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Sum-Product Problem

Chapter Highlights

• The sum-product problem: show either 𝐴 + 𝐴 or 𝐴 · 𝐴 must be large
• Erdős multiplication table problem
• Crossing number inequality: lower bound on the number of crossings in a graph drawing
• Szemerédi–Trotter theorem on point-line incidences
• Elekes’ sum-product bound using incidence geometry
• Solymosi’s sum-product bound via multiplicative energy

In the previous chapter we studied the sumset

𝑨 + 𝑨 B {𝑎 + 𝑏 : 𝑎, 𝑏 ∈ 𝐴} .
Likewise we can also consider the product set

𝑨 · 𝑨 = 𝑨𝑨 B {𝑎𝑏 : 𝑎, 𝑏 ∈ 𝐴}
Question 8.0.1 (Sum-product problem)
Can the sumset and the product set be simultaneously small?

Arithmetic progressions have small additive doubling, while geometric progressions have
small multiplicative doubling. However, perhaps a set cannot simultaneously look like both
an arithmetic and a geometric progression.

Erdős and Szemerédi (1983) conjectured that at least one of 𝐴 + 𝐴 and 𝐴𝐴 is close to
quadratic size.

Conjecture 8.0.2 (Sum-product conjecture)
For every finite subset 𝐴 of R, we have

max {|𝐴 + 𝐴| , |𝐴𝐴|} ≥ |𝐴|2−𝑜 (1) .
Here 𝑜(1) is some quantity that goes to zero as |𝐴| → ∞.

Erdős and Szemerédi (1983) proved bounds of the form

max {|𝐴 + 𝐴| , |𝐴𝐴|} ≥ |𝐴|1+𝑐

for some constant 𝑐 > 0. In this chapter, we will give two different proofs of the above form.
First, we present a proof by Elekes (1997) using incidence geometry, in particular a seminal
theorem of Szemerédi and Trotter (1983) on the incidences of points and lines. Second, we
present a proof by Solymosi (2009) using multiplicative energy, which gives nearly the best
bound to date.
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274 Sum-Product Problem

8.1 Multiplication Table Problem
Let us first explain why we need the error term −𝑜(1) in the exponent in Conjecture 8.0.2.
Erdős (1955) posed the following problem.

Question 8.1.1 (Erdős multiplication table problem)
What is the size of [𝑁] · [𝑁]?

This is asking for the number of distinct entries that appear in the 𝑁 × 𝑁 multiplication
table.

1
2
3
4
5
6
7
8
9
10

2
4
6
8
10
12
14
16
18
20

3
6
9
12
15
18
21
24
27
30

4
8
12
16
20
24
28
32
36
40

5
10
15
20
25
30
35
40
45
50

6
12
18
24
30
36
42
48
54
60

7
14
21
28
35
42
49
56
63
70

8
16
24
32
40
48
56
64
72
80

9
18
27
36
45
54
63
72
81
90

10
20
30
40
50
60
70
80
90
100
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· · ·
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· · ·
. . .

After much work, we now have a satisfactory answer. A precise estimate was given by
Ford (2008):

| [𝑁] · [𝑁] | = Θ

(
𝑁2

(log 𝑁) 𝛿 (log log 𝑁)3/2
)
,

where 𝛿 = 1 − (1 + log log 2)/log 2 ≈ 0.086. Here we give a short proof of some weaker
estimates (Erdős 1955).

Theorem 8.1.2 (Estimates on the multiplication table problem)

(1 − 𝑜(1)) 𝑁2

2 log 𝑁
≤ |[𝑁] · [𝑁] | = 𝑜(𝑁2)

This already shows that it is false that at least one of 𝐴 + 𝐴 and 𝐴𝐴 has size ≥ 𝑐 |𝐴|2. So
we cannot remove the −𝑜(1) term from the exponent in the sum-product conjecture.

To prove Theorem 8.1.2, we apply the following fact from number theory due to Hardy
and Ramanujan (1917). A short probabilistic method proof was given by Turán (1934); also
see Alon and Spencer (2016, Section 4.2).

