a union of boxes, we can find a step graphon 𝑊2 approximating 𝑊1 in 𝐿1

norm:
∥𝑊1 −𝑊2∥1 ≤ 𝜀/3.

Finally, by replacing each block of𝑊2 by a sufficiently large quasirandom (bipartite) graph
of edge density equal to the value of𝑊2, we find a graph 𝐺 so that

∥𝑊2 −𝑊𝐺 ∥□ ≤ 𝜀/3.
Then 𝛿□(𝑊,𝐺) < 𝜀. □

Remark 4.2.9. In the above proof, to obtain ∥𝑊1 −𝑊2∥1 ≤ 𝜀/3, the number of steps of𝑊2
cannot be uniformly bounded as a function of 𝜀 (i.e., it must depend on 𝑊 as well – think
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about what happens for a random graph). Consequently the number of vertices of the final
graph 𝐺 produced by this proof is not bounded by a function of 𝜀.

Later on, we will see a different proof showing that for every 𝜀 > 0, there is some
𝑁 (𝜀) so that every graphon lies within cut distance 𝜀 of some graph with ≤ 𝑁 (𝜀) vertices
(Proposition 4.8.1).

Since every compact metric space is complete, we have the following corollary.

Corollary 4.2.10 (Graphons complete graphs)
The graphon space (W̃0, 𝛿□) is the completion of the space of graphs with respect to the
cut metric.

Exercise 4.2.11 (Zero-one valued graphons). Let 𝑊 be a {0, 1}-valued graphon. Sup-
pose graphons 𝑊𝑛 satisfy ∥𝑊𝑛 −𝑊 ∥□ → 0 as 𝑛 → ∞. Show that ∥𝑊𝑛 −𝑊 ∥1 → 0 as
𝑛→∞.

4.3 Homomorphism Density
Subgraph densities give another way of measuring graphs. It will be technically more con-
venient to work with graph homomorphisms instead of subgraphs.

Definition 4.3.1 (Homomorphism density)
A graph homomorphism from 𝐹 to𝐺 is a map 𝜙 : 𝑉 (𝐹) → 𝑉 (𝐺) such that if 𝑢𝑣 ∈ 𝐸 (𝐹)
then 𝜙(𝑢)𝜙(𝑣) ∈ 𝐸 (𝐺) (i.e., 𝜙 maps edges to edges). Define

Hom(𝑭, 𝑮) B {homomorphisms from 𝐹 to 𝐺}
and

hom(𝑭, 𝑮) B |Hom(𝐹, 𝐺) | .
Define the 𝑭-homomorphism density in 𝑮 (or 𝑭-density in 𝑮 for short) as

𝒕(𝑭, 𝑮) B
hom(𝐹, 𝐺)
𝑣(𝐺)𝑣 (𝐹 ) .

This is also the probability that a uniformly random map𝑉 (𝐹) → 𝑉 (𝐺) induces a graph
homomorphism from 𝐹 to 𝐺.

Example 4.3.2 (Homomorphism counts).
• hom(𝐾1, 𝐺) = 𝑣(𝐺).
• hom(𝐾2, 𝐺) = 2𝑒(𝐺).
• hom(𝐾3, 𝐺) = 6 · #triangles in 𝐺
• hom(𝐺, 𝐾3) is the number of proper colorings of 𝐺 using three labeled colors such as

{red, green, blue} (corresponding to the vertices of 𝐾3).

Remark 4.3.3 (Subgraphs vs. homomorphisms). Note that homomorphisms from 𝐹 to 𝐺
do not quite correspond to copies of subgraphs 𝐹 inside 𝐺, because these homomorphisms
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can be noninjective. Define the injective homomorphism density

𝒕inj(𝑭, 𝑮) B
#injective homomorphisms from 𝐹 to 𝐺
𝑣(𝐺) (𝑣(𝐺) − 1) · · · (𝑣(𝐺) − 𝑣(𝐹) + 1) .

Equivalently, this is the fraction of injective maps 𝑉 (𝐹) → 𝑉 (𝐺) that are graph homomor-
phisms (i.e., send edges to edges). The fraction of maps 𝑉 (𝐹) → 𝑉 (𝐺) that are noninjective
is ≤ (𝑣 (𝐹 )

2
)/𝑣(𝐺) (for every fixed pair of vertices of 𝐹, the probability that they collide is

exactly 1/𝑣(𝐺)). So ��𝑡 (𝐹, 𝐺) − 𝑡inj(𝐹, 𝐺)
�� ≤ 1

𝑣(𝐺)

(
𝑣(𝐹)

2

)
.

If 𝐹 is fixed, the right-hand side tends to zero as 𝑣(𝐺) → ∞. So all but a negligible fraction
of such homomorphisms correspond to subgraphs. This is why we often treat subgraph
densities interchangeably with homomorphism densities as they agree in the limit.

Now we define the corresponding notion of homomorphism density in graphons. We first
give an example and then the general formula.

Example 4.3.4 (Triangle density in graphons). The following quantity is the triangle density
in a graphon𝑊 .

𝑡 (𝐾3,𝑊) =
∫
[0,1]3

𝑊 (𝑥, 𝑦)𝑊 (𝑦, 𝑧)𝑊 (𝑧, 𝑥) 𝑑𝑥𝑑𝑦𝑑𝑧.

This definition agrees with Definition 4.3.1 for the triangle density in graphs. Indeed, for
every graph𝐺, the triangle density in𝐺 equals the triangle density in the associated graphon
𝑊𝐺; that is, 𝑡 (𝐾3,𝑊𝐺) = 𝑡 (𝐾3, 𝐺).

Definition 4.3.5 (Homomorphism density in graphon)
Let 𝐹 be a graph and𝑊 a graphon. The 𝑭-density in 𝑾 is defined to be

𝑡 (𝐹,𝑊) =
∫
[0,1]𝑉 (𝐹)

∏
𝑖 𝑗∈𝐸 (𝐹 )

𝑊 (𝑥𝑖, 𝑥 𝑗)
∏
𝑖∈𝑉 (𝐹 )

𝑑𝑥𝑖 .

We also use the same formula when𝑊 is a symmetric measurable function.

Note that for all graphs 𝐹 and 𝐺, letting𝑊𝐺 be the graphon associated to 𝐺,

𝑡 (𝐹, 𝐺) = 𝑡 (𝐹,𝑊𝐺). (4.2)

So the two definitions of 𝐹-density agree.

Definition 4.3.6 (Left convergence)
We say that a sequence of graphons𝑊𝑛 is left-convergent if for every graph 𝐹, 𝑡 (𝐹,𝑊𝑛)
converges as 𝑛 → ∞. We say that this sequence left-converges to a graphon 𝑊 if
lim𝑛→∞ 𝑡 (𝐹,𝑊𝑛) = 𝑡 (𝐹,𝑊) for every graph 𝐹.

For a sequence of graphs, we say that it is left-convergent if the sequence of associated
graphons𝑊𝑛 = 𝑊𝐺𝑛 is left-convergent, and that it left-converges to𝑊 if𝑊𝑛 does.

One usually has 𝑣(𝐺𝑛) → ∞, but it is not strictly necessary for this definition. Note
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that when 𝑣(𝐺𝑛) → ∞, homomorphism densities and subgraph densities coincide (see
Remark 4.3.3).

It turns out that left-convergence is equivalent to convergence in cut metric. This foun-
dational result in graph limits is due to Borgs, Chayes, Lovász, Sós, and Vesztergombi
(2008).

Theorem 4.3.7 (Equivalence of convergence)
A sequence of graphons is left-convergent if and only if it is a Cauchy sequence with
respect to the cut metric 𝛿□.

The sequence left-converges to some graphon𝑊 if and only if it converges to𝑊 in cut
metric.

The implication that convergence in cut metric implies left-convergence is easier; it follows
from the counting lemma (Section 4.5). The converse is more difficult, and we will establish
it at the end of the chapter.

This allows us to talk about convergent sequences of graphs or graphons without spec-
ifying whether we are referring to left-convergence or convergence in cut metric. However,
since a major goal of this chapter is to prove the equivalence between these two notions, we
will be more specific about the notion of convergence.

From the compactness of the space of graphons and the equivalence of convergence
(actually only needing the easier implication), we will be able to quickly deduce the existence
of limit for a left-convergent sequence, which was first proved by Lovász and Szegedy (2006).
Note that the following statement does not require knowledge of the cut metric.

Theorem 4.3.8 (Existence of limit for left-convergence)
Every left-convergent sequence of graphs or graphons left-converges to some graphon.

Remark 4.3.9. One can artificially define a metric that coincides with left-convergence. Let
(𝐹𝑛)𝑛≥1 enumerate over all graphs. One can define a distance between graphons𝑈 and𝑊 by∑︁

𝑘≥1

2−𝑘 |𝑡 (𝐹𝑘 ,𝑊) − 𝑡 (𝐹𝑘 ,𝑈) | .

We see that a sequence of graphons converges under this notion of distance if and only if it
is left-convergent. This shows that left-convergence defines a metric topology on the space
of graphons, but in practice the above distance is pretty useless.

Exercise 4.3.10 (Counting Eulerian orientations). Define𝑊 : [0, 1]2 → R by𝑊 (𝑥, 𝑦) =
2 cos(2𝜋(𝑥 − 𝑦)). Let 𝐹 be a graph. Show that 𝑡 (𝐹,𝑊) is the number of ways to orient all
edges of 𝐹 so that every vertex has the same number of incoming edges as outgoing edges.

4.4 𝑊-Random Graphs
In this section, we explain how to use a graphon to create a random graph model. This
hopefully gives more intuition about graphons.

The most common random graph model is the Erdős–Rényi random graph G(𝑛, 𝑝), which
is an 𝑛-vertex graph with every edge chosen with probability 𝑝.
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Stochastic Block Model
The stochastic block model is a random graph model that generalizes the Erdős–Rényi
random graph. We already saw an example in Example 4.1.8. Let us first illustrate the
two-block model, which has several parameters:

𝑝𝑟𝑏

𝑝𝑟𝑟

𝑝𝑏𝑏

𝑝𝑟𝑏

𝑞𝑏

𝑞𝑟

𝑞𝑟 𝑞𝑏

with all the numbers lying in [0, 1], and subject to 𝑞𝑟 + 𝑞𝑏 = 1. We form a 𝑛-vertex random
graph as follows:

(1) Color each vertex red with probability 𝑞𝑟 and blue with probability 𝑞𝑏, independently
at random. These vertex colors are “hidden states” and are not part of the data of
the output random graph (this step is slightly different from Example 4.1.8 in an
unimportant way);

(2) For every pair of vertices, independently place an edge between them with probability
• 𝑝𝑟𝑟 if both vertices are red,
• 𝑝𝑏𝑏 if both vertices are blue, and
• 𝑝𝑟𝑏 if one vertex is red and the other is blue.

One can easily generalize the above to a 𝒌-block model, where vertices have 𝑘 hidden
states, with 𝑞1, . . . , 𝑞𝑘 (adding up to 1) being the vertex state probabilities, and a symmetric
𝑘 × 𝑘 matrix (𝑝𝑖 𝑗)1≤𝑖, 𝑗≤𝑘 of edge probabilities for pairs of vertices between various states.

𝑊-Random Graph
The𝑊-random graph is a further generalization. The stochastic block model corresponds to
step graphons𝑊 .

𝑥3

𝑥3

𝑥5

𝑥5

𝑥1

𝑥1

𝑥2

𝑥2

𝑥4

𝑥4

Definition 4.4.1 (𝑊-random graph)
Let𝑊 be a graphon. The 𝑛-vertex 𝑾-random graph G(𝒏,𝑾) denotes the 𝑛-vertex ran-
dom graph (with vertices labeled 1, . . . , 𝑛) obtained by first picking 𝑥1, . . . , 𝑥𝑛 uniformly
at random from [0, 1], and then putting an edge between vertices 𝑖 and 𝑗 with probability
𝑊 (𝑥𝑖, 𝑥 𝑗), independently for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑛.

Let us show that these𝑊-random graphs left-converge to𝑊 with probability 1.
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Theorem 4.4.2 (𝑊-random graphs left-converge to 𝑊)
Let𝑊 be a graphon. For each 𝑛, let 𝐺𝑛 be a random graph distributed as G(𝑛,𝑊). Then
𝐺𝑛 left-converges to𝑊 with probability 1.

Remark 4.4.3. The theorem does not require each 𝐺𝑛 to be sampled independently. For
example, we can construct the sequence of random graphs, with 𝐺𝑛 distributed as G(𝑛,𝑊),
by revealing one vertex at a time without resampling the previous vertices and edges. In this
case, each 𝐺𝑛 is a subgraph of the next graph 𝐺𝑛+1.

We will need the following standard result about concentration of Lipschitz functions. This
can be proved using Azuma’s inequality (e.g., see Chapter 7 of The Probabilistic Method by
Alon and Spencer).

Theorem 4.4.4 (Bounded differences inequality)
Let 𝑋1 ∈ Ω1, . . . , 𝑋𝑛 ∈ Ω𝑛 be independent random variables. Suppose 𝑓 : Ω1×· · ·×Ω𝑛 →
R is 𝐿-Lipschitz for some constant 𝐿 in the sense of satisfying�� 𝑓 (𝑥1, . . . , 𝑥𝑛) − 𝑓 (𝑥′1, . . . , 𝑥′𝑛)

�� ≤ 𝐿 (4.3)

whenever (𝑥1, . . . , 𝑥𝑛) and (𝑥′1, . . . , 𝑥′𝑛) differ on exactly one coordinate. Then the random
variable 𝑍 = 𝑓 (𝑋1, . . . , 𝑋𝑛) satisfies, for every 𝜆 ≥ 0,

P(𝑍 − E𝑍 ≥ 𝜆𝐿) ≤ 𝑒−2𝜆2/𝑛 and P(𝑍 − E𝑍 ≤ −𝜆𝐿) ≤ 𝑒−2𝜆2/𝑛.

Let us show that the 𝐹-density in a 𝑊-random graph rarely differs significantly from
𝑡 (𝐹,𝑊).

Theorem 4.4.5 (Sample concentration for graphons)
For every 𝜀 > 0, positive integer 𝑛, graph 𝐹, and graphon𝑊 , we have

P ( |𝑡 (𝐹,G(𝑛,𝑊)) − 𝑡 (𝐹,𝑊) | > 𝜀) ≤ 2 exp
( −𝜀2𝑛

8𝑣(𝐹)2
)
. (4.4)

Proof. Recall from Remark 4.3.3 that the injective homomorphism density 𝑡inj(𝐹, 𝐺) is
defined to be the fraction of injective maps 𝑉 (𝐹) → 𝑉 (𝐺) that carry every edge of 𝐹 to an
edge of 𝐺. We will first prove that

P
(��𝑡inj(𝐹,G(𝑛,𝑊)) − 𝑡 (𝐹,𝑊)

�� > 𝜀) ≤ 2 exp
( −𝜀2𝑛

2𝑣(𝐹)2
)
. (4.5)

Let 𝑦1, . . . , 𝑦𝑛, and 𝑧𝑖 𝑗 for each 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, be independent uniform random variables in
[0, 1]. Let 𝐺 be the graph on vertices {1, . . . , 𝑛} with an edge between 𝑖 and 𝑗 if and only if
𝑧𝑖 𝑗 ≤ 𝑊 (𝑦𝑖, 𝑦 𝑗), for every 𝑖 < 𝑗 . Then 𝐺 has the same distribution as G(𝑛,𝑊). Let us group
variables 𝑦𝑖, 𝑧𝑖 𝑗 into 𝑥1, 𝑥2, . . . , 𝑥𝑛 where

𝑥1 = (𝑦1), 𝑥2 = (𝑦2, 𝑧12), 𝑥3 = (𝑦3, 𝑧13, 𝑧23), 𝑥4 = (𝑦4, 𝑧14, 𝑧24, 𝑧34), . . . .

This amounts to exposing the graph𝐺 one vertex at a time. Define the function 𝑓 (𝑥1, . . . , 𝑥𝑛) =
𝑡inj(𝐹, 𝐺). Note that E 𝑓 = E 𝑡inj(𝐹,G(𝑛,𝑊)) = 𝑡 (𝐹,𝑊) by linearity of expectations (in this
step, it is important that we are using the injective variant of homomorphism densities). Note

MIT OCW: Graph Theory and Additive Combinatorics --- Yufei Zhao



144 Graph Limits

changing a single coordinate of 𝑓 changes the value of the function by at most 𝑣(𝐹)/𝑛, since
exactly a 𝑣(𝐹)/𝑛 fraction of injective maps 𝑉 (𝐹) → 𝑉 (𝐺) includes a fixed 𝑣 ∈ 𝑉 (𝐺) in the
image. Then (4.5) follows from the bounded differences inequality, Theorem 4.4.4.

To deduce the theorem from (4.5), recall from Remark 4.3.3 that��𝑡 (𝐹, 𝐺) − 𝑡inj(𝐹, 𝐺)
�� ≤ 𝑣(𝐹)2/(2𝑣(𝐺)).

If 𝜀 < 𝑣(𝐹)2/𝑛, then the right-hand side of (4.4) is at least 2𝑒−𝜀/8 ≥ 1, and so the inequality
trivially holds. Otherwise, |𝑡 (𝐹,G(𝑛,𝑊)) − 𝑡 (𝐹,𝑊) | > 𝜀 implies

��𝑡inj(𝐹,G(𝑛,𝑊)) − 𝑡 (𝐹,𝑊)
�� >

𝜀 − 𝑣(𝐹)2/(2𝑛) ≥ 𝜀/2, and then we can apply (4.5) to conclude. □

Theorem 4.4.2 then follows from the Borel–Cantelli lemma, stated below, applied to
Theorem 4.4.5 for all rational 𝜀 > 0.

Theorem 4.4.6 (Borel–Cantelli lemma)
Given a sequence of events 𝐸1, 𝐸2, . . . , if

∑
𝑛 P(𝐸𝑛) < ∞, then with probability 1, only

finitely many of them occur.

4.5 Counting Lemma
In Chapter 2 on the graph regularity lemma, we proved a counting lemma that gave a lower
bound on the number of copies of some fixed graph 𝐻 in a regularity partition. The same
techniques can be modified to give a similar upper bound. Here we prove another graph
counting lemma. The proof is more analytic, whereas the previous proofs in Chapter 2 were
more combinatorial (embedding one vertex at a time).

Theorem 4.5.1 (Counting lemma)
Let 𝐹 be a graph. Let𝑊 and𝑈 be graphons. Then

|𝑡 (𝐹,𝑊) − 𝑡 (𝐹,𝑈) | ≤ |𝐸 (𝐹) | 𝛿□(𝑊,𝑈).

Qualitatively, the counting lemma tells us that for every graph 𝐹, the function 𝑡 (𝐹, ·) is
continuous in (W̃0, 𝛿□), the graphon space with respect to the cut metric. It implies the easier
direction of the equivalence in Theorem 4.3.7, namely that convergence in cut metric implies
left-convergence.

Corollary 4.5.2 (Cut metric convergence implies left-convergence)
Every Cauchy sequence of graphons with respect to the cut metric is left-convergent.