Theorem 8.1.3 (Hardy–Ramanujan theorem)
All but 𝑜(𝑁) positive integers up to 𝑁 have (1 + 𝑜(1)) log log 𝑁 prime factors counted
with multiplicity.
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Proof of Theorem 8.1.2. First let us prove the upper bound. By the Hardy–Ramanujan
theorem, all but at most 𝑜(𝑁2) of the elements of [𝑁] · [𝑁] have (2 + 𝑜(1)) log log 𝑁
prime factors. However, by the Hardy–Ramanujan theorem again, all but 𝑜(𝑁2) of posi-
tive integers ≤ 𝑁2 have (1 + 𝑜(1)) log log(𝑁2) = (1 + 𝑜(1)) log log 𝑁 prime factors, and
thus cannot appear in [𝑁] · [𝑁]. Hence | [𝑁] · [𝑁] | = 𝑜(𝑁2). (Remark: this proof gives
| [𝑁] · [𝑁] | = 𝑂 (𝑁2/log log 𝑁).)

Now let us prove the lower bound by giving a lower bound to the number of positive
integers ≤ 𝑁2 of the form 𝑝𝑚, where 𝑝 is a prime in (𝑁2/3, 𝑁] and 𝑚 ≤ 𝑁 . Every such 𝑛
has at most two such representations as 𝑝𝑚 since 𝑛 ≤ 𝑁2 can have at most two prime factors
greater than 𝑁2/3. There are (1 + 𝑜(1))𝑁/log 𝑁 primes in (𝑁2/3, 𝑁] by the prime number
theorem. So the number of distinct such 𝑝𝑚 is ≥ (1/2 − 𝑜(1))𝑁2/log 𝑁 . □

Remark 8.1.4. The lower bound (up to a constant factor) also follows from Solymosi’s
sum-product estimate that we will see later in Theorem 8.3.1.

8.2 Crossing Number Inequality and Point-Line Incidences
The goal of this section is to give a proof of the following sum-product estimate, due to
Elekes (1997), using incidence geometry. Recall we use 𝑓 ≳ 𝑔 to mean that 𝑓 ≥ 𝑐𝑔 for some
constant 𝑐 > 0.

Theorem 8.2.1 (Elekes’ sum-product bound)
Every finite 𝐴 ⊆ R satisfies

|𝐴 + 𝐴| |𝐴𝐴| ≳ |𝐴|5/2 .

Corollary 8.2.2 (Elekes’ sum-product bound)
Every finite 𝐴 ⊆ R satisfies

max{|𝐴 + 𝐴| , |𝐴𝐴|} ≳ |𝐴|5/4 .

We introduce a basic result from geometric graph theory.

Crossing Number Inequality
The crossing number cr(𝐺) of a graph 𝐺 is defined to be the minimum number of edge
crossings in a planar drawing of 𝐺 where edges are drawn with continuous curves.

The next theorem shows that every drawing of a graph with many edges necessarily has
lots of edge crossings. For example, it implies that every 𝑛-vertex graph with Ω(𝑛2) edges
has Ω(𝑛4) crossings; that is, a constant fraction of the edges must cross in a dense graph. This
result is independently due to Ajtai, Chvátal, Newborn, and Szemerédi (1982) and Leighton
(1984).
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Theorem 8.2.3 (Crossing number inequality)
Every graph 𝐺 = (𝑉, 𝐸) with |𝐸 | ≥ 4 |𝑉 | has

cr(𝐺) ≳ |𝐸 |
3

|𝑉 |2
.

Proof. For any connected planar graph 𝐺 = (𝑉, 𝐸) with at least one cycle, we have 3 |𝐹 | ≤
2 |𝐸 |, with |𝐹 | denoting the number of faces (including the outer face). The inequality follows
from double counting using the fact that every face is adjacent to at least three edges and
that every edge is adjacent to at most two faces. By Euler’s formula, |𝑉 | − |𝐸 | + |𝐹 | = 2.
Replacing |𝐹 | using 3 |𝐹 | ≤ 2 |𝐸 |, we obtain |𝐸 | ≤ 3 |𝑉 | − 6. Therefore |𝐸 | ≤ 3 |𝑉 | holds for
every planar graph 𝐺 including ones that are not connected or do not have a cycle.