In the rest of this section, we prove Theorem 4.5.1. It suffices to prove that

|𝑡 (𝐹,𝑊) − 𝑡 (𝐹,𝑈) | ≤ |𝐸 (𝐹) | ∥𝑊 −𝑈∥□ . (4.6)

Indeed, for every invertible measure preserving map 𝜙 : [0, 1] → [0, 1], we have 𝑡 (𝐹,𝑈) =
𝑡 (𝐹,𝑈𝜙). By considering the above inequality with𝑈 replaced by𝑈𝜙, and taking the infimum
over all𝑈𝜙, we obtain Theorem 4.5.1.

The following reformulation of the cut norm is often quite useful.
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Lemma 4.5.3 (Reformulation of cut norm)
For every measurable𝑊 : [0, 1]2 → R,

∥𝑊 ∥□ = sup
𝑢,𝑣:[0,1]→[0,1]

measurable

����
∫
[0,1]2

𝑊 (𝑥, 𝑦)𝑢(𝑥)𝑣(𝑦) 𝑑𝑥𝑑𝑦
���� .

Proof. We want to show (left-hand side below is how we defined the cut norm in Defini-
tion 4.2.1)

sup
𝑆,𝑇⊆[0,1]
measurable

����
∫
[0,1]2

𝑊 (𝑥, 𝑦)1𝑆 (𝑥)1𝑇 (𝑦) 𝑑𝑥𝑑𝑦
���� = sup

𝑢,𝑣:[0,1]→[0,1]
measurable

����
∫
[0,1]2

𝑊 (𝑥, 𝑦)𝑢(𝑥)𝑣(𝑦) 𝑑𝑥𝑑𝑦
���� .

The right-hand side is at least as large as the left-hand side since we can take 𝑢 = 1𝑆 and
𝑣 = 1𝑇 . On the other hand, the integral on the right-hand side is bilinear in 𝑢 and 𝑣, and so it is
always possible to change 𝑢 and 𝑣 to {0, 1}-valued functions without decreasing the value of
the integral (e.g., think about what is the best choice for 𝑣 with 𝑢 held fixed, and vice versa).
If 𝑢 and 𝑣 are restricted to {0, 1}-valued functions, then the two sides are identical. □

As a warm up, let us illustrate the proof of the triangle counting lemma, which has all the
ideas of the general proof but with simpler notation. As illustrated below, the main idea to
“replace”𝑊 by𝑈 on the triangle one at a time using the cut norm.

𝑊

𝑊𝑊
≈

𝑈

𝑊𝑊
≈

𝑈

𝑈𝑊
≈

𝑈

𝑈𝑈

Proposition 4.5.4 (Triangle counting lemma)
Let𝑊 and𝑈 be graphons. Then

|𝑡 (𝐾3,𝑊) − 𝑡 (𝐾3,𝑈) | ≤ 3 ∥𝑊 −𝑈∥□ .

Proof. Given three graphons𝑊12,𝑊13,𝑊23, define

𝑡 (𝑊12,𝑊13,𝑊23) =
∫
[0,1]3

𝑊12(𝑥, 𝑦)𝑊13(𝑥, 𝑧)𝑊23(𝑦, 𝑧) 𝑑𝑥𝑑𝑦𝑑𝑧.

So
𝑡 (𝐾3,𝑊) = 𝑡 (𝑊,𝑊,𝑊) and 𝑡 (𝐾3,𝑈) = 𝑡 (𝑈,𝑈,𝑈).

Observe that 𝑡 (𝑊12,𝑊13,𝑊23) is trilinear in𝑊12,𝑊13,𝑊23. We have

𝑡 (𝑊,𝑊,𝑊) − 𝑡 (𝑈,𝑊,𝑊) =
∫
[0,1]3
(𝑊 −𝑈) (𝑥, 𝑦)𝑊 (𝑥, 𝑧)𝑊 (𝑦, 𝑧) 𝑑𝑥𝑑𝑦𝑑𝑧.

For any fixed 𝑧, note that 𝑥 ↦→ 𝑊 (𝑥, 𝑧) and 𝑦 ↦→ 𝑊 (𝑦, 𝑧) are both measurable functions
[0, 1] → [0, 1]. So applying Lemma 4.5.3 gives����

∫
[0,1]2
(𝑊 −𝑈) (𝑥, 𝑦)𝑊 (𝑥, 𝑧)𝑊 (𝑦, 𝑧) 𝑑𝑥𝑑𝑦

���� ≤ ∥𝑊 −𝑈∥□
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for every 𝑧. Now integrate over all 𝑧 and applying the triangle inequality, we obtain

|𝑡 (𝑊,𝑊,𝑊) − 𝑡 (𝑈,𝑊,𝑊) | ≤ ∥𝑊 −𝑈∥□ .
We have similar inequalities in the other two coordinates. We can write

𝑡 (𝑊,𝑊,𝑊) − 𝑡 (𝑈,𝑈,𝑈) = 𝑡 (𝑊,𝑊,𝑊 −𝑈) + 𝑡 (𝑊,𝑊 −𝑈,𝑈) + 𝑡 (𝑊 −𝑈,𝑈,𝑈).
Each term on the right-hand side is at most ∥𝑊 −𝑈∥□ in absolute value. So the result
follows. □

The above proof generalizes in a straightforward way to a general graph counting lemma..

Proof of the counting lemma (Theorem 4.5.1). Given a collection of graphons𝑊𝑒 indexed
by the edges 𝑒 of 𝐹, define

𝑡𝐹 (𝑊𝑒 : 𝑒 ∈ 𝐸 (𝐹)) =
∫
[0,1]𝑉 (𝐹)

∏
𝑖 𝑗∈𝐸 (𝐹 )

𝑊𝑖 𝑗 (𝑥𝑖, 𝑥 𝑗)
∏

𝑖∈𝑉 (𝐻 )
𝑑𝑥𝑖 .

In particular, this quantity equals 𝑡 (𝐹,𝑊) if 𝑊𝑒 = 𝑊 for all 𝑒 ∈ 𝐸 (𝐹). A straightforward
generalization of the triangle case shows that if we change exactly one argument in the above
function from𝑊 to 𝑈, then its value changes by at most ∥𝑊 −𝑈∥□ in absolute value. Thus,
starting with 𝑡𝐹 (𝑊𝑒 : 𝑒 ∈ 𝐸 (𝐹)) with every𝑊𝑒 = 𝑊 , we can change each argument from𝑊
to 𝑈, one by one, resulting in a total change of at most 𝑒(𝐹) ∥𝑊 −𝑈∥□. This proves (4.6),
and hence the theorem. □

4.6 Weak Regularity Lemma
In Chapter 2, we defined an 𝜀-regular vertex partition of a graph to be a partition such that
all but 𝜀-fraction of pairs of vertices lie between 𝜀-regular pairs of vertex parts. The number
of parts is at most an exponential tower of height 𝑂 (𝜀−5).

The goal of this section is to introduce a weaker version of the regularity lemma, requiring
substantially fewer parts for the partition. The guarantee provided by the partition can be
captured by the cut norm.

Let us first state this notion for a graph and then for a graphon.

Definition 4.6.1 (Weak regular partition for graphs)
Given graph 𝐺, a partition P = {𝑉1, . . . , 𝑉𝑘} of 𝑉 (𝐺) is called weak 𝜺-regular if for all
𝐴, 𝐵 ⊆ 𝑉 (𝐺), �����𝑒(𝐴, 𝐵) −

𝑘∑︁
𝑖, 𝑗=1

𝑑 (𝑉𝑖, 𝑉 𝑗) |𝐴 ∩𝑉𝑖 | |𝐵 ∩𝑉 𝑗 |
����� ≤ 𝜀𝑣(𝐺)2.

Remark 4.6.2 (Interpreting weak regularity). Given 𝐴, 𝐵 ⊆ 𝑉 (𝐺), suppose we only knew
how many vertices from 𝐴 and 𝐵 lie in each part of the partition (and not specifically which
vertices), and we are asked to predict the number of edges between 𝐴 and 𝐵. Then the sum
above is the number of edges between 𝐴 and 𝐵 that one would naturally expect based on the
edge densities between vertex parts. Being weak regular says that this prediction is roughly
correct.
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Weak regularity is more “global” compared to the notion of an 𝜀-regular partition from
Chapter 2. Here 𝐴 and 𝐵 have size a constant order fraction of the entire vertex set, rather
than subsets of individual parts of the partition. The edge densities between certain pairs
𝐴 ∩ 𝑉𝑖 and 𝐵 ∩ 𝑉 𝑗 could differ significantly from that of 𝑉𝑖 and 𝑉 𝑗 . All we ask is that on
average these discrepancies mostly cancel out.

The following weak regularity lemma was proved by Frieze and Kannan (1999), initially
motivated by algorithmic applications that we will mention in Remark 4.6.11.

Theorem 4.6.3 (Weak regularity lemma for graphs)
Let 0 < 𝜀 < 1. Every graph has a weak 𝜀-regular partition into at most 41/𝜀2 vertex parts.

Now let us state the corresponding notions for graphons.

Definition 4.6.4 (Stepping operator)
Given a symmetric measurable function 𝑊 : [0, 1]2 → R, and a measurable partition
P = {𝑆1, . . . , 𝑆𝑘} of [0, 1], define a symmetric measurable function 𝑾P : [0, 1]2 → R
by setting its value on each 𝑆𝑖 × 𝑆 𝑗 to be the average value of 𝑊 over 𝑆𝑖 × 𝑆 𝑗 (since
we only care about functions up to measure zero sets, we can ignore all parts 𝑆𝑖 with
measure zero).

In other words, 𝑊P is a step graphon with steps given by P and values given by
averaging𝑊 over the steps.

Remark 4.6.5. The stepping operator is the orthogonal projection in the Hilbert space
𝐿2( [0, 1]2) onto the subspace of functions constant on each step 𝑆𝑖 × 𝑆 𝑗 . It can also be
viewed as the conditional expectation with respect to the 𝜎-algebra generated by 𝑆𝑖 × 𝑆 𝑗 .

Definition 4.6.6 (Weak regular partition for graphons)
Given graphon𝑊 , we say that a measurable partition P of [0, 1] into finitely many parts
is weak 𝜺-regular if

∥𝑊 −𝑊P ∥□ ≤ 𝜀.

Theorem 4.6.7 (Weak regularity lemma for graphons)
Let 0 < 𝜀 < 1. Then every graphon has a weak 𝜀-regular partition into at most 41/𝜀2

parts.

Remark 4.6.8. Technically speaking, Theorem 4.6.3 does not follow from Theorem 4.6.7
since the partition of [0, 1] for𝑊𝐺 could split intervals corresponding to individual vertices of
𝐺. However, the proofs of the two claims are exactly the same. Alternatively, one can allow a
more flexible definition of a graphon as a symmetric measurable function𝑊 : Ω×Ω→ [0, 1],
and then takeΩ to be the discrete probability space𝑉 (𝐺) endowed with the uniform measure.

Like the proof of the regularity lemma in Section 2.1, we use an energy increment strategy.
Recall from Definition 2.1.10 that the energy of a vertex partition is the mean-squared edge-
density between parts. Given a graphon 𝑊 , we define the energy of a measurable partition
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P = {𝑆1, . . . , 𝑆𝑘} of [0, 1] by

∥𝑊P ∥22 =
∫
[0,1]2

𝑊P (𝑥, 𝑦)2 𝑑𝑥𝑑𝑦 =
𝑘∑︁

𝑖, 𝑗=1

𝜆(𝑆𝑖)𝜆(𝑆 𝑗) (avg of𝑊 on 𝑆𝑖 × 𝑆 𝑗)2.

Given𝑊,𝑈 : [0, 1]2 → R, we write

⟨𝑾,𝑼⟩ B

∫
𝑊𝑈 =

∫
[0,1]2

𝑊 (𝑥, 𝑦)𝑈 (𝑥, 𝑦) 𝑑𝑥𝑑𝑦.

Lemma 4.6.9 (𝐿2 energy increment)
Let 𝑊 be a graphon. Let P be a finite measurable partition of [0, 1] that is not weak
𝜀-regular for𝑊 . Then there is a measurable refinement P′ of P, dividing each part of P
into at most 4 parts, such that

∥𝑊P′ ∥22 > ∥𝑊P ∥22 + 𝜀2.

Proof. Because ∥𝑊 −𝑊P ∥□ > 𝜀, there exist measurable subsets 𝑆, 𝑇 ⊆ [0, 1] such that

|⟨𝑊 −𝑊P , 1𝑆×𝑇⟩| > 𝜀.
Let P′ be the refinement of P by introducing 𝑆 and 𝑇 , dividing each part of P into ≤ 4
sub-parts. We know that

⟨𝑊P ,𝑊P⟩ = ⟨𝑊P′ ,𝑊P⟩
because𝑊P is constant on each step of P, and P′ is a refinement of P. Thus,

⟨𝑊P′ −𝑊P ,𝑊P⟩ = 0.

By the Pythagorean Theorem (in the Hilbert space 𝐿2( [0, 1]2)),
∥𝑊P′ ∥22 = ∥𝑊P ∥22 + ∥𝑊P′ −𝑊P ∥22 . (4.7)

Note that ⟨𝑊P′ , 1𝑆×𝑇⟩ = ⟨𝑊, 1𝑆×𝑇⟩ since 𝑆 and 𝑇 are both unions of parts of the partition
P′. So, by the Cauchy–Schwarz inequality,

∥𝑊P′ −𝑊P ∥2 ≥ |⟨𝑊P′ −𝑊P , 1𝑆×𝑇⟩| = |⟨𝑊 −𝑊P , 1𝑆×𝑇⟩| > 𝜀.
So by (4.7), we have ∥𝑊P′ ∥22 > ∥𝑊P ∥22 + 𝜀2, as claimed. □

We will prove the following slight generalization of Theorem 4.6.7, allowing an arbitrary
starting partition (this will be useful later).

Theorem 4.6.10 (Weak regularity lemma for graphons)
Let 0 < 𝜀 < 1. Let 𝑊 be a graphon. Let P0 be a finite measurable partition of [0, 1].
Then every graphon has a weak 𝜀-regular partition P, such that P refines P0, and each
part of P0 is partitioned into at most 41/𝜀2 parts under P.

This proposition specifically tells us that starting with any given partition, the regularity
argument still works.

Proof. Starting with 𝑖 = 0:
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(1) If P𝑖 is weak 𝜀-regular, then STOP.
(2) Else, by Lemma 4.6.9, there exists a measurable partition P𝑖+1 refining each part of
P𝑖 into at most 4 parts, such that



𝑊P𝑖+1

2
2 >



𝑊P𝑖

2
2 + 𝜀2.

(3) Increase 𝑖 by 1 and go back to Step (1).
Since 0 ≤ ∥𝑊P ∥2 ≤ 1 for every P, the process terminates with 𝑖 < 1/𝜀2, resulting in a
terminal P𝑖 with the desired properties. □

Remark 4.6.11 (Additive approximation of maximum cut). One of the initial motivations
for developing the weak regularity lemma was to develop a general efficient algorithm for
estimating the maximum cut in a dense graph. The maximum cut problem is a central
problem in algorithms and combinatorial optimization:

MAX CUT: Given a graph 𝑆, find a 𝑆 ⊆ 𝑉 (𝐺) that maximizes 𝑒(𝑆,𝑉 (𝐺) \ 𝑆).
Goemans and Williamson (1995) found an efficient 0.878-approximation algorithm (this

means that the algorithm outputs some 𝑆 with 𝑒(𝑆,𝑉 (𝐺) \ 𝑆) at least a factor 0.878 of
the optimum). Their seminal algorithm uses a semidefinite relaxation. The Unique Games
Conjecture (currently still open) would imply that it would be NP-hard to obtain a bet-
ter approximation than the Goemans–Williamson algorithm (Khot, Kindler, Mossel, and
O’Donnell 2007). It is also known that approximating beyond 16/17 ≈ 0.941 is NP-hard
(Håstad 2001).

On the other hand, an algorithmic version of the weak regularity lemma gives us an
efficient algorithm to approximate the maximum cut for dense graphs with an additive error.
This means, given 𝜀 > 0, we wish to find a cut whose number of edges is within 𝜀𝑛2 of the
optimum. The basic idea is to find a weak regular partition 𝑉 (𝐺) = 𝑉1 ∪ · · · ∪ 𝑉𝑘 , and then
do a brute-force search through all possibles size |𝑆 ∩𝑉𝑖 |. See Frieze and Kannan (1999) for
more details. These ideas have been further developed into efficient sampling algorithms,
sampling only poly(1/𝜀) random vertices, for estimating the maximum cut in a dense graph,
(e.g., Alon, Fernandez de la Vega, Kannan, and Karpinski (2003b)).

The following exercise offers another approach to the weak regularity lemma. It gives
an approximation of a graphon as a linear combination of ≤ 𝜀−2 indicator functions of
boxes. The polynomial dependence of 𝜀−2 is important for designing efficient approximation
algorithms.

Exercise 4.6.12 (Weak regularity decomposition).
(a) Let 𝜀 > 0. Show that for every graphon𝑊 , there exist measurable 𝑆1, . . . , 𝑆𝑘 , 𝑇1, . . . ,

𝑇𝑘 ⊆ [0, 1] and reals 𝑎1, . . . , 𝑎𝑘 ∈ R, with 𝑘 < 𝜀−2, such that




𝑊 −
𝑘∑︁
𝑖=1

𝑎𝑖1𝑆𝑖×𝑇𝑖







□

≤ 𝜀.

The rest of the exercise shows how to recover a regularity partition from the above
approximation.

(b) Show that the stepping operator is contractive with respect to the cut norm, in the sense
that if𝑊 : [0, 1]2 → R is a measurable symmetric function, then ∥𝑊P ∥□ ≤ ∥𝑊 ∥□.

(c) Let P be a partition of [0, 1] into measurable sets. Let𝑈 be a graphon that is constant
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on 𝑆 × 𝑇 for each 𝑆, 𝑇 ∈ P. Show that for every graphon𝑊 , one has

∥𝑊 −𝑊P ∥□ ≤ 2 ∥𝑊 −𝑈∥□ .
(d) Use (a) and (c) to give a different proof of the weak regularity lemma (with slightly

worse bounds than the one given in class): show that for every 𝜀 > 0 and every
graphon𝑊 , there exists a partition P of [0, 1] into 2𝑂 (1/𝜀2 ) measurable sets such that
∥𝑊 −𝑊P ∥□ ≤ 𝜀.

Exercise 4.6.13∗ (Second neighborhood distance). Let 0 < 𝜀 < 1/2. Let 𝑊 be a
graphon. Define 𝜏𝑊,𝑥 : [0, 1] → [0, 1] by

𝜏𝑊,𝑥 (𝑧) =
∫
[0,1]

𝑊 (𝑥, 𝑦)𝑊 (𝑦, 𝑧) 𝑑𝑦.

(This models the second neighborhood of 𝑥.) Prove that if a finite set 𝑆 ⊆ [0, 1] satisfies

∥𝜏𝑊,𝑠 − 𝜏𝑊,𝑡 ∥1 > 𝜀 for all distinct 𝑠, 𝑡 ∈ 𝑆,
then |𝑆 | ≤ (1/𝜀)𝐶/𝜀2 , where 𝐶 is some absolute constant.