If an arbitrary graph 𝐺 = (𝑉, 𝐸) satisfies |𝐸 | > 3 |𝑉 |, then any drawing of 𝐺 can
be made planar by deleting at most cr(𝐺) edges, one for each crossing. It follows that
|𝐸 | − cr(𝐺) ≤ 3 |𝑉 | . Therefore, the following inequality holds universally for all graphs
𝐺 = (𝑉, 𝐸):

cr(𝐺) ≥ |𝐸 | − 3 |𝑉 | . (8.1)

Now we apply a probabilistic method technique to “boost” the above inequality to denser
graphs. Let 𝐺 = (𝑉, 𝐸) be a graph with |𝐸 | ≥ 4 |𝑉 |. Let 𝑝 ∈ [0, 1] be some real number to
be determined and let𝐺′ = (𝑉 ′, 𝐸 ′) be a graph obtained by independently randomly keeping
each vertex of 𝐺 with probability 𝑝. By (8.1), we have cr(𝐺′) ≥ |𝐸 ′ | − 3 |𝑉 ′ | for every 𝐺′.
Therefore the same inequality must hold if we take the expected values of both sides:

E cr(𝐺′) ≥ E |𝐸 ′ | − 3E |𝑉 ′ | .
We have E |𝐸 ′ | = 𝑝2 |𝐸 | since an edge remains in 𝐺′ if and only if both of its endpoints
are kept. Similarly E |𝑉 ′ | = 𝑝 |𝑉 |. By keeping the same drawing, we get the inequality
𝑝4 cr(𝐺) ≥ E cr(𝐺′). Therefore

cr(𝐺) ≥ 𝑝−2 |𝐸 | − 3𝑝−3 |𝑉 | .
Finally set 𝑝 = 4 |𝑉 | /|𝐸 | ∈ [0, 1] (here we use |𝐸 | ≥ 4 |𝑉 |) to get cr(𝐺) ≳ |𝐸 |3 /|𝑉 |2. □

Szemerédi–Trotter theorem on Point-Line Incidences
Given a set of points P and the set of lines L, define the number of incidences to be

𝑰(P,L) B |{(𝑝, ℓ) ∈ P × L : 𝑝 ∈ ℓ}| .

Question 8.2.4 (Point-line incidence)
What’s the maximum number of incidences between 𝑛 points and 𝑚 lines?

One trivial upper bound is |P | |L|. We can get a better bound by using the fact that every
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pair of points is determined by at most one line:

|P |2 ≥ |{(𝑝, 𝑝′, ℓ) ∈ P × P × L : 𝑝𝑝′ ∈ ℓ , 𝑝 ≠ 𝑝′}|

≥
∑︁
ℓ∈L
|P ∩ ℓ | ( |P ∩ ℓ | − 1) ≥ 𝐼 (P,L)2

|L| − 𝐼 (P,L).

The last inequality follows from Cauchy–Schwarz inequality. Therefore,

𝐼 (P,L) ≤ |P| |L|1/2 + |L| .
By the same argument with the roles of points and lines swapped (or by applying point-line
duality),

𝐼 (P,L) ≤ |L| |P|1/2 + |P| .
In particular these inequalities tell us that 𝑛 points and 𝑛 lines have 𝑂 (𝑛3/2) incidences.

The above bound only uses the fact that every pair of points determines at most one line.
Equivalently, we are only using that the bipartite point-line incidence graph is 4-cycle-free.
So the 𝑂 (𝑛3/2) bound (and the above proof) is the same as the 𝐾2,2-free extremal number
bound from Section 1.4. Also, the 𝑂 (𝑛3/2) bound is tight for the finite field projective plane
over F𝑞 with 𝑛 = 𝑞2 + 𝑞 + 1 points and 𝑛 = 𝑞2 + 𝑞 + 1 lines gives 𝑛(𝑞 + 1) ∼ 𝑛3/2 incidences
(this the same construction showing that ex(𝑛, 𝐾2,2) ≳ 𝑛3/2 in Theorem 1.10.1).

On the other hand, in the real plane, the 𝑛3/2 bound can be substantially improved. The
following seminal result due to Szemerédi and Trotter (1983) gives a tight estimate of the
number of point-line incidences in the real plane.