Exercise 4.6.14 (Strong regularity lemma). Letε = (𝜀1, 𝜀2, . . . ) be a sequence of positive
reals. By repeatedly applying the weak regularity lemma, show that there is some 𝑀 =
𝑀 (ε) such that for every graphon 𝑊 , there is a pair of partitions P and Q of [0, 1] into
measurable sets, such that Q refines P, |Q| ≤ 𝑀 (here |Q| denotes the number of parts of
Q),

∥𝑊 −𝑊Q ∥□ ≤ 𝜀 | P | and ∥𝑊Q ∥22 ≤ ∥𝑊P ∥22 + 𝜀2
1.

Furthermore, deduce the strong regularity lemma in the following form:

𝑊 = 𝑊str +𝑊psr +𝑊sml,

where 𝑊str is a 𝑘-step graphon with 𝑘 ≤ 𝑀 ,


𝑊psr




□
≤ 𝜀𝑘 , and ∥𝑊sml∥1 ≤ 𝜀1. State your

bounds on 𝑀 explicitly in terms of ε. (Note: the parameter choice 𝜀𝑘 = 𝜀/𝑘2 roughly
corresponds to Szemerédi’s regularity lemma, in which case your bound on 𝑀 should be
an exponential tower of 2’s of height 𝜀−𝑂 (1) ; if not then you are doing something wrong.)

4.7 Martingale Convergence Theorem
In this section we prove a result about martingales that will be used in the proof of the
compactness of the graphon space.

Martingales are a standard notion in probability theory. It is a stochastic sequence where
the expected change at each step is zero, even conditioned on all prior values of the sequence.

Definition 4.7.1 (Discrete time martingale)
A martingale is a random real sequence 𝑋0, 𝑋1, 𝑋2, . . . such that for all 𝑛 ≥ 0,E |𝑋𝑛 | < ∞,
and

E[𝑋𝑛+1 |𝑋0, . . . , 𝑋𝑛] = 𝑋𝑛.

Remark 4.7.2. The above definition is sufficient for our purposes. In order to give a more
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formal definition of a martingale, we need to introduce the notion of a filtration. See any
standard measure theory based introduction to probability (Williams (1991, Chapters 10–11)
has a particularly lucid discussion of martingales and their convergence theorem discussed
below). This martingale is indexed by integers, and hence called “discrete-time.” There are
also continuous-time martingales (e.g., Brownian motion), which we will not discuss here.

Example 4.7.3 (Partial sum of independent mean zero random variables). Let 𝑍1, 𝑍2, . . .
be a sequence of independent mean zero random variables (e.g., ±1 with equal probability).
Then 𝑋𝑛 = 𝑍1 + · · · + 𝑍𝑛, 𝑛 ≥ 0, is a martingale.

Example 4.7.4 (Betting strategy). Consider any betting strategy in a “fair” casino, where
the expected value of each bet is zero. Let 𝑋𝑛 be the balance after 𝑛 rounds of betting.
Then 𝑋𝑛 is a martingale regardless of the betting strategy. So every betting strategy has zero
expected gain after 𝑛 rounds. Also see the optional stopping theorem for a more general
statement (e.g., Williams (1991, Chapter 10)).

The original meaning of the word “martingale” refers to the following betting strategy on
a sequence of fair coin tosses. Each round the better is allowed to bet an arbitrary amount 𝑍:
if heads, the better gains 𝑍 dollars, and if tails the better loses 𝑍 dollars.

Start betting 1 dollar. If one wins, stop. If one loses, then double one’s bet for the next
coin. And then repeat (i.e., keep doubling one’s bet until the first win, at which point one
stops).

A “fallacy” is that this strategy always results in a final net gain of $1, the supposed reason
being that with probability 1 one eventually sees a head. This initially appears to contradict
the earlier claim that all betting strategies have zero expected gain. Thankfully there is no
contradiction. In real life, one starts with a finite budget and could possibly go bankrupt with
this betting strategy, thereby leading to a forced stop. In the optional stopping theorem, there
are some boundedness hypotheses that are violated by the above strategy.

The following construction of martingales is most relevant for our purposes.

Example 4.7.5 (Doob martingale). Let 𝑋 be some “hidden” random variable. Partial infor-
mation is revealed about 𝑋 gradually over time. For example, 𝑋 is some fixed function of
some random inputs. So the exact value of 𝑋 is unknown but its distribution can be derived
from the distribution of the inputs. Initially one does not know any of the inputs. Over time,
some of the inputs are revealed. Let

𝑋𝑛 = E[𝑋 | all information revealed up to time 𝑛] .
Then 𝑋0, 𝑋1, . . . is a martingale (why?). Informally, 𝑋𝑛 is the best guess (in expectation) of 𝑋
based on all the information available up to time 𝑛. We have 𝑋0 = E𝑋 (when no information
is revealed). All information is revealed as 𝑛 → ∞, and the martingale 𝑋𝑛 converges to the
random variable 𝑋 with probability 1.

Here is a real-life example. Let 𝑋 ∈ {0, 1} be whether a candidate wins in a presidential
election. Let 𝑋𝑛 be the inferred probability that the candidate wins, given all the information
known at time 𝑡𝑛. Then 𝑋𝑛 converges to the “truth,” a {0, 1}-value, eventually becoming
deterministic when the election result is finalized.

Then 𝑋𝑛 is a martingale. At time 𝑡𝑛, knowing 𝑋𝑛, if the expectation for 𝑋𝑛+1 (conditioned
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on everything known at time 𝑡𝑛) were different from 𝑋𝑛, then one should have adjusted 𝑋𝑛
accordingly in the first place.

The precise notion of “information” in the above formula can be formalized using the
notion of filtration in probability theory.

Here is the main result of this section.

Theorem 4.7.6 (Martingale convergence theorem)
Every bounded martingale converges with probability 1.

In other words, if 𝑋0, 𝑋1, . . . is a martingale with 𝑋𝑛 ∈ [0, 1] for every 𝑛, then the sequence
is convergent with probability 1.

Remark 4.7.7. The proof actually shows that the boundedness condition can be replaced by
the weaker 𝐿1-boundedness condition sup𝑛 E |𝑋𝑛 | < ∞. Even more generally, a hypothesis
called “uniform integrability” is enough.

Some boundedness condition is necessary. For example, in Example 4.7.3, a running sum
of independent uniform ±1 is a nonbounded martingale, and never converges.

Proof. If a sequence 𝑋0, 𝑋1, · · · ∈ [0, 1] does not converge, then there exist a pair of rational
numbers 0 < 𝑎 < 𝑏 < 1 such that 𝑋𝑛 “up-crosses” [𝑎, 𝑏] infinitely many times, meaning that
there is an infinite sequence 𝑠1 < 𝑡1 < 𝑠2 < 𝑡2 < · · · such that 𝑋𝑠𝑖 < 𝑎 < 𝑏 < 𝑋𝑡𝑖 for all 𝑖.

𝑎

𝑏

𝑠1 𝑡1 𝑠2 𝑡2 𝑠3 𝑡3

We will show that for each 𝑎 < 𝑏, the probability that a bounded martingale 𝑋0, 𝑋1, · · · ∈
[0, 1] up-crosses [𝑎, 𝑏] infinitely many times is zero. Then, by taking a union of all countably
many such pairs (𝑎, 𝑏) of rationals, we deduce that the martingale converges with probability
1.

Consider the following betting strategy. Imagine that 𝑋𝑛 is a stock price. At any time, if
𝑋𝑛 dips below 𝑎, we buy and hold one share until 𝑋𝑛 reaches above 𝑏, at which point we
sell this share. (Note that we always hold either zero or one share. We do not buy more until
we have sold the currently held share). Start with a budget of 𝑌0 = 1 (so we will never go
bankrupt). Let 𝑌𝑛 be the value of our portfolio (cash on hand plus the value of the share if
held) at time 𝑛. Then 𝑌𝑛 is a martingale (why?). So E𝑌𝑛 = 𝑌0 = 1. Also 𝑌𝑛 ≥ 0 for all 𝑛. If
one buys and sells at least 𝑘 times up to time 𝑛, then 𝑌𝑛 ≥ 𝑘 (𝑏 − 𝑎) (this is only the net profit
from buying and selling; the actual 𝑌𝑛 may be higher due to the initial cash balance and the
value of the current share held). So, by Markov’s inequality, for every 𝑛,

P(≥ 𝑘 up-crossings up to time 𝑛) ≤ P(𝑌𝑛 ≥ 𝑘 (𝑏 − 𝑎)) ≤ E𝑌𝑛
𝑘 (𝑏 − 𝑎) =

1
𝑘 (𝑏 − 𝑎) .

MIT OCW: Graph Theory and Additive Combinatorics --- Yufei Zhao



4.8 Compactness of the Graphon Space 153

By the monotone convergence theorem,

P(≥ 𝑘 up-crossings) = lim
𝑛→∞
P(≥ 𝑘 up-crossings up to time 𝑛) ≤ 1

𝑘 (𝑏 − 𝑎) .

Letting 𝑘 →∞, the probability of having infinitely many up-crossings is zero. □

4.8 Compactness of the Graphon Space
Using the weak regularity lemma and the martingale convergence theorem, let us prove that
the space of graphons is compact with respect to the cut metric.

Proof of compactness of the graphon space (Theorem 4.2.7). As W̃0 is a metric space, it
suffices to prove sequential compactness. Fix a sequence𝑊1,𝑊2, . . . of graphons. We want to
show that there is a subsequence which converges (with respect to 𝛿□) to some limit graphon.

Step 1. Regularize.
For each 𝑛, apply the weak regularity lemma (Theorem 4.6.7) repeatedly, to obtain a

sequence of partitions P𝑛,1,P𝑛,2,P𝑛,3, . . . (everything in this proof is measurable, and we
will stop repeatedly mentioning it) such that

(a) P𝑛,𝑘+1 refines P𝑛,𝑘 for all 𝑛, 𝑘 ,
(b)

��P𝑛,𝑘 �� = 𝑚𝑘 where 𝑚𝑘 is a function of only 𝑘 , and
(c) ∥𝑊𝑛 −𝑊𝑛,𝑘 ∥□ ≤ 1/𝑘 where𝑊𝑛,𝑘 = (𝑊𝑛)P𝑛,𝑘 .

The weak regularity lemma only guarantees that
��P𝑛,𝑘 �� ≤ 𝑚𝑘 , but if we allow empty parts

then we can achieve equality in (b).

Step 2. Passing to a subsequence.
Initially, each P𝑛,𝑘 partitions [0, 1] into arbitrary measurable sets. By restricting to a

subsequence, we may assume that
• For each 𝑘 and 𝑖 ∈ [𝑚𝑘], the measure of the 𝑖th part of P𝑛,𝑘 converges to some value
𝛼𝑘,𝑖 as 𝑛→∞.

• For each 𝑘 and 𝑖, 𝑗 ∈ [𝑚𝑘], the value of𝑊𝑛,𝑘 on the product of the 𝑖th and 𝑗 th parts of
P𝑛,𝑘 converges to some value 𝛽𝑘,𝑖, 𝑗 as 𝑛→∞.

Now construct, for each 𝑘 , the following limiting objects as 𝑛 → ∞ along the above
subsequence:
• Let P𝑘 = {𝐼𝑘,1, . . . , 𝐼𝑘,𝑚𝑘 } denote a partition of [0, 1] into intervals with lengths
𝜆(𝐼𝑘,𝑖) = 𝛼𝑘,𝑖 for each 𝑖 ∈ [𝑚𝑘].
• Let 𝑈𝑘 denote a step graphon with steps P𝑘 , and whose value on 𝐼𝑘,𝑖 × 𝐼𝑘, 𝑗 is 𝛽𝑘,𝑖, 𝑗 for

each 𝑖, 𝑗 ∈ [𝑚𝑘].
Then, for each 𝑘 ,

𝛿□(𝑊𝑛,𝑘 ,𝑈𝑘) → 0, as 𝑛→∞. (4.8)

(In fact, some rearrangement of the step graphon𝑊𝑛,𝑘 converges pointwise almost everywhere
to the step graphon𝑈𝑘 .)

For each 𝑘 , since𝑊𝑛,𝑘 = (𝑊𝑛,𝑘+1)P𝑛,𝑘 for every 𝑛, we have

𝑈𝑘 = (𝑈𝑘+1)P𝑘 .
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Step 3. Finding the limit.
Now each 𝑈𝑘 can be thought of as a random variable on probability space [0, 1]2 (i.e.,

𝑈𝑘 (𝑋,𝑌 ) with (𝑋,𝑌 ) ∼ Uniform( [0, 1]2)). The condition 𝑈𝑘 = (𝑈𝑘+1)P𝑘 implies that the
sequence 𝑈1,𝑈2, . . . is a martingale. Since each 𝑈𝑘 is bounded between 0 and 1, by the
martingale convergence theorem (Theorem 4.7.6), there exists a graphon𝑈 such that𝑈𝑘 → 𝑈
pointwise almost everywhere as 𝑘 →∞.

We claim that 𝑊1,𝑊2, . . . (which is a relabeled subsequence of the original sequence)
converges to𝑈 in cut metric.

Let 𝜀 > 0. Then there exists some 𝑘 > 3/𝜀 such that ∥𝑈 −𝑈𝑘 ∥1 < 𝜀/3, by pointwise
convergence and the dominated convergence theorem. Then 𝛿□(𝑈,𝑈𝑘) < 𝜀/3. By (4.8),
there exists some 𝑛0 ∈ N such that 𝛿□(𝑊𝑛,𝑘 ,𝑈𝑘) < 𝜀/3 for all 𝑛 > 𝑛0. Finally, since we chose
𝑘 > 3/𝜀, we already know that 𝛿□(𝑊𝑛,𝑊𝑛,𝑘) < 𝜀/3 for all 𝑛. We conclude that

𝛿□(𝑈,𝑊𝑛) ≤ 𝛿□(𝑈,𝑈𝑘) + 𝛿□(𝑈𝑘 ,𝑊𝑛,𝑘) + 𝛿□(𝑊𝑛,𝑘 ,𝑊𝑛) ≤ 𝜀/3 + 𝜀/3 + 𝜀/3 = 𝜀.

Since 𝜀 > 0 can be chosen to be arbitrarily small, we find that the subsequence𝑊𝑛 converges
to𝑈 in cut metric. □

Quick Applications
The compactness of (W̃0, 𝛿□) is a powerful statement. We will use it to prove the equivalence
of cut metric convergence and left-convergence in the next section. Right now, let us show
how to use compactness to deduce the existence of limits for a left-convergent sequence of
graphons.

Proof of Theorem 4.3.8 (existence of limit for a left-convergent sequence of graphons).
Let𝑊1,𝑊2, . . . be a sequence of graphons such that the sequence of 𝐹-densities {𝑡 (𝐹,𝑊𝑛)}𝑛
converges for every graph 𝐹. Since (W̃0, 𝛿□) is a compact metric space by Theorem 4.2.7,
it is also sequentially compact, and so there is a subsequence (𝑛𝑖)∞𝑖=1 and a graphon 𝑊 such
that 𝛿□(𝑊𝑛𝑖 ,𝑊) → 0 as 𝑖 →∞. Fix any graph 𝐹. By the counting lemma, Theorem 4.5.1, it
follows that 𝑡 (𝐹,𝑊𝑛𝑖 ) → 𝑡 (𝐹,𝑊). But by assumption, the sequence {𝑡 (𝐹,𝑊𝑛)}𝑛 converges.
Therefore 𝑡 (𝐹,𝑊𝑛) → 𝑡 (𝐹,𝑊) as 𝑛→∞. Thus𝑊𝑛 left-converges to𝑊 . □

Let us now examine a different aspect of compactness. Recall that by definition, a set is
compact if every open cover has a finite subcover.

Recall from Theorem 4.2.8 that the set of graphs is dense in the space of graphons with
respect to the cut metric. This was proved by showing that for every 𝜀 > 0 and graphon
𝑊 , one can find a graph 𝐺 such that 𝛿□(𝐺,𝑊) < 𝜀. However, the size of 𝐺 produced by
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this proof depends on both 𝜀 and 𝑊 , since the proof proceeds by first taking a discrete 𝐿1

approximation of𝑊 , which could involve an unbounded number of steps to approximate. In
contrast, we show below that the number of vertices of 𝐺 needs to depend only on 𝜀 and not
on𝑊 .

Proposition 4.8.1 (Uniform approximation of graphons by graphs)
For every 𝜀 > 0 there is some positive integer 𝑁 = 𝑁 (𝜀) such that every graphon lies
within cut distance 𝜀 of a graph on at most 𝑁 vertices.

Proof. Let 𝜀 > 0. For a graph 𝐺, define the open 𝜀-ball (with respect to the cut metric)
around 𝐺:

𝐵𝜀 (𝐺) = {𝑊 ∈ W̃0 : 𝛿□(𝐺,𝑊) < 𝜀}.
Since every graphon lies within cut distance 𝜀 from some graph (Theorem 4.2.8), the balls
𝐵𝜀 (𝐺) cover W̃0 as 𝐺 ranges over all graphs. By compactness, this open cover has a finite
subcover, and let 𝑁 be the maximum number of vertices in graphs 𝐺 of this subcover. Then
every graphon lies within cut distance 𝜀 of a graph on at most 𝑁 vertices. □

The following exercise asks to make the above proof quantitative.

Exercise 4.8.2. Show that for every 𝜀 > 0, every graphon lies within cut distance at most
𝜀 from some graph on at most 𝐶1/𝜀2 vertices, where 𝐶 is some absolute constant.

Hint:Usetheweakregularitylemma.
Remark 4.8.3 (Ineffective bounds from compactness). Arguments using compactness usu-
ally do not generate quantitative bounds, meaning, for example, the proof of Proposition 4.8.1
does not give any specific function 𝑛(𝜀), only that such a function always exists. In case where
one does not have an explicit bound, we call the bound ineffective. Ineffective bounds also
often arise from arguments involving ergodic theory and nonstandard analysis. Sometimes a
different argument can be found that generates a quantitative bound (e.g., Exercise 4.8.2), but
it is not always known how to do this. Here we illustrate a simple example of a compactness
application (unrelated to dense graph limits) that gives an ineffective bound, but it remains
an open problem to make the bound effective.

This example concerns bounded degree graphs. It is sometimes called a “regularity lemma”
for bounded degree graphs, but it is very different from the regularity lemmas we have
encountered so far.

A rooted graph (𝐺, 𝑣) consists of a graph 𝐺 with a vertex 𝑣 ∈ 𝑣(𝐺) designated as the
root. Given a graph 𝐺 and positive integer 𝑟 , we can obtain a random rooted graph by first
picking a vertex 𝑣 of 𝐺 as the root uniformly at random, and then removing all vertices more
than distance 𝑟 from 𝑣. We define the 𝒓-neighborhood-profile of 𝐺 to be the probability
distribution on rooted graphs generated by this process.