Theorem 8.2.5 (Szemerédi–Trotter theorem)
For any set P of points and L of lines in R2,

𝐼 (P,L) ≲ |P |2/3 |L|2/3 + |P| + |L| .

Corollary 8.2.6
The number of point-line incidences between 𝑛 points and 𝑛 lines in R2 is 𝑂 (𝑛4/3).

We will see a short proof using the crossing number inequality due to Székely (1997).
Since the inequality is false over finite fields, any proof necessarily requires the topology of
the real plane (via the application of Euler’s theorem in the proof of the crossing number
inequality).

Example 8.2.7. The bounds in both Theorem 8.2.5 and Corollary 8.2.6 are best possible
up to a constant factor. Here is an example showing that Corollary 8.2.6 is tight. Let P =
[𝑘] × [2𝑘2] and L = {𝑦 = 𝑚𝑥 + 𝑏 : 𝑚 ∈ [𝑘], 𝑏 ∈ [𝑘2]}. Then every line in L contains 𝑘
points from P. So, 𝐼 (P,L) = 𝑘4 = Θ(𝑛4/3).
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(1, 1)

(3, 18)
𝑚 = 1

𝑏 = 1
𝑏 = 2
𝑏 = 3
𝑏 = 4
𝑏 = 5
𝑏 = 6
𝑏 = 7
𝑏 = 8
𝑏 = 9

(1, 1)

(3, 18)
𝑚 = 2

𝑏 = 1
𝑏 = 2
𝑏 = 3
𝑏 = 4
𝑏 = 5
𝑏 = 6
𝑏 = 7
𝑏 = 8
𝑏 = 9

(1, 1)

(3, 18)
𝑚 = 3

𝑏 = 1
𝑏 = 2
𝑏 = 3
𝑏 = 4
𝑏 = 5
𝑏 = 6
𝑏 = 7
𝑏 = 8
𝑏 = 9

Proof of Theorem 8.2.5. We remove all lines in L containing at most one point in P. These
lines contribute to at most |L| incidences and thus do not affect the inequality we wish to
prove.

Now assume that every line in L contains at least two points of P. Turn every point of P
into a vertex and each line in L into edges connecting consecutive points of P on the line.
This constructs a drawing of a graph 𝐺 = (𝑉, 𝐸) on the plane.

P and L

−→

graph 𝐺

Assume that 𝐼 (P,L) ≥ 8 |P | holds (otherwise we are done as 𝐼 (P,L) ≲ |P |). Each line
in L with 𝑘 incidences has 𝑘 − 1 ≥ 𝑘/2 edges. So |𝐸 | ≥ 𝐼 (P,L)/2 ≥ 4 |𝑉 |. The crossing
number inequality (Theorem 8.2.3) gives

cr(𝐺) ≳ |𝐸 |
3

|𝑉 |2
≳
𝐼 (P,L)3
|P |2

.

Moreover cr(𝐺) ≤ |L|2 since every pair of lines intersect in at most one point. Rearranging
gives 𝐼 (P,L) ≲ |𝑃 |2/3 |𝐿 |2/3. (Remember the linear contributions |P | + |L| that need to be
added back in due to the assumptions made earlier in the proof.) □

Now we are ready to prove the sum-product estimate in Theorem 8.2.1 for 𝐴 ⊆ R:

|𝐴 + 𝐴| |𝐴𝐴| ≳ |𝐴|5/2 .
Proof of Theorem 8.2.1. In R2, consider a set of points

P = {(𝑥, 𝑦) : 𝑥 ∈ 𝐴 + 𝐴, 𝑦 ∈ 𝐴𝐴}
and a set of lines

L = {𝑦 = 𝑎(𝑥 − 𝑎′) : 𝑎, 𝑎′ ∈ 𝐴}.
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For a line 𝑦 = 𝑎(𝑥 − 𝑎′) in L, (𝑎′ + 𝑏, 𝑎𝑏) ∈ P is on the line for all 𝑏 ∈ 𝐴, so each line in L
contains ≥ |𝐴| incidences. By definition of P and L, we have

|P | = |𝐴 + 𝐴| |𝐴𝐴| and |L| = |𝐴|2 .
By the Szemerédi–Trotter theorem (Theorem 8.2.5),

|𝐴|3 = |𝐴| |L| ≤ 𝐼 (P,L) ≲ |P |2/3 |L|2/3 + |P| + |L|
≲ |𝐴 + 𝐴|2/3 |𝐴𝐴|2/3 |𝐴|4/3 .