Recall that the total variation distance between two probability distributions 𝜇 and 𝜆 is
defined by

𝑑𝑇𝑉 (𝜇, 𝜆) = sup
𝐸
|𝜇(𝐸) − 𝜆(𝐸) | ,

where 𝐸 ranges over all events. In the case of two discrete discrete random distributions 𝜇
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and 𝜆, the above definition can be written as half the ℓ1 distance between the two probability
distributions:

𝑑𝑇𝑉 (𝜇, 𝜆) = 1
2

∑︁
𝑥

|𝜇(𝑥) − 𝜆(𝑥) | .

The following is an unpublished observation of Alon.

Theorem 4.8.4 (“Regularity lemma” for bounded degree graphs)
For every 𝜀 > 0 and positive integersΔ and 𝑟 there exists a positive integer 𝑁 = 𝑁 (𝜀,Δ, 𝑟)
such that for every graph 𝐺 with maximum degree at most Δ, there exists a graph 𝐺′
with at most 𝑁 vertices, so that the total variation distance between the 𝑟-neighborhood-
profiles of 𝐺 and 𝐺′ is at most 𝜀.

Proof. Let G = GΔ,𝑟 be the set of all possible rooted graphs with maximum degree Δ and
radius at most 𝑟 around the root. Then |G| < ∞. The 𝑟-neighborhood-profile 𝑝𝐺 of any
rooted graph 𝐺 can be represented as a point 𝑝𝐺 ∈ [0, 1]G with coordinate sum 1, and let
𝐴 = {𝑝𝐺 : graph 𝐺} ⊆ [0, 1]G be the set of all points that can arise this way. Since [0, 1]G
is compact, the closure of 𝐴 is compact. Since the union of the open 𝜀-neighborhoods (with
respect to 𝑑𝑇𝑉 ) of 𝑝𝐺 , ranging over all graphs 𝐺, covers the closure of 𝐴, by compactness
there is some finite subcover. This subcover is a finite collectionX of graphs so that for every
graph 𝐺, 𝑝𝐺 lies within 𝜀 total variance distance to some 𝑝𝐺′ with 𝐺′ ∈ X. We conclude by
letting 𝑁 be the maximum number of vertices of a graph from X. □

Despite the short proof using compactness, it remains an open problem to make the above
result quantitative.

Open Problem 4.8.5 (Effective “regularity lemma” for bounded degree graphs)
Find some specific 𝑁 (𝜀,Δ, 𝑟) so that Theorem 4.8.4 holds.

4.9 Equivalence of Convergence
In this section, we prove Theorem 4.3.7, that left-convergence is equivalent to convergence in
cut metric. The counting lemma (Theorem 4.5.1) already showed that cut metric convergence
implies left-convergence. It remains to show the converse. In other words, we need to show
that if 𝑊1,𝑊2, . . . is a sequence of graphons such that 𝑡 (𝐹,𝑊𝑛) converges as 𝑛 → ∞ for
every graph 𝐹, then𝑊𝑛 is a Cauchy sequence in (W̃0, 𝛿□).

By the compactness of the graphon space, there is always some (subsequential) limit point
𝑊 of the sequence𝑊𝑛 under the cut metric. We want to show that this limit point is unique.
Suppose𝑈 is another limit point. It remains to show that𝑊 and𝑈 are in fact the same point
in W̃0.

Let (𝑛𝑖)∞𝑖=1 be a subsequence such that 𝑊𝑛𝑖 → 𝑊 . By the counting lemma, 𝑡 (𝐹,𝑊𝑛𝑖 ) →
𝑡 (𝐹,𝑊) for all graphs 𝐹, and by convergence of 𝐹-densities, 𝑡 (𝐹,𝑊𝑛) → 𝑡 (𝐹,𝑊) for all
graphs 𝐹. Similarly, 𝑡 (𝐹,𝑊𝑛) → 𝑡 (𝐹,𝑈) for all 𝐹. Hence, 𝑡 (𝐹,𝑈) = 𝑡 (𝐹,𝑊) for all 𝐹. All
it remains is to prove is the following claim.
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Theorem 4.9.1 (Uniqueness of moments)
Let𝑈 and𝑊 be graphons such that 𝑡 (𝐹,𝑊) = 𝑡 (𝐹,𝑈) for all graphs 𝐹. Then 𝛿□(𝑈,𝑊) =
0.

Remark 4.9.2. The result is reminiscent of results from probability theory on the uniqueness
of moments, which roughly says that if two “sufficiently well-behaved” real random variables
𝑋 and 𝑌 share the same moments, (i.e., E[𝑋 𝑘] = E[𝑌 𝑘] for all nonnegative integers 𝑘),
then 𝑋 and 𝑌 must be identically distributed. One needs some technical conditions for the
conclusion to hold. For example, Carleman’s condition says that if the moments of 𝑋 satisfy∑∞
𝑘=1 E[𝑋2𝑘]−1/(2𝑘 ) = ∞, then the distribution of 𝑋 is uniquely determined by its moments.

This sufficient condition holds as long as the 𝑘th moment of 𝑋 does not grow too quickly
with 𝑘 . It holds for many distributions in practice.

We need some preparation before proving the uniqueness of moments theorem.

Lemma 4.9.3 (Tail bounds for 𝑈-statistics)
Let 𝑈 : [0, 1]2 → [−1, 1] be a symmetric measurable function. Let 𝑥1, . . . , 𝑥𝑘 ∈ [0, 1]
be chosen independently and uniformly at random. Let 𝜀 > 0. Then

P

(����� 1(𝑘
2
) ∑︁
𝑖< 𝑗

𝑈 (𝑥𝑖, 𝑥 𝑗) −
∫
[0,1]2

𝑈

����� ≥ 𝜀
)
≤ 2𝑒−𝑘𝜀2/8.

Proof. Let 𝑓 (𝑥1, . . . , 𝑥𝑛) denote the expression inside the absolute value. So E 𝑓 = 0. Also
𝑓 changes by at most 2(𝑘 − 1)/(𝑘2) = 4/𝑘 whenever we change exactly one coordinate of 𝑓 .
By the bounded differences inequality, Theorem 4.4.4, we obtain

P( | 𝑓 | ≥ 𝜀) ≤ 2 exp
( −2𝜀2

(4/𝑘)2𝑘

)
= 2𝑒−𝑘𝜀2/8. □

Let us now consider a variation of the 𝑊-random graph model from Section 4.4. Let
𝑥1, . . . , 𝑥𝑘 ∈ [0, 1] be chosen independently and uniformly at random. Let H(𝑘,𝑊) be an
edge-weighted random graph on vertex set [𝑘] with edge 𝑖 𝑗 having weight 𝑊 (𝑥𝑖, 𝑥 𝑗), for
each 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. Note that this definition makes sense for any symmetric measurable
𝑊 : [0, 1]2 → R. Furthermore, when 𝑊 is a graphon, the 𝑊-random graph G(𝑘,𝑊) can be
obtained by independently sampling each edge of H(𝑘,𝑊) with probability equal to its edge
weight. We shall study the joint distributions of G(𝑘,𝑊) and H(𝑘,𝑊) coupled through the
above two-step process.

𝑥3

𝑥3
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Similar to Definition 4.2.4 of the cut distance 𝛿□, define the distance based on the 𝐿1 norm:

𝜹1(𝑾,𝑼) B inf
𝜙
∥𝑊 −𝑈𝜙 ∥1

where the infimum is taken over all invertible measure preserving maps 𝜙 : [0, 1] → [0, 1].
Since ∥ · ∥□ ≤ ∥ · ∥1, we have 𝛿□ ≤ 𝛿1.

Lemma 4.9.4 (1-norm convergence for H(𝑘,𝑊))
Let𝑊 be a graphon. Then 𝛿1(H(𝑘,𝑊),𝑊) → 0 as 𝑘 →∞ with probability 1.

Proof. First we prove the result for step graphons 𝑊 . In this case, with probability 1 the
fraction of vertices of H(𝑘,𝑊) that fall in each step of𝑊 converges to the length of each step
by the law of large numbers. If so, then after sorting the vertices of H(𝑘,𝑊), the associated
graphon H(𝑘,𝑊) is obtained from 𝑊 by changing the step sizes by 𝑜(1) as 𝑘 → ∞, and
then zeroing out the diagonal blocks, as illustrated below. Then H(𝑘,𝑊) converges to 𝑊
pointwise almost everywhere as 𝑘 →∞. In particular, 𝛿1(H(𝑘,𝑊),𝑊) → 0.

𝑊 H(𝑘,𝑊)

Now let 𝑊 be any graphon. For any other graphon 𝑊 ′, by using the same random vertices
for H(𝑘,𝑊) and H(𝑘,𝑊 ′), the two random graphs are coupled so that with probability 1,

∥H(𝑘,𝑊) −H(𝑘,𝑊 ′)∥1 = ∥H(𝑘,𝑊 −𝑊 ′)∥1 = ∥𝑊 −𝑊 ′∥1 + 𝑜(1) as 𝑘 →∞
by Lemma 4.9.3 applied to𝑈 (𝑥, 𝑦) = |𝑊 (𝑥, 𝑦) −𝑊 ′ (𝑥, 𝑦) |.