The contributions from |P | + |L| are lower order as |P | = |𝐴 + 𝐴| |𝐴𝐴| ≤ |𝐴|4 = |L|2 and
|L| = |𝐴|2 ≤ |𝐴 + 𝐴|2 |𝐴𝐴|2 = |P |2. Rearranging the above inequality gives

|𝐴 + 𝐴| |𝐴𝐴| ≳ |𝐴|5/2 . □

In Section 1.4, we proved an 𝑂 (𝑛3/2) upper bound on the unit distance problem (Ques-
tion 1.4.6) using the extremal number of 𝐾2,3. The next exercise gives an improved bound
(in fact the best known result to date).

Exercise 8.2.8 (Unit distance bound). Using the crossing number inequality, prove that
given 𝑛 points in the plane, at most 𝑂 (𝑛4/3) pairs of points are separated by exactly unit
distance.

8.3 Sum-Product via Multiplicative Energy
In this chapter, we give a different proof that gives a better sum-product estimate, due to
Solymosi (2009).

Theorem 8.3.1 (Solymosi’s sum-product bound)
Every finite set 𝐴 of positive reals satisfies

|𝐴𝐴| |𝐴 + 𝐴|2 ≳ |𝐴|4
log |𝐴| .

Corollary 8.3.2 (Solymosi’s sum-product bound)
Every finite 𝐴 ⊆ R satisfies

max {|𝐴 + 𝐴| , |𝐴𝐴|} ≥ |𝐴|4/3−𝑜 (1) .

Proof of Theorem 8.3.1. We define the multiplicative energy of 𝐴 to be

𝑬× (𝑨) B |{(𝑎, 𝑏, 𝑐, 𝑑) ∈ 𝐴 × 𝐴 × 𝐴 × 𝐴 : 𝑎𝑏 = 𝑐𝑑}| .
Note that the multiplicative energy is a multiplicative version of additive energy. As with
additive energy, having small multiplicative doubling implies large multiplicative energy, as
seen by an application of the Cauchy–Schwarz inequality:

𝐸× (𝐴) =
∑︁
𝑥∈𝐴𝐴

��{(𝑎, 𝑏) ∈ 𝐴2 : 𝑎𝑏 = 𝑥
}��2 ≥ |𝐴|4|𝐴𝐴| .
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Let
𝑨/𝑨 B {𝑎/𝑏 : 𝑎, 𝑏 ∈ 𝐴} .

Write
𝑟 (𝑠) = |{(𝑎, 𝑏) ∈ 𝐴 × 𝐴 : 𝑠 = 𝑎/𝑏}| .

We have
𝐸× (𝐴) =

∑︁
𝑠∈𝐴/𝐴

𝑟 (𝑠)2.

By the pigeonhole principle (dyadic partitioning), there exists some nonnegative integer
𝑘 ≲ log |𝐴| such that, setting

𝐷 = {𝑠 : 2𝑘 ≤ 𝑟 (𝑠) ≤ 2𝑘+1} and 𝑚 = |𝐷 | ,
one has

𝐸× (𝐴)
log |𝐴| ≲

∑︁
𝑠∈𝐷

𝑟 (𝑠)2 ≤ 𝑚22𝑘+2. (8.2)

Let the elements of 𝐷 be 𝑠1 < 𝑠2 < · · · < 𝑠𝑚. For each 𝑖 ∈ [𝑚], let ℓ𝑖 be the line 𝑦 = 𝑠𝑖𝑥. Let
ℓ𝑚+1 be the vertical ray 𝑥 = min(𝐴) above ℓ𝑚.

𝐿2

𝐿1

𝐴

𝐴

𝐿1 + 𝐿2

ℓ1

ℓ2

ℓ𝑚−1ℓ𝑚

ℓ𝑚+1

Let 𝐿 𝑗 = (𝐴 × 𝐴) ∩ ℓ 𝑗 . Then, for each 1 ≤ 𝑗 ≤ 𝑚,

|𝐿 𝑗 | = 𝑟 (𝑠 𝑗) ≥ 2𝑘 .