For every 𝜀 > 0, we can find some step graphon 𝑊 ′ so that ∥𝑊 −𝑊 ′∥1 ≤ 𝜀 (by approx-
imating the Lebesgue measure using boxes). We saw earlier that 𝛿1(H(𝑘,𝑊 ′),𝑊 ′) → 0. It
follows that with probability 1,

𝛿1(H(𝑘,𝑊),𝑊) ≤ ∥H(𝑘,𝑊) −H(𝑘,𝑊 ′)∥1 + 𝛿1(H(𝑘,𝑊 ′),𝑊 ′) + ∥𝑊 ′ −𝑊 ∥1
= 2 ∥𝑊 ′ −𝑊 ∥1 + 𝑜(1) ≤ 2𝜀 + 𝑜(1)

as 𝑘 →∞. Since 𝜀 > 0 can be chosen to be arbitrarily small, we have 𝛿1(H(𝑘,𝑊),𝑊) → 0
with probability 1. □

Proof of Theorem 4.9.1 (uniqueness of moments). By inclusion-exclusion, for any 𝑘-vertex
labeled graph 𝐹,

Pr[G(𝑘,𝑊) � 𝐹 as labeled graphs]
=

∑︁
𝐹′⊇𝐹
(−1)𝑒 (𝐹′ )−𝑒 (𝐹 ) Pr[G(𝑘,𝑊) ⊇ 𝐹′ as labeled graphs],

MIT OCW: Graph Theory and Additive Combinatorics --- Yufei Zhao



4.9 Equivalence of Convergence 159

where the sum ranges over all graphs 𝐹′ with 𝑉 (𝐹′) = 𝑉 (𝐹) and 𝐸 (𝐹′) ⊇ 𝐸 (𝐹). Since

𝑡 (𝐹′,𝑊) = Pr[G(𝑘,𝑊) ⊇ 𝐹′ as labeled graphs],
we see that the distribution of G(𝑘,𝑊) is determined by the values of 𝑡 (𝐹,𝑊) over all 𝐹.
Since 𝑡 (𝐹,𝑊) = 𝑡 (𝐹,𝑈) for all 𝐹, G(𝑘,𝑊) and G(𝑘,𝑈) are identically distributed.

Our strategy is to prove

𝑊
𝛿1≈ H(𝑘,𝑊) 𝛿□≈ G(𝑘,𝑊) 𝐷≡ G(𝑘,𝑈) 𝛿□≈ H(𝑘,𝑈) 𝛿1≈ 𝑈.

By Lemma 4.9.4, 𝛿1(H(𝑘,𝑊),𝑊) → 0 with probability 1.
By coupling H(𝑘,𝑊) and G(𝑘,𝑊) using the same random vertices as noted earlier, so that

G(𝑘,𝑊) is generated from H(𝑘,𝑊) by independently sampling each edge with probability
equal to the edge weight, we have

P(𝛿□(G(𝑘,𝑊),H(𝑘,𝑊)) ≥ 𝜀) → 0 as 𝑘 → 0 for every fixed 𝜀 > 0.

We leave the details of this claim as an exercise, below. It can be proved via the Chernoff
bound and the union bound. We need to be a bit careful about the definition of the cut norm
as one needs to consider fractional vertices.

Exercise 4.9.5 (Edge-sampling an edge-weighted graph and cut norm). Let 𝐻 be an
edge-weighted graph on 𝑘 vertices, with edge weights in [0, 1], and let 𝐺 be a random
graph obtained from 𝐻 by independently keeping each edge with probability equal to its
edge-weight. Prove that for every 𝜀 > 0 and 𝛿 > 0, there exists 𝑘0 such that 𝛿□(𝐺, 𝐻) < 𝜀
with probability > 1 − 𝛿, provided that 𝑘 ≥ 𝑘0.

So with probability 1,

𝛿□(H(𝑘,𝑊),G(𝑘,𝑊)) → 0 as 𝑘 →∞.
Since 𝛿□ ≤ 𝛿1, we have, with probability 1,

𝛿□(𝑊,G(𝑘,𝑊)) ≤ 𝛿1(𝑊,H(𝑘,𝑊)) + 𝛿□(H(𝑘,𝑊),G(𝑘,𝑊)) = 𝑜(1).
Likewise 𝛿□(𝑈,G(𝑘,𝑈)) = 𝑜(1) with probability 1. Since G(𝑘,𝑊) and G(𝑘,𝑈) are identi-
cally distributed as noted earlier, we deduce that 𝛿□(𝑊,𝑈) = 0. □

This finishes the proof of the equivalence between left-convergence and cut metric con-
vergence. This equivalence can be recast as counting and inverse counting lemmas. We state
the inverse counting lemma below, and leave the proof as an instructive exercise in applying
the compactness of the graphon space. (One need not invoke anything from the proof of
the uniqueness of moments theorem. You may wish to review the discussions on applying
compactness at the end of the previous section and the beginning of this section.)

Corollary 4.9.6 (Inverse counting lemma)
For every 𝜀 > 0 there is some 𝜂 > 0 and integer 𝑘 > 0 such that if𝑈 and𝑊 are graphons
with

|𝑡 (𝐹,𝑈) − 𝑡 (𝐹,𝑊) | ≤ 𝜂 whenever 𝑣(𝐹) ≤ 𝑘,
then 𝛿□(𝑈,𝑊) ≤ 𝜀.
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Exercise 4.9.7. Prove the inverse counting lemma Corollary 4.9.6 using the compactness
of the graphon space (Theorem 4.2.7) and the uniqueness of moments (Theorem 4.9.1).

Hint:Considerahypotheticalsequenceofcounterexamples.

Remark 4.9.8. The inverse counting lemma was first proved by Borgs, Chayes, Lovász, Sós,
and Vesztergombi (2008) in the following quantitative form:

Theorem 4.9.9 (Inverse counting lemma)
Let 𝑘 be a positive integer. Let𝑈 and𝑊 be graphons with

|𝑡 (𝐹,𝑈) − 𝑡 (𝐹,𝑊) | ≤ 2−𝑘2 whenever 𝑣(𝐹) ≤ 𝑘,
then (here 𝐶 is some absolute constant)

𝛿□(𝑈,𝑊) ≤ 𝐶√︁
log 𝑘

.

Exercise 4.9.10. Prove that there exists a function 𝑓 : (0, 1] → (0, 1] such that for all
graphons𝑈 and𝑊 , there exists a graph 𝐹 with

|𝑡 (𝐹,𝑈) − 𝑡 (𝐹,𝑊) |
𝑒(𝐹) ≥ 𝑓 (𝛿□(𝑈,𝑊)).

Exercise 4.9.11∗(Generalized maximum cut). For symmetric measurable functions𝑊,𝑈 : [0, 1]2 →
R, define

C(𝑊,𝑈) B sup
𝜙
⟨𝑊,𝑈𝜙⟩ = sup

𝜙

∫
𝑊 (𝑥, 𝑦)𝑈 (𝜙(𝑥), 𝜙(𝑦)) 𝑑𝑥𝑑𝑦,

where 𝜙 ranges over all invertible measure preserving maps [0, 1] → [0, 1]. Extend the
definition of C(·, ·) to graphs via C(𝐺, ·) B C(𝑊𝐺 , ·) and so on.

(a) Is C(𝑈,𝑊) continuous jointly in (𝑈,𝑊) with respect to the cut norm? Is it contin-
uous in𝑈 if𝑊 is held fixed?

(b) Show that if 𝑊1 and 𝑊2 are graphons such that C(𝑊1,𝑈) = C(𝑊2,𝑈) for all
graphons𝑈, then 𝛿□(𝑊1,𝑊2) = 0.

(c) Let 𝐺1, 𝐺2, . . . be a sequence of graphs such that C(𝐺𝑛,𝑈) converges as 𝑛 → ∞
for every graphon𝑈. Show that 𝐺1, 𝐺2, . . . is convergent.

(d) Can the hypothesis in (c) be replaced by “C(𝐺𝑛, 𝐻) converges as 𝑛→∞ for every
graph 𝐻”?

Exercise 4.9.12 (Characterizing graphs in terms of homomorphism counts).
(a) Let 𝐺1 and 𝐺2 be two graphs such that hom(𝐹, 𝐺1) = hom(𝐹, 𝐺2) for every graph

𝐹. Show that 𝐺1 and 𝐺2 are isomorphic.
(b) Let𝐺1 and𝐺2 be two graphs such that hom(𝐺1, 𝐻) = hom(𝐺2, 𝐻) for every graph

𝐻. Show that 𝐺1 and 𝐺2 are isomorphic.
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Further Reading
The book Large Networks and Graph Limits by Lovász (2012) is the authoritative reference
on the subject. His survey article titled Very Large Graphs (2009) also gives an excellent
overview.

One particularly striking application of the theory of dense graph limits is to large de-
viations for random graphs by Chatterjee and Varadhan (2011). See the survey article An
Introduction to Large Deviations for Random Graphs by Chatterjee (2016) as well as his
book (Chatterjee 2017).

Chapter Summary

• A graphon is a symmetric measurable function𝑊 : [0, 1]2 → [0, 1].
– Every graph 𝐺 can be turned into an associated graphon𝑊𝐺 .
– A graphon can be turned into a random graph model known a 𝑊-random graph,

generalizing the stochastic block model.
• The cut metric of two graphons𝑈 and𝑊 is defined by

𝛿□ (𝑈,𝑊) = inf
𝜙
∥𝑈 −𝑊 𝜙 ∥□

= inf
𝜙

sup
𝑆,𝑇⊆[0,1]

����
∫
𝑆×𝑇
(𝑈 (𝑥, 𝑦) −𝑊 (𝜙(𝑥), 𝜙(𝑦))) 𝑑𝑥𝑑𝑦

���� ,
where the infimum is taken over all invertible measure preserving maps 𝜙 : [0, 1] → [0, 1].

• Given a sequence of graphons (or graphs)𝑊1,𝑊2, . . . , we say that it
– converges in cut metric if it is a Cauchy sequence with respect to the cut metric 𝛿□;
– left-converges if the homomorphism density 𝑡 (𝐹,𝑊𝑛) converges for every fixed graph
𝐹 as 𝑛→∞.

• The graphon space is compact under the cut metric.
– Proof uses the weak regularity lemma and the martingale convergence theorem.
– Compactness has powerful consequences.

• Convergence in cut metric and left-convergence are equivalent for a sequence of graphons.
– (⇒) follows from a counting lemma.
– (⇐) was proved here using compactness.
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