Furthermore, |𝐿𝑚+1 | ≥ |𝐿𝑚 | ≥ 2𝑘 as well.
Since ℓ 𝑗 and ℓ 𝑗+1 are not parallel, we have |𝐿 𝑗 + 𝐿 𝑗+1 | = |𝐿 𝑗 | |𝐿 𝑗+1 |. Moreover, the sets
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𝐿 𝑗 + 𝐿 𝑗+1 are disjoint for different 𝑗 . The sumset 𝐴 × 𝐴 + 𝐴 × 𝐴 (here 𝐴 × 𝐴 is the Cartesian
product) contains 𝐿 𝑗 + 𝐿 𝑗+1 for each 1 ≤ 𝑗 ≤ 𝑚, so, using (8.2),

|𝐴 + 𝐴|2 = |𝐴 × 𝐴 + 𝐴 × 𝐴| ≥
𝑚∑︁
𝑗=1

|𝐿 𝑗 + 𝐿 𝑗+1 | =
𝑚∑︁
𝑗=1

|𝐿 𝑗 | |𝐿 𝑗+1 | ≥ 𝑚22𝑘 ≳
𝐸× (𝐴)
log |𝐴| .

Combining with 𝐸× (𝐴) ≥ |𝐴|4 /|𝐴𝐴|, which we obtained at the beginning of the proof, we
obtain

|𝐴 + 𝐴|2 |𝐴𝐴| log |𝐴| ≳ |𝐴|4 . □

Remark 8.3.3 (Improvements). Konyagin and Shkredov (2015) improved Solymosi’s sum-
product bound to max{|𝐴 + 𝐴| , |𝐴𝐴|} ≥ |𝐴|4/3+𝑐 for a small constant 𝑐 > 0. This constant 𝑐
was improved in subsequent works, but still remains quite small.

Remark 8.3.4 (Sum-product in F𝑝). Bourgain, Katz, and Tao (2004), combined with a
later result of Bourgain, Glibichuk, and Konyagin (2006), proved the following sum-product
estimate in F𝑝 with 𝑝 prime:

Theorem 8.3.5 (Sum-product in prime finite fields)
For every Y > 0 there exists 𝛿 > 0 and 𝑐 > 0 so that every 𝐴 ⊆ F𝑝, with 𝑝 prime, and
1 < |𝐴| < 𝑝1−Y , satisfies

max {|𝐴 + 𝐴| , |𝐴𝐴|} ≥ 𝑐 |𝐴|1+𝛿 .
The statement is false over nonprime fields, since we could take 𝐴 to be a subfield.

Informally, the above theorem says that a prime field does not have any approximate sub-
rings.

Further Reading
Dvir’s survey Incidence Theorems and Their Applications (2012) discusses many interesting
related topics including incidence geometry and additive combinatorics together with their
applications to computer science.

Guth’s book The Polynomial Method in Combinatorics (2016) gives an in-depth discussion
of incidence geometry in R2 and R3 leading to a proof of the solution of the Erdős distinct
distances problem by Guth and Katz (2015).

Sheffer’s book Polynomial Methods and Incidence Theory (2022) provides an introduction
to incidence geometry and related topics.

Chapter Summary

• Sum-product conjecture. max {|𝐴 + 𝐴| , |𝐴𝐴|} ≥ |𝐴|2−𝑜 (1) for all 𝐴 ⊆ R.
• Elekes’ bound. max {|𝐴 + 𝐴| , |𝐴𝐴|} ≳ |𝐴|5/4.

– Proof uses point-line incidences.
– Crossing number inequality. Every graph 𝐺 with 𝑛 vertices and 𝑚 ≥ 4𝑛 edges has
≳ 𝑚3/𝑛2 crossings in every drawing.

– Szemerédi–Trotter theorem. 𝑚 lines and 𝑛 points in R2 form 𝑂 (𝑚2/3𝑛2/3 + 𝑚 + 𝑛)
incidences.

• Solymosi’s bound: max {|𝐴 + 𝐴| , |𝐴𝐴|} ≳ |𝐴|4/3−𝑜 (1) .
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